物理代写|量子光学代写Quantum Optics代考|PHYS248

如果你也在 怎样代写量子光学Quantum Optics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

量子光学是原子、分子和光学物理学的一个分支,处理单个光量子(称为光子)如何与原子和分子相互作用。它包括研究光子的类似粒子的特性。

statistics-lab™ 为您的留学生涯保驾护航 在代写量子光学Quantum Optics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写量子光学Quantum Optics代写方面经验极为丰富,各种代写量子光学Quantum Optics相关的作业也就用不着说。

我们提供的量子光学Quantum Optics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|量子光学代写Quantum Optics代考|PHYS248

物理代写|量子光学代写Quantum Optics代考|One-Dimensional Waves

What are waves? I encourage the reader to reflect a while about this question and to come up with a meaningful answer. After all, waves are abundant in physics, ranging from water and sound waves to electromagnetic ones, which are the central objects of this book. However, it seems rather difficult to explain what a wave really is. In the book “Introduction to Electrodynamics” Griffiths comes up with the following definition [1]:

A wave is a disturbance of a continuous medium that propagates with a fixed shape at a constant velocity.

This definition leaves a number of open questions (what is the continuous medium in case of electromagnetic waves? what about dispersive media?), and I will propose later a modified, albeit more technical definition. To get started, let us take Griffiths’ description and consider waves in one spatial dimension. We denote the wave disturbance propagating along $x$ with $f(x, t)$, where $t$ is the time. Figure 1 .1 shows a schematic sketch of such a wave propagation. After a time $t$ the initial wave has been displaced by a distance $v t$. We can thus write
$$
f(x, 0)=g(x), \quad f(x, t)=g(x-v t),
$$
which shows that $f$ is a function of one combined variable $u=x-v t$ rather than of two independent variables $x, t$. The same analysis applies to a wave that moves to the left, and the general solution is a superposition of left- and right-moving waves
$$
f(x, t)=g_{-}(x-v t)+g_{+}(x+v t)=g_{-}\left(u_{-}\right)+g_{+}\left(u_{+}\right), \quad u_{\pm}=x \pm v t .
$$
It is now easy to show that
$$
\left(\frac{\partial}{\partial x}+\frac{1}{v} \frac{\partial}{\partial t}\right) g_{-}\left(u_{-}\right)=\left(\frac{\partial u_{-}}{\partial x}+\frac{1}{v} \frac{\partial u_{-}}{\partial t}\right) \frac{d g\left(u_{-}\right)}{d u_{-}}=\left(1-\frac{v}{v}\right) \frac{d g\left(u_{-}\right)}{d u_{-}}=0 .
$$
Thus, the operator on the left-hand side equates all right-moving waves to zero. Similarly, we find for the left-moving waves
$$
\left(\frac{\partial}{\partial x}-\frac{1}{v} \frac{\partial}{\partial t}\right) g_{+}\left(u_{+}\right)=\left(\frac{\partial u_{-}}{\partial x}-\frac{1}{v} \frac{\partial u_{+}}{\partial t}\right) \frac{d g\left(u_{+}\right)}{d u_{+}}=\left(1-\frac{v}{v}\right) \frac{d g\left(u_{+}\right)}{d u_{+}}=0 .
$$
If we apply both operators on the wavefunction $f(x, t)$, we equate the left- and right-moving waves to zero, and we arrive at the scalar wave equation in one spatial dimension.

物理代写|量子光学代写Quantum Optics代考|Three-Dimensional Waves

So how do things change when we go from one to three spatial dimensions? Formally not that much. Instead of Eq. (1.1) we get
Scalar Wave Equation for Three Spatial Dimensions
$$
\left(\nabla^2-\frac{1}{v^2} \frac{\partial^2}{\partial t^2}\right) f(\boldsymbol{r}, t)=0,
$$
where $f(\boldsymbol{r}, t)$ is the scalar wavefunction depending on $\boldsymbol{r}=(x, y, z)$, and $\nabla^2$ is the usual Laplace operator
$$
\nabla^2-\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} .
$$
Similarly to the decomposition into sinusoidal waves of Eq. (1.4) we introduce plane waves
Plane Wave in Three Spatial Dimensions
$$
f(x, t)=A e^{i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)},
$$
where $A$ is the amplitude and $\boldsymbol{k}=k \hat{\boldsymbol{n}}$ is the wavevector that has the length $k=2 \pi / \lambda$ determined by the wavelength $\lambda$ and points in the direction of the wave propagation, see Fig. 1.2. With these plane waves we can define in complete analogy to Eq. (1.6) the three-dimensional Fourier transform
$$
\begin{gathered}
f(\boldsymbol{r})-\int_{-\infty}^{\infty} e^{+i k \cdot \boldsymbol{r}} \tilde{f}(\boldsymbol{k}) \frac{d^3 k}{(2 \pi)^3} \
\tilde{f}(\boldsymbol{k})=\int_{-\infty}^{\infty} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}} f(\boldsymbol{r}) d^3 r
\end{gathered}
$$

物理代写|量子光学代写Quantum Optics代考|PHYS248

量子光学代考

物理代写|量子光学代写Quantum Optics代考|一维波


什么是波?我鼓励读者思考一下这个问题,然后想出一个有意义的答案。毕竟,在物理学中,从水波、声波到电磁波,波是非常丰富的,这些都是本书的中心内容。然而,似乎很难解释波到底是什么。在《电动力学导论》一书中,Griffiths提出了以下定义[1]:


波是一种连续介质的扰动,它以恒定的速度以固定的形状传播


这个定义留下了许多悬而未决的问题(在电磁波的情况下,什么是连续介质?色散介质呢?),稍后我会提出一个修改过的,但更专业的定义。首先,让我们参考格里菲斯的描述,考虑一个空间维度的波。我们用$f(x, t)$表示沿$x$传播的波扰动,其中$t$是时间。图1 – 1显示了这种波传播的示意图。一段时间后,最初的波$t$被一段距离所取代$v t$。因此,我们可以写
$$
f(x, 0)=g(x), \quad f(x, t)=g(x-v t),
$$
,这表明$f$是一个组合变量$u=x-v t$的函数,而不是两个自变量$x, t$的函数。同样的分析也适用于向左移动的波,其通解是向左移动波和向右移动波的叠加
$$
f(x, t)=g_{-}(x-v t)+g_{+}(x+v t)=g_{-}\left(u_{-}\right)+g_{+}\left(u_{+}\right), \quad u_{\pm}=x \pm v t .
$$
现在很容易证明
$$
\left(\frac{\partial}{\partial x}+\frac{1}{v} \frac{\partial}{\partial t}\right) g_{-}\left(u_{-}\right)=\left(\frac{\partial u_{-}}{\partial x}+\frac{1}{v} \frac{\partial u_{-}}{\partial t}\right) \frac{d g\left(u_{-}\right)}{d u_{-}}=\left(1-\frac{v}{v}\right) \frac{d g\left(u_{-}\right)}{d u_{-}}=0 .
$$
因此,左边的算符将所有向右移动的波等价为零。类似地,我们发现左移波
$$
\left(\frac{\partial}{\partial x}-\frac{1}{v} \frac{\partial}{\partial t}\right) g_{+}\left(u_{+}\right)=\left(\frac{\partial u_{-}}{\partial x}-\frac{1}{v} \frac{\partial u_{+}}{\partial t}\right) \frac{d g\left(u_{+}\right)}{d u_{+}}=\left(1-\frac{v}{v}\right) \frac{d g\left(u_{+}\right)}{d u_{+}}=0 .
$$
如果我们对波函数$f(x, t)$应用这两个算子,我们将左移波和右移波等于零,我们得到一个空间维的标量波方程

物理代写|量子光学代写Quantum Optics代考|三维波


那么当我们从一个空间维度到三个空间维度时,事情是如何变化的呢?从形式上讲,没有那么多。而不是式(1.1),我们得到
三维标量波方程
$$
\left(\nabla^2-\frac{1}{v^2} \frac{\partial^2}{\partial t^2}\right) f(\boldsymbol{r}, t)=0,
$$
其中$f(\boldsymbol{r}, t)$是依赖于$\boldsymbol{r}=(x, y, z)$的标量波函数,$\nabla^2$是通常的拉普拉斯算子
$$
\nabla^2-\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} .
$$
与Eq.(1.4)分解为正弦波类似,我们引入平面波
三维平面波
$$
f(x, t)=A e^{i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)},
$$
,其中$A$是振幅,$\boldsymbol{k}=k \hat{\boldsymbol{n}}$是波长$\lambda$决定长度$k=2 \pi / \lambda$并指向波传播方向的波矢,如图1.2所示。有了这些平面波,我们可以完全类似于式(1.6)定义三维傅里叶变换
$$
\begin{gathered}
f(\boldsymbol{r})-\int_{-\infty}^{\infty} e^{+i k \cdot \boldsymbol{r}} \tilde{f}(\boldsymbol{k}) \frac{d^3 k}{(2 \pi)^3} \
\tilde{f}(\boldsymbol{k})=\int_{-\infty}^{\infty} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}} f(\boldsymbol{r}) d^3 r
\end{gathered}
$$

物理代写|量子光学代写Quantum Optics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注