统计代写|linear regression代写线性回归代考|Our Doubts are Traitors and Make Us Lose the Good We Oft Might Win ${ }^{2}$

如果你也在 怎样代写linear regression这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在统计学中,线性回归是对标量响应和一个或多个解释变量(也称为因变量和自变量)之间的关系进行建模的一种线性方法。一个解释变量的情况被称为简单线性回归;对于一个以上的解释变量,这一过程被称为多元线性回归。这一术语不同于多元线性回归,在多元线性回归中,预测的是多个相关的因变量,而不是单个标量变量。

线性回归中,关系是用线性预测函数建模的,其未知的模型参数是根据数据估计的。 最常见的是,假设给定解释变量(或预测因子)值的响应的条件平均值是这些值的仿生函数;不太常见的是,使用条件中位数或其他一些量化指标。像所有形式的回归分析一样,线性回归关注的是给定预测因子值的响应的条件概率分布,而不是所有这些变量的联合概率分布,这是多元分析的领域。

statistics-lab™ 为您的留学生涯保驾护航 在代写linear regression方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写linear regression代写方面经验极为丰富,各种代写linear regression相关的作业也就用不着说。

我们提供的linear regression及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
Retention and Student Success - Best Practices and Successful Initiatives -  Student Success
统计代写|linear regression代写线性回归代考|Our Doubts are Traitors and Make Us Lose the Good We Oft Might Win ${ }^{2}$

统计代写|linear regression代写线性回归代考|Introduction

Think about how often we’re exposed to data of some sort. Reports of studies in newspapers, magazines, and online provide data about people, animals, or even abstract entities such as cities, counties, or countries. Life expectancies, crime rates, pollution levels, the prevalence of diseases, unemployment rates, election results, and numerous other phenomena are presented with overwhelming frequency and in painful detail. Understanding statistics-or at least being able to talk intelligently about percentages, means, and margins of error-has become nearly compulsory for the well-informed person. Yet, few people understand enough about statistics to fully grasp not only the strengths but also the weaknesses of the way data are collected and analyzed. What does it mean to say that the life expectancy in the U.S. is $78.7$ years? Should we trust exit polls that claim that Wexton will win the election over Comstock by $5 \%$ (with a “margin of error” of $\pm 2 \%$ ? When someone claims that “taking calcium supplements is not associated with a significantly lower risk of bone fractures in elderly women,” what are they actually saying? These questions, as well as many others, are common in today’s world of statistical analysis and numeracy.

For the budding social or behavioral scientist, whether sociologist, psychologist, geographer, political scientist, or economist, avoiding quantitative analyses that move beyond simple statistics such as percentages, means, standard deviations, and $t$-tests is almost impossible. A large proportion of studies found in professional journals employ statistical models that are designed to predict or explain the occurrence of one variable with information about other variables. The most common type of prediction tool is a regression model. Many books and articles describe, for example, how to conduct a linear regression analysis (LRA) or estimate an LRM, ${ }^{1}$ which, as noted in the Preface, is designed to account for or predict the values of a single outcome variable with information from one or more explanatory variables. Students are usually introduced to this model in a second course on applied statistics, and it is the main focus of this book. Before beginning a detailed description of LRMs, though, let’s address some general issues that all researchers and consumers of statistics should bear in mind.

统计代写|linear regression代写线性回归代考|Our Doubts are Traitors and Make Us Lose the Good We Oft Might Win ${ }^{2}$

A critical issue I hope readers will ponder as they study the material in the following chapters involves perceptions of quantitative research. Statistics has, for better or worse, been maligned by a variety of observers in recent years. For one thing, the so-called “replication crisis” has brought to light the problem that the results of many studies in the social and behavioral sciences cannot be confirmed by subsequent studies. ${ }^{3}$ Books with titles such as How to Lie with Statistics are also popular ${ }^{4}$ and can lend an air of disbelief to many studies that use statistical models. Researchers and statistics educators are often to blame for this disbelief. We frequently fail to impart some important caveats to students and consumers, including:

  1. A single study is never the end of the story; multiple studies are needed before we can (or should) reach defensible conclusions about social and behavioral phenomena.
  2. Consumers and researchers need to embrace a healthy dose of skepticism when considering the results of research studies. ${ }^{5}$ They should ask questions about how data were collected, how variables were measured, and whether the appropriate statistical methods were used. We should also realize that random or sampling “error” (see Chapter 2 ) affects the results of even the best designed studies.
  3. People should be encouraged to use their common sense and reasoning skills when assessing data and the results of analyses. Although it’s important to minimize confirmation bias and similar cognitive tendencies that (mis)shape how we process and interpret information, we should still consider whether research findings are based on sound premises and follow a logical pattern given what we already know about a phenomenon.

统计代写|linear regression代写线性回归代考|Best Statistical Practices ${ }^{6}$

In the spirit of these three admonitions, it is wise to heed the following advice regarding data analysis in general and regression analysis in particular.

  1. Plot your data-early and often.
  2. Understand that your dataset is only one of many possible sets of data that could have been observed.
  3. Understand the context of your dataset-what is the background science and how were measurements taken (for example, survey questions or direct measures)? What are the limitations of the measurement tools used to collect the data? Are some data missing? Why?
  4. Be thoughtful in choosing summary statistics.
  5. Decide early which parts of your analysis are exploratory and which parts are confirmatory, and preregister ${ }^{7}$ your hypotheses, if not formally then at least in your own mind.
  6. If you use $p$-values, ${ }^{8}$ which can provide some evidence regarding statistical results, follow these principles:
    a. Report effect sizes and confidence intervals (CIs);
    b. Consider providing graphical evidence of predicted values or effect sizes to display for your audience the magnitude of differences furnished by the analysis;
    c. Report the number of tests you conduct (formal and informal);
    d. Interpret the $p$-value in light of your sample size (and power);
    e. Don’t use $p$-values to claim that the null hypothesis of no difference is true; and

f. Consider the $p$-value as, at best, only one source of evidence regarding your conclusion rather than the conclusion itself.

  1. Consider creating customized, simulation-based statistical tests for answering your specific question with your particular dataset.
  2. Use simulations to understand the performance of your statistical plan on datasets like yours and to test various assumptions.
  3. Read results with skepticism, remembering that patterns can easily occur by chance (especially with small samples), and that unexpected results based on small sample sizes are often wrong.
  4. Interpret statistical results or patterns in data as being consistent or inconsistent with a conceptual model or hypothesis instead of claiming that they reveal or prove some phenomenon or relationship (see Chapter 2 for an elaboration of this recommendation).

The material presented in the following chapters is not completely faithful to these practices. For example, we don’t cover how variables are measured, hypothesis generation, or simulations (but see Appendix B), and we are at times too willing to trust $p$-values (see Chapter 2). These practices should, nonetheless, be at the forefront of all researchers’ minds as they consider how to plan, execute, and report their own research.

I hope readers of subsequent chapters will be comfortable thinking about the results of quantitative studies as they consider this material and as they embark on their own studies. In fact, I never wish to underemphasize the importance of careful reasoning among those assessing and using statistical techniques. Nor should we suspend our common sense and knowledge of the research literature simply because a set of numbers supports some unusual conclusion. This is not to say that statistical analysis is not valuable or that the results are generally misleading. Numerous findings from research studies that did not comport with accepted knowledge have been shown valid in subsequent studies. Statistical analyses have also led to many noteworthy discoveries in social, behavioral, and health sciences, as well as informed policy in a productive way. The point I wish to impart is that we need a combination of tools-including statistical methods, a clear comprehension of previous research, and our own ideas and reasoning abilities-to help us understand social and behavioral issues.

PLOS ONE: Linking stormwater Best Management Practices to social factors in  two suburban watersheds
统计代写|linear regression代写线性回归代考|Our Doubts are Traitors and Make Us Lose the Good We Oft Might Win ${ }^{2}$

linear regression代写

统计代写|linear regression代写线性回归代考|Introduction

想想我们接触某种数据的频率。报纸、杂志和网络上的研究报告提供了有关人、动物甚至城市、县或国家等抽象实体的数据。预期寿命、犯罪率、污染水平、疾病流行率、失业率、选举结果和许多其他现象以压倒性的频率和令人痛苦的细节呈现出来。了解统计数据——或者至少能够聪明地谈论百分比、平均值和误差幅度——对于消息灵通的人来说几乎是强制性的。然而,很少有人对统计学有足够的了解,以充分掌握数据收集和分析方式的优点和缺点。说美国的预期寿命是什么意思78.7年?我们是否应该相信那些声称韦克斯顿将在选举中战胜康斯托克的出口民意调查5%(带有“误差范围”±2%? 当有人声称“服用钙补充剂与显着降低老年女性骨折的风险无关”时,他们实际上在说什么?这些问题以及许多其他问题在当今的统计分析和计算世界中很常见。

对于初出茅庐的社会或行为科学家,无论是社会学家、心理学家、地理学家、政治学家还是经济学家,避免超出简单统计数据(如百分比、平均值、标准差和吨-tests 几乎是不可能的。在专业期刊中发现的大部分研究都采用统计模型,这些模型旨在预测或解释一个变量的出现以及有关其他变量的信息。最常见的预测工具类型是回归模型。例如,许多书籍和文章描述了如何进行线性回归分析 (LRA) 或估计 LRM,1正如前言中所指出的,它旨在利用来自一个或多个解释变量的信息来解释或预测单个结果变量的值。学生通常在应用统计学的第二门课程中介绍这个模型,它是本书的重点。不过,在开始详细描述 LRM 之前,让我们先解决所有统计研究人员和消费者都应该牢记的一些一般性问题。

统计代写|linear regression代写线性回归代考|Our Doubts are Traitors and Make Us Lose the Good We Oft Might Win 2

我希望读者在研究以下章节中的材料时能够思考的一个关键问题涉及对定量研究的看法。近年来,无论好坏,统计数据都受到了各种观察家的诽谤。一方面,所谓的“复制危机”暴露了社会和行为科学的许多研究结果无法被后续研究证实的问题。3《如何用统计说谎》等书名也很受欢迎4并且可以给许多使用统计模型的研究带来怀疑。研究人员和统计教育工作者往往要为这种怀疑负责。我们经常未能向学生和消费者传达一些重要的警告,包括:

  1. 一项研究永远不会结束。在我们能够(或应该)就社会和行为现象得出合理的结论之前,需要进行多项研究。
  2. 在考虑研究结果时,消费者和研究人员需要接受健康的怀疑态度。5他们应该询问有关如何收集数据、如何测量变量以及是否使用了适当的统计方法的问题。我们还应该认识到,即使是设计最好的研究,随机或抽样“误差”(见第 2 章)也会影响结果。
  3. 应该鼓励人们在评估数据和分析结果时使用他们的常识和推理能力。尽管最大限度地减少确认偏差和类似的认知倾向(错误)影响我们处理和解释信息的方式很重要,但我们仍然应该考虑研究结果是否基于合理的前提,并遵循我们已经了解的现象的逻辑模式。

统计代写|linear regression代写线性回归代考|Best Statistical Practices 6

本着这三个忠告的精神,明智的做法是注意以下关于一般数据分析和特别是回归分析的建议。

  1. 尽早且经常地绘制数据。
  2. 了解您的数据集只是可以观察到的许多可能的数据集之一。
  3. 了解您的数据集的背景——什么是背景科学以及如何进行测量(例如,调查问题或直接测量)?用于收集数据的测量工具有哪些限制?是否缺少某些数据?为什么?
  4. 在选择汇总统计数据时要深思熟虑。
  5. 尽早确定分析的哪些部分是探索性的,哪些部分是确认性的,并预先注册7您的假设,如果不是正式的,那么至少在您自己的脑海中。
  6. 如果你使用p-价值观,8可以提供一些关于统计结果的证据,遵循以下原则
    :报告效应量和置信区间 (CI);
    湾。考虑提供预测值或效应大小的图形证据,以向您的听众展示分析提供的差异幅度;
    C。报告您进行的测试数量(正式和非正式);
    d。解释p-根据您的样本量(和功率)的值;
    e. 不要使用p- 声称没有差异的原假设为真的值;和

F。考虑p- 充其量仅将价值视为关于您的结论的一种证据来源,而不是结论本身。

  1. 考虑创建定制的、基于模拟的统计测试,以使用您的特定数据集回答您的特定问题。
  2. 使用模拟来了解您的统计计划在像您这样的数据集上的性能,并测试各种假设。
  3. 以怀疑的态度阅读结果,记住模式很容易偶然出现(尤其是对于小样本),并且基于小样本量的意外结果通常是错误的。
  4. 将数据中的统计结果或模式解释为与概念模型或假设一致或不一致,而不是声称它们揭示或证明了某些现象或关系(有关该建议的详细说明,请参见第 2 章)。

以下章节中介绍的材料并不完全忠实于这些做法。例如,我们不涉及如何测量变量、生成假设或模拟(但请参阅附录 B),而且我们有时过于愿意相信p-值(见第 2 章)。然而,这些实践应该是所有研究人员在考虑如何计划、执行和报告他们自己的研究时的首要考虑因素。

我希望后续章节的读者在考虑这些材料并开始他们自己的研究时能够轻松地思考定量研究的结果。事实上,我从不想低估在评估和使用统计技术的人中仔细推理的重要性。我们也不应该仅仅因为一组数字支持一些不寻常的结论而暂停我们对研究文献的常识和知识。这并不是说统计分析没有价值或结果通常具有误导性。许多与公认知识不符的研究结果在随后的研究中被证明是有效的。统计分析还导致了社会、行为和健康科学方面的许多值得注意的发现,以及以富有成效的方式制定知情政策。

统计代写|linear regression代写线性回归代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注