统计代写|随机分析作业代写stochastic analysis代写|Theory and Applications of Infinite

如果你也在 怎样代写随机分析stochastic analysisl这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

随机分析是现代概率论的一个基本工具,被用于从生物学到物理学的许多应用领域。

statistics-lab™ 为您的留学生涯保驾护航 在代写随机分析stochastic analysisl方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机分析stochastic analysisl代写方面经验极为丰富,各种代写随机分析stochastic analysisl相关的作业也就用不着说。

我们提供的随机分析stochastic analysisl及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
Programming for Computations - A Gentle Introduction to Numerical  Simulations with Python
统计代写|随机分析作业代写stochastic analysis代写|Theory and Applications of Infinite

统计代写|随机分析作业代写stochastic analysis代写|Dimensional Oscillatory Integrals

Professor K. Itò’s work on the topic of infinite dimensional oscillatory integrals has been very germinal and stimulated much of the subsequent research in this area. It is therefore a special honour and pleasure to be able to dedicate the present pages to him. We shall give a short exposition of the theory of a particular class of functionals, the oscillatory integrals:
$$
I^{\text {ᄒ}}(f)=\quad ” \int_{\Gamma} e^{i \frac{\psi}{*}(\gamma)} f(\gamma) d \gamma “
$$
where $\Gamma$ denotes either a finite dimensional space (e.g. $\mathbb{R}^{s}$, or an s-dimensional differential manifold $M^{s}$ ), or an infinite dimensional space (e.g. a “path space”). $\Phi: \Gamma \rightarrow \mathbb{R}$ is called phase function, while $f: \Gamma \rightarrow \mathbb{C}$ is the function to be integrated and $\epsilon \in \mathbb{R} \backslash{0}$ is a parameter. The symbol $d \gamma$ denotes a “flat” measure. In particular, if $\operatorname{dim}(\Gamma)<\infty$ then $d \gamma$ is the Riemann-Lebesgue volume measure, while if $\operatorname{dim}(\Gamma)=\infty$ an analogue of Riemann-Lebesgue measure is not mathematically defined and $d \gamma$ is just a heuristic expression.

统计代写|随机分析作业代写stochastic analysis代写|Finite Dimensional Oscillatory Integrals

In the case where $\Gamma$ is a finite dimensional vector space, i.e. $\Gamma=\mathbb{R}^{s}, s \in \mathbb{N}$, the expression (1.1)
$$
” \int_{\mathbb{R}^{}} e^{i \frac{\text { s্ }}{\varepsilon}(\gamma)} f(\gamma) d \gamma ” $$ can be defined as an improper Riemann integral. The study of finite dimensional oscillatory integrals of the type (1.2) is a classical topic, largely developed in connection with several applications in mathematics (such as the theory of Fourier integral operators $[48]$ ) and physics. Interesting examples of integrals of the form (1.2) in the case $s=1, \epsilon=1, f=\chi[0, w], w>0$, and $\Phi(x)=\frac{\pi}{2} x^{2}$, are the Fresnel integrals, that are applied in optics and in the theory of wave diffraction. If $\Phi(x)=x^{3}+a x, a \in \mathbb{R}$ we obtain the Airy integrals, introduced in 1838 in connection with the theory of the rainbow. Particular interest has been devoted to the study of the asymptotic behavior of integrals (1.2) when $\epsilon$ is regarded as a small parameter converging to 0 . Originally introduced by Stokes and Kelvin and successively developed by several mathematicians, in particular van der Corput, the “stationary phase method” provides a powerful tool to handle the asymptotics of (1.2) as $\epsilon \downarrow 0$. According to it, the main contribution to the asymptotic behavior of the integral should come from those points $\gamma \in \mathbb{R}^{}$ which belong to the critical manifold:
$$
\Gamma_{c}^{\phi}:=\left{\gamma \in \mathbb{R}^{s}, \mid \Phi^{\prime}(\gamma)=0\right}
$$
that is the points which make stationary the phase function $\Phi$. Beautiful mathematical work on oscillatory integrals and the method of stationary phase is connected with the mathematical classification of singularities of algebraic and geometric structures (Coxeter indices, catastrophe theory), see, e.g. [31].

统计代写|随机分析作业代写stochastic analysis代写|Infinite Dimensional Oscillatory Integrals

The extension of the results valid for $\Gamma=\mathbb{R}^{s}$ to the case where $\Gamma$ is an infinite dimensional space is not trivial. The main motivation is the study of the “Feynman path integrals”, a class of (heuristic) functional integrals introduced by R.P. Feynman in $1942^{1}$ in order to propose an alternative, Lagrangian, formulation of quantum mechanics. According to Feynman, the solution of the Schrödinger equation describing the time evolution of the state $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ of a quantum particle moying in a potential $V$
$$
\left{\begin{array}{l}
i \hbar \frac{\partial}{\partial t} \psi=-\frac{n^{2}}{2 m} \Delta \psi+V \psi \
\psi(0, x)=\psi_{0}(x)
\end{array}\right.
$$

(where $m>0$ is the mass of the particle, $\hbar$ is the reduced Planck constant, $t \geq 0, x \in \mathbb{R}^{d}$ ) can be represented by a “sum over all possible histories”, that is an integral over the space of paths $\gamma$ with fixed end point
$$
\vartheta \gamma^{\prime}(t, x)=-\int_{{\gamma \mid \gamma(t)=x}} e^{\hbar S_{t}(\gamma)} \gamma_{\gamma}(\gamma(0)) d \gamma^{\eta}
$$
$S_{t}(\gamma)=S^{0}(\gamma)-\int_{0}^{t} V(s, \gamma(s)) d s, S^{0}(\gamma)=\frac{m}{2} \int_{0}^{t}|\dot{\gamma}(s)|^{2} d s$, is the classical action of the system evaluated along the path $\gamma$ and $d \gamma$ a heuristic “flat” measure on the space of paths (see e.g. [40] for a physical discussion of Feynman’s approach and its applications). The Feynman path integrals (1.4) can be regarded as oscillatory integrals of the form (1.1), where
$$
\Gamma=\left{\text { paths } \gamma:[0, t] \rightarrow \mathbb{R}^{s}, \gamma(t)=x \in \mathbb{R}^{s}\right}
$$
the phase function $\Phi$ is the classical action functional $S_{t}, f(\gamma)=\psi_{0}(\gamma(0))$, the parameter $\epsilon$ is the reduced Planck constant $\hbar$ and $d \gamma$ denotes heuristically
$$
d \gamma={ }^{\alpha} C \prod_{s \in[0, t]} d \gamma(s)^{“},
$$
$C:=”\left(\int_{{\gamma \mid \gamma(t)=x}} e^{\frac{1}{\hbar} S_{0}(\gamma)} d \gamma\right)^{-1 “}$ being a normalization constant
The Feynman’s path integral representation (1.4) for the solution of the Schrödinger equation is particularly suggestive. Indeed it creates a connection between the classical (Lagrangian) description of the physical world and the quantum one and makes intuitive the study of the semiclassical limit of quantum mechanics, that is the study of the detailed behavior of the wave function $\psi$ in the case where the Planck constant $\hbar$ is regarded as a small parameter. According to an (heuristic) application of the stationary phase method, in the limit $\hbar \downarrow 0$ the main contribution to the integral (1.4) should come from those paths $\gamma$ which make stationary the action functional $S_{t}$. These, by Hamilton’s least action principle, are exactly the classical orbits of the system.

Despite its powerful physical applications, formula (1.4) lacks mathematical rigour, in particular the “flat” measure $d \gamma$ given by (1.5) has no mathematical meaning.

File:Pythagoras zerlegung brautstuhl8.gif - Wikimedia Commons
统计代写|随机分析作业代写stochastic analysis代写|Theory and Applications of Infinite

随机分析代考

统计代写|随机分析作业代写stochastic analysis代写|Dimensional Oscillatory Integrals

K. Itò 教授关于无限维振荡积分的研究非常具有开创性,并激发了该领域的许多后续研究。因此,能够将本页献给他是一种特殊的荣幸和荣幸。我们将对一类特殊泛函的理论进行简短的阐述,即振荡积分:
ᄒ一世ᄒ(F)=”∫Γ和一世ψ∗(C)F(C)dC“
在哪里Γ表示任一有限维空间(例如Rs, 或 s 维微分流形米s),或无限维空间(例如“路径空间”)。披:Γ→R称为相位函数,而F:Γ→C是要集成的功能和ε∈R∖0是一个参数。符号dC表示“平坦”度量。特别是,如果暗淡⁡(Γ)<∞然后dC是 Riemann-Lebesgue 体积度量,而如果暗淡⁡(Γ)=∞黎曼-勒贝格测度的类似物在数学上没有定义,并且dC只是一个启发式的表达。

统计代写|随机分析作业代写stochastic analysis代写|Finite Dimensional Oscillatory Integrals

在这种情况下Γ是一个有限维向量空间,即Γ=Rs,s∈ñ, 表达式 (1.1)
্”∫R和一世 s ্ e(C)F(C)dC”可以定义为不正确的黎曼积分。(1.2) 类型的有限维振荡积分的研究是一个经典课题,主要与数学中的几种应用(例如傅里叶积分算子理论[48]) 和物理学。本例中 (1.2) 形式的积分的有趣示例s=1,ε=1,F=χ[0,在],在>0, 和披(X)=圆周率2X2, 是菲涅耳积分,应用于光学和波衍射理论。如果披(X)=X3+一种X,一种∈R我们获得了 1838 年与彩虹理论相关的艾里积分。特别感兴趣的是积分(1.2)的渐近行为的研究,当ε被认为是一个收敛到 0 的小参数。最初由 Stokes 和 Kelvin 提出并由几位数学家,特别是 van der Corput 相继开发,“平稳相法”提供了一个强大的工具来处理 (1.2) 的渐近性:ε↓0. 据此,对积分渐近行为的主要贡献应该来自这些点C∈R属于临界流形:
\Gamma_{c}^{\phi}:=\left{\gamma \in \mathbb{R}^{s}, \mid \Phi^{\prime}(\gamma)=0\right}\Gamma_{c}^{\phi}:=\left{\gamma \in \mathbb{R}^{s}, \mid \Phi^{\prime}(\gamma)=0\right}
那是使相位函数静止的点披. 关于振荡积分和平稳相方法的精美数学工作与代数和几何结构(Coxeter 指数,突变理论)的奇异性的数学分类有关,参见例如 [31]。

统计代写|随机分析作业代写stochastic analysis代写|Infinite Dimensional Oscillatory Integrals

结果的扩展适用于Γ=Rs到的情况Γ是一个无限维空间,不是微不足道的。主要动机是研究“Feynman 路径积分”,RP Feynman 在19421为了提出另一种量子力学的拉格朗日公式。根据费曼,描述状态时间演化的薛定谔方程的解ψ∈大号2(Rd)一个量子粒子在一个势能中运动在
$$
\左{一世⁇∂∂吨ψ=−n22米Δψ+在ψ ψ(0,X)=ψ0(X)\对。
$$

(在哪里米>0是粒子的质量,⁇是简化的普朗克常数,吨≥0,X∈Rd) 可以表示为“所有可能历史的总和”,即路径空间上的积分C带固定端点
ϑC′(吨,X)=−∫C∣C(吨)=X和⁇小号吨(C)CC(C(0))dC这
小号吨(C)=小号0(C)−∫0吨在(s,C(s))ds,小号0(C)=米2∫0吨|C˙(s)|2ds, 是系统沿路径评估的经典动作C和dC对路径空间的启发式“平面”度量(参见例如[40] 对费曼方法及其应用的物理讨论)。Feynman 路径积分 (1.4) 可以被视为 (1.1) 形式的振荡积分,其中
\Gamma=\left{\text { 路径} \gamma:[0, t] \rightarrow \mathbb{R}^{s}, \gamma(t)=x \in \mathbb{R}^{s}\对}\Gamma=\left{\text { 路径} \gamma:[0, t] \rightarrow \mathbb{R}^{s}, \gamma(t)=x \in \mathbb{R}^{s}\对}
相位函数披是经典动作泛函小号吨,F(C)=ψ0(C(0)), 参数ε是减少的普朗克常数⁇和dC启发式地表示
dC=一种C∏s∈[0,吨]dC(s)“,
C:=”(∫C∣C(吨)=X和1⁇小号0(C)dC)−1“作为归一化常数
薛定谔方程解的费曼路径积分表示 (1.4) 特别具有启发性。事实上,它在物理世界的经典(拉格朗日)描述和量子描述之间建立了联系,使对量子力学的半经典极限的研究变得直观,即对波函数的详细行为的研究ψ在普朗克常数的情况下⁇被视为一个小参数。根据固定相方法的(启发式)应用,在极限⁇↓0对积分(1.4)的主要贡献应该来自这些路径C这使得静止的动作功能小号吨. 根据汉密尔顿的最小作用原理,这些正是系统的经典轨道。

尽管有强大的物理应用,公式(1.4)缺乏数学严谨性,尤其是“平面”度量dC(1.5) 给出的没有数学意义。

统计代写|随机分析作业代写stochastic analysis代写 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注