统计代写|数据可视化代写data visualization代考|The relationships between graphs, charts, maps and meanings, feelings, engagements

如果你也在 怎样代写数据可视化data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是信息和数据的图形化表示。通过使用像图表、图形和地图这样的视觉元素,数据可视化工具提供了一种方便的方式来查看和理解数据的趋势、异常值和模式。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化data visualization代写方面经验极为丰富,各种代写数据可视化data visualization相关的作业也就用不着说。

我们提供的数据可视化data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
Frontiers | Dimensional Taxonomy of Data Visualization: A Proposal From  Communication Sciences Tackling Complexity | Research Metrics and Analytics
统计代写|数据可视化代写data visualization代考|The relationships between graphs, charts, maps and meanings, feelings, engagements

统计代写|数据可视化代写data visualization代考|Helen Kennedy and Martin Engebretsen

Today we are witnessing an increased use of data visualization in a range of domains and genres. In journalism, education, and public information as well as in workplaces, diverse forms of graphs, charts, and maps are used to explain, persuade, and tell stories. At best, visual representations of statistics and other, often quantitative data can convey complex facts and patterns quickly and effectively. At worst, they can appear confusing or manipulative. In an era in which more and more data are produced and circulated through online networks, and digital tools make visualization production increasingly accessible, it is important to study the conditions under which such visual texts are generated, disseminated and thought to benefit processes of sense-making, learning, and engaging.

Data visualization is not new. The graphical representation of numeric information has roots in early map-making, and grew in importance with the widespread use of data and statistics for planning and commerce in the nineteenth century (Friendly, 2008). Still, in our contemporary society, several factors contribute to give data visualization a social relevance on a scale we have not seen before. One of these factors, as Kennedy, Hill, Aiello, and Allen (2016b, p. 715 ) put it, is that ‘ [… data are becoming increasingly valued and relied upon, as they come to play an ever more important role in decision-making and knowledge about the world’.

In other words, more data are generated, gathered, stored, and made accessible than ever before. Data gathering takes place in many domains, often by law, including commerce, education, health, transport, and cultural and social life. These data offer insights into societal patterns otherwise invisible and unnoticed. Such documentation has been conducted for decades, but technological and other developments have led to its sharp

increase, and data are now being gathered in huge volumes as a result of new techniques of measurement. These combined phenomena, sometimes called ‘datafication’ (Mayer-Schönberger \& Cukier, 2013, p. 78) are understood as a transformation disrupting the social world in all its forms (Couldry, 2016).
Furthermore, to make data accessible to publics, rather than remaining a useful source only for experts and decision-makers, a range of actors have campaigned to open up public data, to make them reusable for a variety of activities and democratic purposes. Open data initiatives and related campaigning activities contribute to accelerate the spread of data visualization, which often serve as a main entry point to data for non-experts.

统计代写|数据可视化代写data visualization代考|What do we mean by data and data visualization

In a scientific context, data are generally understood to result from the generation, collection, observation, or registration of objects, events, or processes suitable to serve some analytical purpose. Similarly, in the context of data visualization, data can be anything that can be subjected to categorization, abstraction, and translation into graphical representation: persons, places, documents, relations, sentences, salaries, to mention some examples. A main distinction is between qualitative data and quantitative data. While qualitative data are valued for the uniqueness of each individual unit, be it a poem, a sentence, or an interview, quantitative data are valued for characteristics shared by all or many units in a dataset. It is their shared characteristics that make them objects for counting or measuring, and thus for numeric representation and statistical processing.

Both qualitative and quantitative data can be visualized. It is possible to visualize semantic structures in a novel, or networks of relationships between the works in an art collection, as seen, for example, in the work of Stefanie Posavec (http://stefanieposavec.com/). Most, but not all, of the contributions in this book focus on the visualization of quantitative data, for the reasons given above – that is, because their proliferation and increasing openness, and the enhanced availability of related tools, make them a socially and culturally significant phenomenon.

Numeric data can be structured or unstructured. Structured data have been subjected to statistical treatment and are typically represented as numbers in a table, with columns and rows presenting units and variables and numeric values positioned in cells. A common example is the datasets accessible from national statistics institutes (NSIs) which are often presented

to the public in tabular form. Unstructured data have not been subjected to any statistical or structuring processing, and appear as ‘raw’ data in an analogue or digital register, until the data are structured by someone with an intention to use them for some specific purpose. An automatic registration of cars driving through a tollbooth is one example.
‘Big data’ is a fashionable concept, although its use is rarely accompanied by a shared understanding of what it means or how it differs from ‘small’ data. Big data have been said to be characterized by three Vs: volume, variety, and velocity. More recently, additional Vs have been proposed, such as variability and value (http://whatis.techtarget.com/definition $/ 3 \mathrm{Vs}$; see also Kitchin, 2014 for additions which don’t begin with V). When we talk about datasets consisting of thousands of rows of data, or new streams of data created every second, we are talking about big data. Data harvested from a social media platform, or from the activities on the finance market, are some examples. But exactly when data become big is hard to define.

统计代写|数据可视化代写data visualization代考|How can dataviz produce meanings, feelings, and engagements

In this book, we relate the social power of data visualizations to their abilities to produce meanings, feelings, and engagements in their users and audiences. Processes of socially situated meaning-making are best described in the field of social semiotics, first developed by the Australian linguist Michael Halliday $(1978)$, later adapted to visual and multimodal artefacts by Gunther Kress and Theo van Leeuwen $(1996)$ and others. In social semiotic theory, the meaning of semiotic material (which can include words, images, colours, and more) can be traced in three different dimensions, each relating to an aspect of the situation of communication. These are:

  1. The field (or topic) of discourse. How does the semiotic material represent the world or ideas about the world? This is known as ideational meaning.
  2. The participants involved in the process of communication. How does the semiotic material reflect, establish, or change the social relations between the participants? This is known as interpersonal meaning.
  3. The semiotic resources activated in the process. How do all the elements of the semiotic material unite in a textual whole? This is known as compositional meaning.

In many situations, the semiotic material in question will be identified as ‘a text’, such as a multimodal webpage with words, images, and colours organized in a specific user interface. In other contexts, meaning is made through semiotic resources not conventionally identified as texts, such as buildings, clothes, and sculptures. Such artefacts nonetheless carry meaning based on certain culturally and historically formed conventions. The artefacts that this book is concerned with, data visualizations, will normally be produced, distributed, and used in ways comparable to other multimodal and mediated text types.

Semiotic interpretation and aesthetic experience (that is, our sensory impressions, as well as judgements based on taste) go hand in hand in our encounters with texts and other cultural artefacts, and where one stops and the other begins is hard to identify. Our encounters with form, colour, and composition are informed by bodily experience as well as aesthetic judgement, and so the aesthetic (as well as the semiotic) aspects of data visualization need to be taken into account. Also relevant to a discussion of meaning in data visualization is the issue of ‘knowledge regimes’, or epistemology. What aspects of reality are privileged in a semiotic text based on visualized, numeric data? What kinds of truth are foregrounded, and what knowledge, values, and attitudes result? Data visualizations may seem to reflect reality in a more direct way than words because they are based on numbers, which seem trustworthy (Porter, 1995). But this does not mean that they are more true, in the sense that they offer a more objective representation of the world. This issue informs several contributions to this book.

Top 10 Data Visualization Techniques, Concepts & Methods
统计代写|数据可视化代写data visualization代考|The relationships between graphs, charts, maps and meanings, feelings, engagements

数据可视化代写

统计代写|数据可视化代写data visualization代考|Helen Kennedy and Martin Engebretsen

今天,我们目睹了数据可视化在一系列领域和类型中的使用增加。在新闻、教育、公共信息以及工作场所,各种形式的图表、图表和地图被用来解释、说服和讲故事。充其量,统计数据和其他通常是定量数据的可视化表示可以快速有效地传达复杂的事实和模式。在最坏的情况下,他们可能会显得混乱或操纵。在一个越来越多的数据通过在线网络产生和传播的时代,数字工具使可视化制作变得越来越容易获得,研究这些可视化文本的生成、传播和思考的条件对感知过程有益是很重要的。制作、学习和参与。

数据可视化并不新鲜。数字信息的图形表示源于早期的地图制作,并随着 19 世纪规划和商业数据和统计数据的广泛使用而变得越来越重要(Friendly,2008 年)。尽管如此,在我们的当代社会中,有几个因素有助于使数据可视化在我们以前从未见过的规模上具有社会相关性。正如 Kennedy、Hill、Aiello 和 Allen (2016b, p. 715) 所说,其中一个因素是“[……数据越来越受到重视和依赖,因为它们在决策中发挥着越来越重要的作用- 创造和了解世界”。

换句话说,生成、收集、存储和访问的数据比以往任何时候都多。数据收集发生在许多领域,通常是法律规定的,包括商业、教育、健康、交通以及文化和社会生活。这些数据提供了对社会模式的洞察,否则这些模式是不可见和不被注意的。此类文件已进行了数十年,但技术和其他发展导致其尖锐

由于新的测量技术,现在正在大量收集数据。这些组合现象,有时被称为“数据化”(Mayer-Schönberger \& Cukier,2013 年,第 78 页)被理解为以各种形式扰乱社会世界的转变(Couldry,2016 年)。
此外,为了让公众可以访问数据,而不是仅作为专家和决策者的有用来源,一系列参与者开展了开放公共数据的运动,以使其可重复用于各种活动和民主目的。开放数据计划和相关的宣传活动有助于加速数据可视化的传播,这通常是非专家获取数据的主要入口点。

统计代写|数据可视化代写data visualization代考|What do we mean by data and data visualization

在科学背景下,数据通常被理解为来自适合用于某种分析目的的对象、事件或过程的生成、收集、观察或注册。同样,在数据可视化的上下文中,数据可以是任何可以进行分类、抽象和转换为图形表示的东西:人、地点、文档、关系、句子、薪水等等。主要区别在于定性数据和定量数据。虽然定性数据因每个单独单元的独特性而受到重视,无论是一首诗、一句话还是一次采访,但定量数据因数据集中所有或多个单元共享的特征而受到重视。正是它们的共同特征使它们成为计数或测量的对象,

定性和定量数据都可以可视化。可以将小说中的语义结构或艺术收藏中的作品之间的关系网络可视化,例如在 Stefanie Posavec 的作品 (http://stefanieposavec.com/) 中所见。出于上述原因,本书中的大多数(但不是全部)贡献都集中在定量数据的可视化上——也就是说,因为它们的扩散和日益增加的开放性,以及相关工具的可用性增强,使它们在社会和文化上成为显着现象。

数字数据可以是结构化的或非结构化的。结构化数据已经过统计处理,通常在表格中表示为数字,列和行表示单元和变量,数值位于单元格中。一个常见的例子是国家统计机构 (NSI) 可访问的数据集,这些数据集经常被展示

以表格形式向公众公布。非结构化数据未经过任何统计或结构化处理,并在模拟或数字寄存器中显示为“原始”数据,直到有人将数据结构化并打算将其用于某些特定目的。自动登记通过收费站的汽车就是一个例子。
“大数据”是一个时髦的概念,尽管它的使用很少伴随着对其含义或它与“小”数据有何不同的共同理解。据说大数据具有三个 V 的特征:数量、多样性和速度。最近,已经提出了额外的 V,例如可变性和价值 (http://whatis.techtarget.com/definition/3在s; 另请参阅 Kitchin,2014 以了解不以 V 开头的添加)。当我们谈论由数千行数据组成的数据集或每秒创建的新数据流时,我们谈论的是大数据。从社交媒体平台或金融市场活动中收集的数据就是一些例子。但是,很难准确定义数据何时变大。

统计代写|数据可视化代写data visualization代考|How can dataviz produce meanings, feelings, and engagements

在本书中,我们将数据可视化的社会力量与其在用户和受众中产生意义、感受和参与的能力联系起来。社会符号学领域最好地描述了社会情境意义形成的过程,该领域首先由澳大利亚语言学家迈克尔·哈利迪(Michael Halliday)开发(1978),后来适应了 Gunther Kress 和 Theo van Leeuwen 的视觉和多模式人工制品(1996)和别的。在社会符号学理论中,符号材料(可以包括文字、图像、颜色等)的意义可以在三个不同的维度上追溯,每个维度都与交流情况的一个方面有关。这些都是:

  1. 话语的领域(或主题)。符号学材料如何代表世界或关于世界的观念?这被称为观念意义。
  2. 参与沟通过程的参与者。符号学材料如何反映、建立或改变参与者之间的社会关系?这被称为人际意义。
  3. 在这个过程中被激活的符号资源。符号材料的所有元素如何结合成一个文本整体?这被称为组合意义。

在许多情况下,所讨论的符号材料将被识别为“文本”,例如在特定用户界面中组织的具有文字、图像和颜色的多模式网页。在其他情况下,意义是通过通常不被视为文本的符号资源产生的,例如建筑物、衣服和雕塑。尽管如此,这些人工制品仍具有基于某些文化和历史形成的惯例的意义。本书所关注的人工制品,即数据可视化,通常会以与其他多模态和中介文本类型相媲美的方式生产、分发和使用。

符号解释和审美体验(即我们的感官印象,以及基于品味的判断)在我们与文本和其他文化人工制品的相遇中齐头并进,一个停止,另一个开始很难识别。我们与形式、颜色和构图的相遇是由身体经验和审美判断决定的,因此需要考虑数据可视化的审美(以及符号学)方面。与数据可视化中意义的讨论相关的是“知识体系”或认识论的问题。在基于可视化数字数据的符号文本中,现实的哪些方面具有特权?什么样的真理被前景化,什么样的知识、价值观、和态度的结果?数据可视化似乎比文字更直接地反映了现实,因为它们基于数字,看起来值得信赖(Porter,1995)。但这并不意味着它们更真实,因为它们提供了更客观的世界表现。这个问题为本书提供了一些贡献。

统计代写|数据可视化代写data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注