数学代写|随机过程统计代写Stochastic process statistics代考|MATH3801

如果你也在 怎样代写随机过程统计Stochastic process statistics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

随机过程 用于表示在时间上发展的统计现象以及在处理这些现象时出现的理论模型,由于这些现象在许多领域都会遇到,因此这篇文章具有广泛的实际意义。

statistics-lab™ 为您的留学生涯保驾护航 在代写随机过程统计Stochastic process statistics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机过程统计Stochastic process statistics代写方面经验极为丰富,各种代写随机过程统计Stochastic process statistics相关的作业也就用不着说。

我们提供的随机过程统计Stochastic process statistics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|随机过程统计代写Stochastic process statistics代考|MATH3801

数学代写|随机过程统计代写Stochastic process statistics代考|Importance of Software for Process Analysis

In process engineering, the simulation, design, and optimization of a chemical process plant, which comprises several processing units interconnected by process streams, are the core activities. These tasks require material and energy balancing, equipment sizing, and costing calculation. A computer package that can accomplish these duties is known as a computer-aided process design package or simply a process simulator (also known as process flowsheeting package, flowsheet simulator, or flowsheeting software). The capabilities of a process simulator include an accurate description of physical properties of pure components and complex mixtures, rigorous models for unit operations, as well as numerical techniques for solving large systems of algebraic and differential equations. By a process simulator, it is possible to obtain a comprehensive computer image of a running process, which is a valuable tool in understanding the operation of a complex chemical plant and on this basis can serve for continuously improving the process or for developing new processes.

The purpose of simulation is to model and predict the performance of a process. It involves decomposition of the process into its constituent units for individual study of performance. The process characteristics (e.g., flow rates, compositions, temperatures, pressures, properties, and equipment sizes) are predicted using analysis techniques, which include mathematical models, empirical correlations, and computer-aided process simulation tools (e.g., Aspen Plus). In addition, process analysis may involve the use of experimental methods to predict and validate performance. Therefore, in process simulation, the process inputs and the flowsheet are given, and we are required to predict process outputs (Figure 4.1). This book focuses on Aspen Plus. It is a computer-aided software that uses the underlying physical relationships (e.g., material and energy balances, thermodynamic equilibrium, and rate equations) to predict process performance (e.g., stream properties, operating conditions, and equipment sizes).
There are several advantages of computer-aided simulation:

  1. It allows the designer to quickly test the performance of synthesized process flowsheets and provide feedback to the process synthesis activities.
  2. It can be coordinated with process synthesis to develop optimum integrated designs.
  3. It minimizes experimental and scale-up efforts.
  4. It explores process flexibility and sensitivity by answering “what-if” questions.
  5. It quantitatively models the process and sheds insights on process performance.
  6. Following are the important issues to remember before venturing into the exciting world of computer-aided simulation:
  7. Do not implicitly trust the results of any simulation tool.
  8. Calculated results are only as good as the input you give the simulator.
  9. Always convince yourself that the obtained results make physical sense, otherwise you will never be able to convince someone else of the merits of your work.

数学代写|随机过程统计代写Stochastic process statistics代考|Characteristics of the Process Simulator Aspen Plus

The process simulation market underwent severe transformations in the 1985-1995 decade. Relatively few systems have survived; they are CHEMCAD, Aspen Plus, Aspen HYSYS, PRO/II, ProSimPlus, SuperPro Designer, and gPROMS. Nowadays, most of the current process simulators are developed following an object-oriented approach using languages such as $\mathrm{C}_{+}+$or Java. This shift in paradigm, from procedural to object-oriented, has no doubt benefited and will continue to benefit the process engineering community immensely.

Aspen Plus is designed for the simulation of steady-state processes; especially those that are computationally laborious to analyze by hand calculations, such as processes involving recycle streams, nonideal phase or chemical

equilibria, and adiabatic operations. It is ideally suited to provide answers on “what-if” type of questions on process design and optimization.

Fundamental to improving performance of the plant is an accurate representation of the basic processes. Companies require a solution that enables them to model their processes to develop insights to improve designs and optimize performance. Aspen Plus provides the solution to meet this requirement, solving the critical engineering and operating problems that arise throughout the life cycle of a chemical process.

Aspen Plus predicts process behavior using engineering relationships, such as mass and energy balances, phase and chemical equilibria, and reaction kinetics. With reliable physical properties, thermodynamic data, realistic operating conditions, and rigorous equipment models, engineers are able to simulate actual plant behaviors. Applications include the following:

  • Improving engineering productivity and reducing costs
  • Reducing energy consumption and greenhouse gas emissions
  • Enhancing product yields and quality
  • Minimizing capital and operating costs
  • Optimizing designs for large-scale integrated chemical plants
  • Optimizing plant operations

数学代写|随机过程统计代写Stochastic process statistics代考|Sequential Modular Simulation

The sequential modular approach is based on the concept of modularity, which extends the chemical engineering concept of unit operation to a “unit calculation” of the computer code (i.e., subroutine) responsible for the calculations of an equipment. This method is similar in principle to the traditional method of hand calculation of unit operations. The equations for each equipment unit are grouped together in a subroutine or module. Thus, each module calculates the output streams for the given input streams and parameters for that equipment, irrespective of the source of input information or the sink of output information. In the equation-oriented type, the complete model of the plant is expressed in the form of one large sparse system of nonlinear algebraic equations that is simultaneously solved for all the unknowns. This approach combines the modularizing of the equations related to specific equipment with the efficient solution algorithms for the simultaneous equation-solving technique. For each unit, an additional module is written, which approximately relates each output value by a linear combination of all input values. Accordingly, rigorous models are used at units’ level, which are solved sequentially, whereas linear models are used at flowsheet level, solved globally. The linear models are updated based on results obtained with rigorous models (Martin-Martin, 2015).
Following are the basic components of a simulation package:

  1. Component data bank
  2. Thermodynamic property prediction methods
  3. Flowsheet builder (graphical user interface)
  4. Unit module library
  5. Numerical routines
  6. Data output generator
  7. Executive program (flowsheet solver)
    Modular process simulators are very robust solving each unit operation with numerical methods tailored to the specific characteristics to each one of these units. These include from specific inside-out algorithms to “flash” a material stream going through detailed methods for reactors and heat exchangers until complex methods for distillation. However, one drawback of the approach is that some unit operations introduce numerical noise (this is also simulator and unit dependent). In other words, if we solve the same problem starting from different initial points, we will obtain, for some variables, slightly different values. The difference can be in the second or third decimal point, which is not significant from a simulation point of view but is a really large error if we try to estimate a derivative (derivative information is not provided by the simulator, although some unit operations internally use it to solve the module). This problem is magnified by information loops that could act as “error accumulators.”
数学代写|随机过程统计代写Stochastic process statistics代考|MATH3801

随机过程统计代考

数学代写|随机过程统计代写Stochastic process statistics代考|Importance of Software for Process Analysis
在过程工程中,化学过程工厂的模拟、设计和优化是核心活动,其中包括多个通过过程流相互连接的处理单元。这些任务需要材料和能量平衡、设备选型和成本计算。可以完成这些任务的计算机软件包称为计算机辅助工艺设计软件包或简称为工艺模拟器(也称为工艺流程图软件包、流程图模拟器或流程图软件)。过程模拟器的功能包括准确描述纯组分和复杂混合物的物理特性、单元操作的严格模型,以及求解大型代数和微分方程系统的数值技术。通过过程模拟器,

模拟的目的是对过程的性能进行建模和预测。它涉及将过程分解为其组成单元,以进行单独的绩效研究。使用包括数学模型、经验相关性和计算机辅助过程模拟工具(例如 Aspen Plus)在内的分析技术预测过程特性(例如,流速、成分、温度、压力、性质和设备尺寸)。此外,过程分析可能涉及使用实验方法来预测和验证性能。因此,在过程模拟中,给出了过程输入和流程图,我们需要预测过程输出(图 4.1)。本书重点介绍 Aspen Plus。它是一种计算机辅助软件,它使用底层的物理关系(例如,
计算机辅助模拟有几个优点:

它允许设计人员快速测试合成工艺流程图的性能,并为工艺合成活动提供反馈。
它可以与工艺合成相协调,以开发最佳的集成设计。
它最大限度地减少了实验和扩大规模。
它通过回答“假设”问题来探索流程的灵活性和敏感性。
它对流程进行定量建模,并揭示流程绩效。
以下是在进入令人兴奋的计算机辅助模拟世界之前要记住的重要问题:
不要暗中相信任何模拟工具的结果。
计算结果与您给模拟器的输入一样好。
始终说服自己获得的结果具有物理意义,否则您将永远无法说服其他人您工作的优点。
数学代写|随机过程统计代写Stochastic process statistics代考|Characteristics of the Process Simulator Aspen Plus
过程模拟市场在 1985-1995 十年期间经历了剧烈的转变。幸存下来的系统相对较少;它们是 CHEMCAD、Aspen Plus、Aspen HYSYS、PRO/II、ProSimPlus、SuperPro Designer 和 gPROMS。如今,大多数当前的过程模拟器都是按照面向对象的方法开发的,使用诸如或Java。这种范式的转变,从面向过程到面向对象,无疑已经并将继续极大地造福于过程工程社区。

Aspen Plus 专为模拟稳态过程而设计;尤其是那些通过手工计算难以计算的分析,例如涉及循环流、非理想相或化学的过程

平衡和绝热操作。它非常适合提供有关流程设计和优化的“假设”类型问题的答案。

提高工厂绩效的基础是基本流程的准确表示。公司需要一种解决方案,使他们能够对其流程进行建模,以开发洞察力以改进设计和优化性能。Aspen Plus 提供了满足这一要求的解决方案,解决了整个化学过程生命周期中出现的关键工程和操作问题。

Aspen Plus 使用工程关系预测过程行为,例如质量和能量平衡、相和化学平衡以及反应动力学。凭借可靠的物理特性、热力学数据、真实的运行条件和严格的设备模型,工程师能够模拟实际的工厂行为。应用包括以下内容:

提高工程生产力并降低成本
减少能源消耗和温室气体排放
提高产品产量和质量
最大限度地降低资本和运营成本
大型综合化工厂的优化设计
优化工厂运营
数学代写|随机过程统计代写Stochastic process statistics代考|Sequential Modular Simulation
顺序模块化方法基于模块化概念,它将单元操作的化学工程概念扩展到负责设备计算的计算机代码(即子程序)的“单元计算”。这种方法在原理上与传统的单位操作手工计算方法相似。每个设备单元的方程组合在一个子程序或模块中。因此,每个模块计算给定输入流的输出流和该设备的参数,而不考虑输入信息的来源或输出信息的接收器。在面向方程的类型中,被控对象的完整模型以一个大型稀疏非线性代数方程系统的形式表示,该系统同时求解所有未知数。这种方法将与特定设备相关的方程的模块化与联立方程求解技术的有效求解算法相结合。对于每个单元,都会编写一个附加模块,该模块通过所有输入值的线性组合近似地关联每个输出值。因此,严格模型用于单元级,按顺序求解,而线性模型用于流程图级,全局求解。线性模型根据使用严格模型获得的结果进行更新(Martin-Martin,2015)。因此,严格模型用于单元级,按顺序求解,而线性模型用于流程图级,全局求解。线性模型根据使用严格模型获得的结果进行更新(Martin-Martin,2015)。因此,严格模型用于单元级,按顺序求解,而线性模型用于流程图级,全局求解。线性模型根据使用严格模型获得的结果进行更新(Martin-Martin,2015)。
以下是模拟包的基本组件:

组件数据库
热力学性质预测方法
流程图生成器(图形用户界面)
单元模块库
数值例程
数据输出发生器
执行程序(流程图求解器)
模块化过程模拟器非常强大,可以使用针对每个单元的特定特征量身定制的数值方法来解决每个单元操作。这些包括从特定的由内而外的算法到“闪蒸”物料流,通过反应器和热交换器的详细方法,直到复杂的蒸馏方法。然而,该方法的一个缺点是某些单元操作会引入数值噪声(这也是模拟器和单元相关的)。换句话说,如果我们从不同的初始点开始解决同一个问题,对于某些变量,我们将获得稍微不同的值。差异可以在第二个或第三个小数点,从模拟的角度来看,这并不重要,但如果我们尝试估计导数,则会产生非常大的误差(模拟器不提供导数信息,尽管一些单元操作在内部使用它来求解模块)。这个问题被可能充当“错误累加器”的信息循环放大了。

数学代写|随机过程统计代写Stochastic process statistics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注