统计代写|复杂网络代写complex networks代考|Introduction to Complex Networks

如果你也在 怎样代写复杂网络complex networks这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

复杂网络是由数量巨大的节点和节点之间错综复杂的关系共同构成的网络结构。

statistics-lab™ 为您的留学生涯保驾护航 在代写复杂网络complex networks方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复杂网络complex networks方面经验极为丰富,各种代写复杂网络complex networks相关的作业也就用不着说。

我们提供的复杂网络complex networks及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
6 Degrees of Separation Today! | Visual.ly
统计代写|复杂网络代写complex networks代考|Introduction to Complex Networks

统计代写|复杂网络代写complex networks代考|Graph Theoretical Notation

Mathematically, a network is represented as a graph $\mathcal{S}(V, E)$, i.e., an object that consists of a set of nodes or vertices $V$ representing the objects or agents in the network and a set $E$ of edges or links or connections representing the interactions or relations of the nodes. The cardinality of these sets, i.e, the number of nodes and edges, is generally denoted by $N$ and $M$, respectively. One may assign different values $w_{i j}$ to the links between nodes $i$ and $j$ in $E$, rendering an edge weighted or otherwise non-weighted ( $w_{i j}=1$ by convention, if one is only interested in the presence or absence of the relation). The number of connections of node $i$ is denoted by its degree $k_{i}$. One can represent the set of edges conveniently in an $N \times N$ matrix $A_{i j}$, called the adjacency matrix. $A_{i j}=w_{i j}$ if an edge between node $i$ and $j$ is present and zero otherwise. Relations may be directed, in which case $A_{i j}$ is non-symmetric $\left(A_{i j} \neq A_{j i}\right)$ or undirected in which case $A_{i j}$ is symmetric. Here, we are mainly concerned with networks in which self-links are absent $\left(A_{i i}=0, \forall i \in V\right)$. In case of a directed network, $A_{i j}$ denotes an outgoing edge from $i$ to $j$. Hence, the outgoing links of node $i$ are found in row $i$, while the incoming links to $i$ are found in column $i$. For undirected networks, it is clear that $\sum_{j=1}^{N} A_{i j}=k_{i}$. For directed networks, $\sum_{j=1} A_{i j}=k_{i}^{\text {out }}$ is the out-degree and equivalently $\sum_{j=1} A_{j i}=k_{i}^{i n}$ is the in-degree of node $i$. It is understood that in undirected networks, the sum of degrees of all nodes in the network equals twice the number of edges $\sum_{i=1}^{N} k_{i}=2 M$. The distribution of the number of connections per node is called degree distribution $P(k)$ and denotes the probability that a randomly chosen node from the network has degree $k$. The average degree in the network is denoted by $\langle k\rangle$ and one has $N\langle k\rangle=2 M$. One can define a

probability $p=2 M / N(N-1)=\langle k\rangle /(N-1)$ as the probability that an edge exists between two randomly chosen nodes from the network.

An (induced) subgraph is a subset of nodes $v \subseteq V$ with $n$ nodes and edges $e \subseteq E$ connecting only the nodes in $v$. A path is a sequence of nodes, subsequent nodes in the sequence being connected by edges from $E$. A node $i$ is called reachable from node $j$ if there exists a path from $j$ to $i$. A subgraph is said to be connected if every node in the subgraph is reachable from every other. The number of steps (links) in the shortest path between two nodes $i$ and $j$ is called the geodesic distance $d(i, j)$ between nodes $i$ and $j$. A network is generally not connected, but may consist of several connected components. The largest of the shortest path distances between any pair of nodes in a connected component is called the diameter of a connected component. The analysis in this monograph shall be restricted to connected components only since it can be repeated on every single one of the connected components of a network. More details on graph theory may be found in the book by Bollobás $[2]$.

With these notations and terms in mind, let us now turn to a brief overview of some aspects of physicists research on networks.

统计代写|复杂网络代写complex networks代考|Random Graphs

For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes.

The most important model of a random graph is due to Erdös and Rényi (ER) [12]. They consider the following two ensembles of random graphs: $\mathcal{G}(N, M)$ and $\mathcal{G}(N, p)$. The first is the ensemble of all graphs with $N$ nodes and exactly $M$ edges. A graph from this ensemble is created by placing the $M$ edges randomly between the $N(N-1) / 2$ possible pairs of nodes. The second ensemble is that of all graphs in which a link between two arbitrarily chosen nodes is present with probability $p$. The expectation value for the number of links of a graph from this ensemble is $\langle M\rangle=p N(N-1) / 2$. In the limit of $N \rightarrow \infty$, the two ensembles are equivalent with $p=2 M / N(N-1)$. The typical graph from these ensembles has a Poissonian degree distribution
$$
P(k)=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k !} .
$$
Here, $\langle k\rangle=p(N-1)=2 M / N$ denotes the average degree in the network.

The properties of ER random graphs have been studied for considerable time and an overview of results can be found in the book by Bollobás [13]. Note that the equivalence of the two ensembles is a remarkable result. If all networks with a given number of nodes and links are taken to be equally probable, then the typical graph from this ensemble will have a Poissonian degree distribution. To draw a graph with a non-Poissonian degree distribution from this ensemble is highly improbable, unless there is a mechanism which leads to a different degree distribution. This issue will be discussed below in more detail.

Another aspect of random networks is worth mentioning: the average shortest path between any pair of nodes scales only as the logarithm of the system size. This is easily seen: Starting from a randomly chosen node, we can visit $\langle k\rangle$ neighbors with a single step. How many nodes can we explore with the second step? Coming from node $i$ to node $j$ via a link between them, we now have $d_{j}=k_{j}-1$ options to proceed. Since we have $k_{j}$ possible ways to arrive at node $j$, the average number of second step neighbors is hence $\langle d\rangle=\sum_{k=2}^{\infty}(k-1) k P(k) /\left(\sum_{k}^{\infty} k P(k)\right)=\left\langle k^{2}\right\rangle /\langle k\rangle-1$. Hence, after two steps we may explore $\langle k\rangle\langle d\rangle$ nodes and after $m$ steps $\langle k\rangle\langle d\rangle^{m-1}$ nodes which means that the entire network may be explored in $m \approx \log N$ steps. This also shows that even in very large random networks, all nodes may be reached with relatively few steps. The number $d=k-1$ of possible ways to exit from a node after entering it via one of its links is also called the “excess degree” of a node. Its distribution $q(d)=(d+1) P(d+1) /\langle k\rangle$ is called the “excess degree distribution” and plays a central role in the analysis of many dynamical phenomena on networks. Note that our estimate is based on the assumption that in every new step we explore $\langle d\rangle$ nodes which we have not seen before! For ER networks, though, this is a reasonable assumption. However, consider a regular lattice as a counterexample. There, the average shortest distance between any pair of nodes scales linearly with the size of the lattice.

统计代写|复杂网络代写complex networks代考|Six Degrees of Separation

The question of short distances was one of the first addressed in the study of real world networks by Stanley Milgram [14]. It was known among sociologists that social networks are characterized by a high local clustering coefficient:
$$
c_{i}=\frac{2 m_{i}}{k_{i}\left(k_{i}-1\right)}
$$
Here, $m_{i}$ is the number of connections among the $k_{i}$ neighbors of node $i$. In other words, $c_{i}$ measures the probability of the neighbors of node $i$ being connected, that is, the probability that the friends of node $i$ are friends among each other. The average of this clustering coefficient over the set of nodes in the network is much higher in social networks than for ER random networks with the same number of nodes and links where $\langle c\rangle=p$. This would mean that the average shortest distance between randomly chosen nodes in social networks may not scale logarithmically with the system size. To test this, Milgram performed the following experiment: He gave out letters in Omaha, Nebraska, and asked the initial recipients of the letters to give the letters only to acquaintances whom they would address by their first name and require that those would do the same when passing the letter on. The letters were addressed to a stock broker living in Boston and unknown to the initial recipients of the letter. Surprisingly, not only did a large number of letters arrive at the destination, but the median of the number of steps it took was only 6. This means the path lengths in social networks may be surprisingly short despite the high local clustering. Even more surprisingly, the agents in this network are able to efficiently navigate messages through the entire network even though they only know the local topology. After this discovery, Duncan Watts and Steve Strogatz [15] provided the first model of a network that combines the high clustering characteristic for acquaintance networks and the short average path lengths known from ER random graphs. At the same time, it retains the fact that there is only a finite number of connections or friends per node in the network. The Watts/Strogatz model came to be known as the “small world model” for complex networks. It basically consists of a regular structure producing a high local clustering and a number of randomly interwoven shortcuts responsible for the short average path length. It was found analytically that a small number of shortcuts, added randomly, suffice to change the scaling of the average shortest path length from linear with system size to logarithmically with system size.

统计代写|复杂网络代写complex networks代考|Introduction to Complex Networks

复杂网络代写

统计代写|复杂网络代写complex networks代考|Graph Theoretical Notation

在数学上,网络表示为图小号(在,和),即由一组节点或顶点组成的对象在表示网络中的对象或代理和一个集合和表示节点的交互或关系的边或链接或连接。这些集合的基数,即节点和边的数量,通常表示为ñ和米, 分别。可以分配不同的值在一世j到节点之间的链接一世和j在和,渲染边缘加权或其他非加权(在一世j=1按照惯例,如果一个人只对关系的存在或不存在感兴趣)。节点的连接数一世用它的度数表示ķ一世. 可以方便地表示一组边ñ×ñ矩阵一种一世j,称为邻接矩阵。一种一世j=在一世j如果节点之间有一条边一世和j存在,否则为零。关系可以被定向,在这种情况下一种一世j是非对称的(一种一世j≠一种j一世)或在这种情况下是无向的一种一世j是对称的。在这里,我们主要关注没有自链接的网络(一种一世一世=0,∀一世∈在). 在有向网络的情况下,一种一世j表示从一世到j. 因此,节点的传出链接一世在行中找到一世,而传入的链接到一世在列中找到一世. 对于无向网络,很明显∑j=1ñ一种一世j=ķ一世. 对于有向网络,∑j=1一种一世j=ķ一世出去 是出度,等价∑j=1一种j一世=ķ一世一世n是节点的入度一世. 可以理解的是,在无向网络中,网络中所有节点的度数之和等于边数的两倍∑一世=1ñķ一世=2米. 每个节点的连接数分布称为度数分布磷(ķ)表示从网络中随机选择的节点具有度数的概率ķ. 网络中的平均度数表示为⟨ķ⟩一个有ñ⟨ķ⟩=2米. 可以定义一个

可能性p=2米/ñ(ñ−1)=⟨ķ⟩/(ñ−1)作为从网络中随机选择的两个节点之间存在边的概率。

(诱导)子图是节点的子集在⊆在和n节点和边和⊆和只连接节点在. 路径是一系列节点,序列中的后续节点由来自的边连接和. 一个节点一世被称为从节点可达j如果存在从j到一世. 如果子图中的每个节点都可以相互访问,则称该子图是连通的。两个节点之间最短路径的步数(链接)一世和j称为测地线距离d(一世,j)节点之间一世和j. 一个网络通常没有连接,但可能由几个连接的组件组成。连通分量中任意一对节点之间的最短路径距离中的最大值称为连通分量的直径。本专着中的分析应仅限于连接组件,因为它可以在网络的每个连接组件上重复。关于图论的更多细节可以在 Bollobás 的书中找到[2].

考虑到这些符号和术语,现在让我们简要概述一下物理学家对网络的研究的某些方面。

统计代写|复杂网络代写complex networks代考|Random Graphs

对于复杂系统相互作用的拓扑结构的研究,具有适当的网络随机零模型(即图如何从随机过程产生的模型)至关重要。需要这样的模型来与现实世界的数据进行比较。在分析现实世界网络的结构时,零假设应始终是链接结构仅由偶然性引起。仅当发现的链接结构与从随机模型获得的期望值显着不同时,才能拒绝该零假设。任何与随机零模型的偏差都必须用非随机过程来解释。

随机图最重要的模型归功于 Erdös 和 Rényi (ER) [12]。他们考虑以下两个随机图集合:G(ñ,米)和G(ñ,p). 第一个是所有图的集合ñ节点和准确米边缘。通过放置米边缘之间随机ñ(ñ−1)/2可能的节点对。第二个集合是所有图的集合,其中两个任意选择的节点之间的链接以概率存在p. 来自该集成的图的链接数的期望值为⟨米⟩=pñ(ñ−1)/2. 在限度内ñ→∞, 这两个集合等价于p=2米/ñ(ñ−1). 这些集合的典型图具有泊松度分布
磷(ķ)=和−⟨ķ⟩⟨ķ⟩ķķ!.
这里,⟨ķ⟩=p(ñ−1)=2米/ñ表示网络中的平均度数。

ER 随机图的性质已经研究了相当长的时间,结果概述可以在 Bollobás [13] 的书中找到。请注意,这两个集合的等价性是一个显着的结果。如果具有给定数量的节点和链接的所有网络都被认为是等概率的,那么来自该集成的典型图将具有泊松度分布。从这个集合中绘制具有非泊松度分布的图是非常不可能的,除非有一种机制导致不同的度分布。这个问题将在下面更详细地讨论。

随机网络的另一个方面值得一提:任何一对节点之间的平均最短路径仅与系统大小的对数成比例。这很容易看出:从一个随机选择的节点开始,我们可以访问⟨ķ⟩一步到位的邻居。第二步可以探索多少个节点?来自节点一世到节点j通过它们之间的链接,我们现在有了dj=ķj−1选项继续。既然我们有ķj到达节点的可能方式j,因此第二步邻居的平均数为⟨d⟩=∑ķ=2∞(ķ−1)ķ磷(ķ)/(∑ķ∞ķ磷(ķ))=⟨ķ2⟩/⟨ķ⟩−1. 因此,经过两个步骤,我们可以探索⟨ķ⟩⟨d⟩节点及之后米脚步⟨ķ⟩⟨d⟩米−1节点,这意味着可以探索整个网络米≈日志⁡ñ脚步。这也表明,即使在非常大的随机网络中,也可以通过相对较少的步骤到达所有节点。数字d=ķ−1通过其中一个链接进入节点后退出节点的可能方式也称为节点的“过度度”。它的分布q(d)=(d+1)磷(d+1)/⟨ķ⟩被称为“过度度分布”,在分析网络上的许多动态现象中起着核心作用。请注意,我们的估计是基于这样一个假设,即在我们探索的每一个新步骤中⟨d⟩我们从未见过的节点!然而,对于 ER 网络,这是一个合理的假设。然而,考虑一个正则格作为反例。在那里,任何一对节点之间的平均最短距离与格子的大小成线性关系。

统计代写|复杂网络代写complex networks代考|Six Degrees of Separation

短距离问题是 Stanley Milgram [14] 在现实世界网络研究中首先解决的问题之一。社会学家知道,社交网络的特点是局部聚集系数很高:
C一世=2米一世ķ一世(ķ一世−1)
这里,米一世是之间的连接数ķ一世节点的邻居一世. 换句话说,C一世测量节点邻居的概率一世被连接,即节点的朋友的概率一世是彼此之间的朋友。在社交网络中,网络中节点集上的聚类系数的平均值远高于具有相同节点和链接数量的 ER 随机网络,其中⟨C⟩=p. 这意味着社交网络中随机选择的节点之间的平均最短距离可能不会与系统大小成对数关系。为了验证这一点,米尔格拉姆进行了以下实验:他在内布拉斯加州的奥马哈寄出信件,并要求最初的收信人只将信件给他们会直呼其名的熟人,并要求他们也这样做在传递这封信时。这些信件是寄给住在波士顿的一位股票经纪人的,最初的收件人不知道。令人惊讶的是,不仅有大量信件到达目的地,而且所走步数的中位数也只有 6 步。这意味着社交网络中的路径长度可能会非常短,尽管局部聚类程度很高。更令人惊讶的是,该网络中的代理能够有效地在整个网络中导航消息,即使它们只知道本地拓扑。在这一发现之后,Duncan Watts 和 Steve Strogatz [15] 提供了第一个网络模型,该模型结合了熟人网络的高聚类特性和从 ER 随机图中已知的短平均路径长度。同时,它保留了网络中每个节点只有有限数量的连接或朋友的事实。Watts/Strogatz 模型被称为复杂网络的“小世界模型”。它基本上由一个产生高局部聚类的规则结构和许多随机交织的捷径组成,这些捷径负责较短的平均路径长度。分析发现,少量的快捷方式,随机添加,

统计代写|复杂网络代写complex networks代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注