分类: 假设检验代写

统计代写|假设检验代写hypothesis testing代考|STAT101

如果你也在 怎样代写假设检验hypothesis testing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。假设检验hypothesis testing是假设检验是统计学中的一种行为,分析者据此检验有关人口参数的假设。分析师采用的方法取决于所用数据的性质和分析的原因。假设检验是通过使用样本数据来评估假设的合理性。

statistics-lab™ 为您的留学生涯保驾护航 在假设检验hypothesis testing作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在假设检验hypothesis testing代写方面经验极为丰富,各种假设检验hypothesis testing相关的作业也就用不着 说。

我们提供的假设检验hypothesis testing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • 时间序列分析Time-Series Analysis
  • 马尔科夫过程 Markov process
  • 随机最优控制stochastic optimal control
  • 粒子滤波 Particle Filter
  • 采样理论 sampling theory
统计代写|假设检验代写hypothesis testing代考|STAT101

统计代写|假设检验代写hypothesis testing代考|Adding probabilities

Probability gives a way of measuring how likely an event is to occur in random sampling. In the last subsection you learned that a probability is always greater than or equal to 0 and always less than or equal to 1 . The following example and activity use data on truancy to help you become more familiar with the idea of probability. The same data is then used to explore another property of probability.Table 3 shows some invented data on truancy in two schools, A and B, that contained 200 and 100 pupils, respectively.

We shall use the table to answer the following questions.

  1. If a child is selected at random from these two schools, what is the probability that this child was absent through truancy for fewer than 5 days?
  2. If a child is selected at random from these two schools, what is the probability that this child is at School $\mathrm{A}$ and was absent through truancy for fewer than 5 days?
  3. If a child is selected at random from School A, what is the probability that this child was absent through truancy for fewer than 5 days?
    Let $T$ stand for the event that a child selected at random was absent through truancy for fewer than 5 days, and let $A$ stand for the event that the child attends School A.
  4. Here the probability is $P(T)$. Now
    $$
    \begin{aligned}
    P(T) & =\frac{\text { total number of children absent for }<5 \text { days }}{\text { total number of children }} \
    & =\frac{150}{300}=0.5 .
    \end{aligned}
    $$
    So there is a probability of $0.5$ that a child picked at random from these two schools was absent through truancy for fewer than 5 days.
  5. Here the probability is that both events $T$ and $A$ occur. This is $P(T$ and $A)$, which is an extension of our notation for the probability of an event. (It means the probability that both $T$ and $A$ occur. In this case, the event ‘ $T$ and $A$ ‘ occurs if a child is absent through truancy for fewer than 5 days and also attends School A.) From Table 3, we see that 108 children attended School A and were absent through truancy for fewer than 5 days. So
    $$
    \begin{aligned}
    P(T \text { and } A) & =\frac{\text { total number of children satisfying both } T \text { and } A}{\text { total number of children }} \
    & =\frac{108}{300}=0.36 .
    \end{aligned}
    $$

统计代写|假设检验代写hypothesis testing代考|Multiplying probabilities

We have seen that probabilities are added when we have the ‘or’ linkage, and want $\mathrm{P}(A$ or $B)$. We next consider how to determine probabilities when we have an ‘and’ linkage, and want $\mathrm{P}(A$ and $B)$. We use the notion that $\mathrm{P}(A$ and $B)$ is the proportion of the time that $A$ and $B$ both happen.

A restaurant offers a two-course set lunch. There are three choices for the first course – soup, pâté or salad – and two choices for the second course beef or pasta. The different meal-combinations are shown in Figure 3.

The diagram in Figure 3 is referred to as a tree. Starting at the left of the figure, we can follow one of three lines – branches – to choose a first course (soup, pâté or salad). From each first course we can follow one of two lines – sub-branches – to choose the second course (beef or pasta). Thus there are $3 \times 2=6$ different paths we can follow, corresponding to the six possible meal combinations: soup-beef, soup-pasta, pâté-beef, pâté-pasta, salad-beef and salad-pasta.
Suppose, now, that we choose a first course at random and also choose the second course at random. Then each of these six possibilities is equally likely. Thus the proportion of time we choose, say, salad followed by beef would be one-sixth, so
$$
P(\text { salad and beef combination })=\frac{1}{6} \text {. }
$$
Notice that there is a choice of three first courses, so if the choice is made at random,
$$
P(\text { salad for first course })=\frac{1}{3} .
$$
And, as there are two choices for the second course,
$$
P(\text { beef for second course })=\frac{1}{2} \text {. }
$$

Consequently, in this example
$P($ salad and beef combination $)=P($ salad $) \times P($ beef $)$.
Extending Example 3 is helpful, so suppose that there are four choices for the first course – soup, salad, pâté and prawns – and five choices for the second course – beef, chicken, fish, pasta and quiche. Following similar reasoning to Example 3, there are $4 \times 5=20$ different meal combinations.

统计代写|假设检验代写hypothesis testing代考|STAT101

假设检验代写

统计代写|假设检验代写hypothesis testing代考|Adding probabilities

概率提供了一种衡量事件在随机抽样中发生的可能性的方法。在上一小节中,您了解到概率始终大于或等 于 0 且始终小于或等于 1。以下示例和活动使用逃学数据来帮助您更加熟悉概率的概念。然后使用相同的 数据来探索概率的另一个属性。表 3 显示了 A 和 B 两所学校的一些虚构的逃学数据,这两个学校分别有 200 名和 100 名学生。
我们将使用该表来回答以下问题。

  1. 如果从这两所学校中随机抽取一个孩子,这个孩子旷课少于 5 天的概率是多少?
  2. 如果从这两所学校中随机抽取一个孩子,这个孩子在学校的概率是多少 $\mathrm{A}$ 并且因旷课而缺勤少于 5 天?
  3. 如果从 $A$ 学校随机抽取一名儿童,该儿童旷课少于 5 天的概率是多少? 让 $T$ 代表随机选择的孩子因旷课少于 5 天而缺席的事件,并让 $A$ 代表孩子就读学校 $\mathrm{A}$ 的事件。
  4. 这里的概率是 $P(T)$. 现在
    $$
    P(T)=\frac{\text { total number of children absent for }<5 \text { days }}{\text { total number of children }}=\frac{150}{300}=0.5 .
    $$
    所以有概率 $0.5$ 从这两所学校随机挑选的一个孩子因旷课不到 5 天而缺勤。
  5. 这里的概率是两个事件 $T$ 和 $A$ 发生。这是 $P(T$ 和 $A)$ ,这是我们对事件概率表示法的扩展。(这意味 着两者的概率 $T$ 和 $A$ 发生。在这种情况下,事件 ‘ $T$ 和 $A$ ‘ 如果一个孩子因旷课少于 5 天而缺勤并且也 在学校 $\mathrm{A}$ 上学,则会出现这种情况。) 从表 3 中,我们看到有 108 名儿童在学校 $\mathrm{A}$ 上学并且因旷课 少于 5 天而缺勤。所以
    $$
    P(T \text { and } A)=\frac{\text { total number of children satisfying both } T \text { and } A}{\text { total number of children }}=\frac{108}{300}=0.36 \text {. }
    $$

统计代写|假设检验代写hypothesis testing代考|Multiplying probabilities

我们已经看到,当我们有“或”链接时,概率会增加,并且想要 $\mathrm{P}(A$ 或者 $B)$. 接下来我们考虑当我们有一个 “和”链接时如何确定概率,并且想要 $\mathrm{P}(A$ 和 $B)$. 我们使用的概念是 $\mathrm{P}(A$ 和 $B)$ 是时间的比例 $A$ 和 $B$ 两者都会 发生。
餐厅提供两道菜的午餐套餐。第一道萫有汤、肉酱或沙拉三种选择,第二道萫有牛肉或意大利面两种选 择。不同的膳食组合如图 3 所示。
图 3 中的图表称为树。从图的左侧开始,我们可以沿着三行之一 (分支) 选择第一道菜 (汤、肉䣦或沙
拉)。从每一道第一道菜中,我们可以按照两条线中的一条一一支线一一来选择第二道菜(牛肉或意大利
面)。因此有 $3 \times 2=6$ 我们可以遵循不同的路径,对应于六种可能的膳食组合:汤-牛肉、汤-意大利 面、肉䣬-牛肉、肉酱-意大利面、沙拉-牛肉和沙拉-意大利面。
现在假设我们随机选择第一道菜,也随机选择第二道菜。那么这六种可能性中的每一种可能性都是一样 的。因此,我们选择沙拉和牛肉的时间比例是六分之一,所以
$$
P(\text { salad and beef combination })=\frac{1}{6} \text {. }
$$
请注意,可以选择三个第一道菜,所以如果选择是随机的,
$$
P(\text { salad for first course })=\frac{1}{3} .
$$
而且,由于第二道菜有两种选择,
$$
P(\text { beef for second course })=\frac{1}{2} .
$$
因此,在这个例子中
$$
P(\text { 沙拉和牛肉组合 })=P(\text { 沙拉 }) \times P(\text { 牛肉 }) \text {. }
$$
扩展示例 3 很有帮助,因此假设第一道菜有四种选择一一汤、沙拉、肉唒和大虾一一第二道菜有五种选择 一一牛肉、鸡肉、鱼、意大利面和乳蛋饼。按照与示例 3 类似的推理,有 $4 \times 5=20$ 不同的膳食组合。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国英国加拿大澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

统计代写|假设检验代写hypothesis testing代考|BSTA611

如果你也在 怎样代写假设检验hypothesis testing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。假设检验hypothesis testing是假设检验是统计学中的一种行为,分析者据此检验有关人口参数的假设。分析师采用的方法取决于所用数据的性质和分析的原因。假设检验是通过使用样本数据来评估假设的合理性。

statistics-lab™ 为您的留学生涯保驾护航 在假设检验hypothesis testing作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在假设检验hypothesis testing代写方面经验极为丰富,各种假设检验hypothesis testing相关的作业也就用不着 说。

我们提供的假设检验hypothesis testing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • 时间序列分析Time-Series Analysis
  • 马尔科夫过程 Markov process
  • 随机最优控制stochastic optimal control
  • 粒子滤波 Particle Filter
  • 采样理论 sampling theory
统计代写|假设检验代写hypothesis testing代考|BSTA611

统计代写|假设检验代写hypothesis testing代考|Analysing the data

We have now decided on a specific question to investigate and we need to collect some data. This unit is mainly about analysing dlata that have already been collected, but it is worth spending a little time thinking about exactly what data should be collected. We can assume that we have a sampling frame consisting of all state-funded secondary schools in the East of England and the number of pupils they have. We can therefore pick out large schools, and we have arbitrarily defined these to be schools with 1000 or more pupils. We can then select a random sample of these schools. A sample size of 12 has been chosen.We now want a single number to summarise the amount of truancy for each of the 12 schools. First we must consider what we mean by truancy. If a child skips school to go to the shops, then they are playing truant, while if they miss school because they are ill in bed, then they are not.

Write down three reasons that a child might miss school – one that is definitely truancy, one that is definitely not truancy, and one that might or might not be truancy, depending on circumstances.

A school in Colorado photographed in 1915 during the season to harvest beet – only five pupils are at school while another thirty-five are absent because they are helping with the beet work.

A clear definition of truancy is needed if we are to gather truancy data for the different schools. The definition must take account of what data can be gathered, otherwise the definition may not be useful. In the next activity you are asked to think about how data related to truancy might be collected and used.Think of two possible ways in which data on truancy in a particular school could be collected and truancy in the school measured. They should be feasible methods which will not occupy too much of the teachers’ time.When gathering data, precise definitions are needed. Hence the UK government collects data, not on truancy, but on ‘unauthorised absence from school’. An unauthorised absence is absence without permission from a teacher or other authorised representative of the school. Records are kept of when permission for absence has been given (which would be retrospectively in the case of illness), so unauthorised absence is a well-defined, documented quantity. It is clearly closely related to truancy. Indeed, when the government publishes statistics on unauthorised absences from school, television and newspapers refer to them as truancy rates. We shall do the same.

统计代写|假设检验代写hypothesis testing代考|Measuring chance

The easiest way of thinking about probability is to equate it to proportion: the probability that a particular event will happen is the proportion of the time that it is expected to happen. When we toss a fair (unbiased) coin, for example, there is a fifty-fifty chance that the coin will land ‘heads’ because half the time it should land ‘heads’ and half the time it should land ‘tails’. That is, the proportion of time that the outcome should be heads is $\frac{1}{2}$, so the probability that the outcome will be heads is $\frac{1}{2}$.
(In practice, of course, you can only toss a coin a finite number of times, and it is very unlikely to land ‘heads’ exactly half the time. For example, if you toss it 600 times, then there is little chance that it will land ‘heads’ exactly 300 times. However, if you toss a coin an enormous number of times, the proportion of ‘heads’ should be very close to $\frac{1}{2}$.) Similarly, if a die is fair, then each of its six sides is equally likely to be the outcome when it is rolled. Thus, for example, the proportion of rolls that should result in a 4 is $\frac{1}{6}$, so the probability of rolling a 4 is $\frac{1}{6}$.

You met the ideas of random selection and random sampling in Unit 4. With random sampling, each member of the population is equally likely to be included in the sample. In particular, if a person or item is picked at random from a population, each member of the population is equally likely to be the one that is picked. We shall use these ideas to begin our investigation of probability.Now suppose that a student is selected at random from the university. Using the notion that probability equates to proportion, various probabilities relating to the student can be calculated. For example, the table gives the number of students who are female (2789) and the total number of students (6082). Hence we can determine the probability that the selected student is female by calculating the proportion of students who are female, as follows.

统计代写|假设检验代写hypothesis testing代考|BSTA611

假设检验代写

统计代写|假设检验代写hypothesis testing代考|Analysing the data

我们现在已经决定要调查的具体问题,我们需要收集一些数据。本单元主要是分析已经收集到的数据,但值得花一点时间思考究竟应该收集哪些数据。我们可以假设我们有一个抽样框,其中包含英格兰东部所有公立中学及其学生人数。因此,我们可以挑选大型学校,并且我们将这些学校任意定义为拥有 1000 名或更多学生的学校。然后我们可以从这些学校中随机抽样。选择了 12 个样本大小。我们现在需要一个数字来汇总 12 所学校中每所学校的逃学人数。首先,我们必须考虑逃学是什么意思。如果一个孩子逃学去商店,那么他们就是在逃学,

写下孩子可能缺课的三个原因——一个绝对是逃学,一个绝对不是逃学,一个可能是也可能不是逃学,这取决于具体情况。

科罗拉多州的一所学校拍摄于 1915 年收获甜菜的季节——只有 5 名学生在校,另有 35 名学生缺勤,因为他们正在帮助收割甜菜。

如果我们要收集不同学校的逃学数据,就需要明确定义逃学。定义必须考虑可以收集哪些数据,否则定义可能没有用。在下一个活动中,您需要考虑如何收集和使用与逃学有关的数据。考虑两种可能的方式来收集特定学校的逃学数据和衡量学校的逃学情况。它们应该是可行的方法,不会占用教师过多的时间。收集数据时,需要精确的定义。因此,英国政府收集的数据不是关于逃学的,而是关于“未经授权的旷课”的。未经授权的缺席是指未经老师或学校其他授权代表的许可而缺席。记录会记录何时允许缺勤(在生病的情况下可以追溯),因此未经授权的缺勤是一个明确定义的记录数量。这显然与逃学密切相关。事实上,当政府公布未经授权旷课的统计数据时,电视和报纸将其称为逃学率。我们也将这样做。

统计代写|假设检验代写hypothesis testing代考|Measuring chance

考虑概率的最简单方法是将其等同于比例:特定事件发生的概率是预期发生的时间的比例。例如,当我们抛一枚公平(无偏见)的硬币时,硬币有五十分的机会落到“正面”,因为有一半的机会它应该落在“正面”,而一半的时间应该落在“反面”。也就是说,结果应该是正面的时间比例是12, 所以结果是正面的概率是12.
(当然,在实践中,你只能抛硬币有限次,而且恰好有一半的时间“正面朝上”的可能性很小。例如,如果你抛 600 次,那么几乎没有机会它会恰好出现 300 次“正面朝上”。但是,如果你掷硬币的次数非常多,“正面朝上”的比例应该非常接近12.) 同样,如果一个骰子是公平的,那么它的六个面中的每一个面都同样可能是掷骰子时的结果。因此,举例来说,结果为 4 的掷骰比例为16, 所以掷出 4 的概率是16.

您在第 4 单元中遇到了随机选择和随机抽样的概念。通过随机抽样,总体中的每个成员被包含在样本中的可能性相同。特别是,如果从总体中随机挑选一个人或一件物品,则总体中的每个成员被选中的可能性均等。我们将使用这些想法来开始我们对概率的研究。现在假设从大学中随机选出一名学生。使用概率等同于比例的概念,可以计算与学生相关的各种概率。例如,该表给出了女生人数 (2789) 和学生总数 (6082)。因此,我们可以通过计算女性学生的比例来确定所选学生是女性的概率,如下所示。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国英国加拿大澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

统计代写|假设检验代写hypothesis testing代考|BSTA511

如果你也在 怎样代写假设检验hypothesis testing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。假设检验hypothesis testing是假设检验是统计学中的一种行为,分析者据此检验有关人口参数的假设。分析师采用的方法取决于所用数据的性质和分析的原因。假设检验是通过使用样本数据来评估假设的合理性。

statistics-lab™ 为您的留学生涯保驾护航 在假设检验hypothesis testing作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在假设检验hypothesis testing代写方面经验极为丰富,各种假设检验hypothesis testing相关的作业也就用不着 说。

我们提供的假设检验hypothesis testing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • 时间序列分析Time-Series Analysis
  • 马尔科夫过程 Markov process
  • 随机最优控制stochastic optimal control
  • 粒子滤波 Particle Filter
  • 采样理论 sampling theory
统计代写|假设检验代写hypothesis testing代考|BSTA511

统计代写|假设检验代写hypothesis testing代考|Clarifying the question

In Section 1 we consider what is meant by the question
How often do pupils truant?
Notice that this question refers implicitly to whole populations: for example, all schools in a particular area. We are usually not directly interested in how the children in one particular school behaved. However, it is often impossible, or at least not feasible, to collect data from the whole population. Instead we select a random sample of data. It might be a random sample of schools or of children. The sample is analysed by the methods we learned in earlier units, and we then need to decide how the results obtained from the sample apply to the whole population.
Statistical inference makes inferences about a population on the basis of data drawn from that population.
The above question about truancy may well have arisen from more general questions, such as:
Why do some pupils learn very little? Are we using good ways of teaching? Does the quality of my child’s education depend on where I live?

However, these latter questions can only be tackled if they are first made more precise. Hence, rather than simply posing a question, we will often need to clarify it, and we may need to clarify it more than once as we learn more about the problem. In earlier units we used the modelling diagram shown in Figure 1 as a framework for how we explore and summarise batches of data.

统计代写|假设检验代写hypothesis testing代考|The question to be clarified

As we saw in earlier units, statistics is good at answering questions that require a numerical answer. However, the question for this unit is a very vague question. For example, we might be interested in how much particular children truant, or we might want to compare truancy at different schools.
First, suppose we were looking at particular children.
Activity 1 Factors affecting a child’s truancy
Spend a few minutes thinking about what factors might affect how much a child plays truant. Then write down three factors that you think might be relevant.
Suppose a child psychologist is helping a particular child with a truancy problem. The psychologist would want to know the child’s attendance record and factors about the child’s circumstances that can influence truancy. The psychologist would then consider these factors and see if any pattern from the attendance record supported a given factor.
The same approach is followed if you move from considering individual truancy to truancy associated with different schools. We shall concentrate on looking at patterns with regard to schools, not individual children.
There are many different schools, and the amount of truancy will vary greatly. One of the interesting questions is whether different types of school have different amounts of truancy.
Activity 2 Factors affecting truancy in a school
Write down three factors that might affect the amount of truancy in a school.

Age of children is one of the most important factors in truancy figures. There is much less truancy at primary schools than at secondary schools. Young children are more likely to be taken to school by their parents, and also, since they are usually with the same class teacher all the time, truancy would be more easily noticed and could be followed up more quickly. We shall concentrate on secondary schools.
As you saw in the solution to Activity 2, there are still many factors that may affect truancy rate even after we have allowed for age to some extent by looking only at secondary schools. They include type of school, location of school and size of school, and there are also other factors, such as the attitude of the teachers, which are more difficult to measure. We shall look at several of these factors in the course of the unit, but we shall start with size of school.

统计代写|假设检验代写hypothesis testing代考|BSTA511

假设检验代写

统计代写|假设检验代写hypothesis testing代考|Clarifying the question

在第 1 节中,我们考虑
学生逃学的频率是多少?
请注意,这个问题隐含地指的是整个人口:例如,特定地区的所有学校。我们通常不会直接关注某个特定学校的孩子们的行为。然而,从整个人群中收集数据通常是不可能的,或者至少是不可行的。相反,我们选择随机数据样本。它可能是学校或儿童的随机样本。样本是用我们在前面单元中学到的方法进行分析的,然后我们需要决定如何从样本中获得的结果应用于整个人群。
统计推断根据从人口中提取的数据对人口进行推断。
上述关于逃学的问题很可能源于更普遍的问题,例如:
为什么有些学生学得很少?我们是否使用好的教学方法?我孩子的教育质量是否取决于我住在哪里?

然而,后面这些问题只有首先变得更加精确才能得到解决。因此,我们常常需要澄清它,而不是简单地提出问题,而且随着我们对问题了解得更多,我们可能需要不止一次地澄清它。在较早的单元中,我们使用图 1 中所示的建模图作为我们探索和汇总批量数据的框架。

统计代写|假设检验代写hypothesis testing代考|The question to be clarified

正如我们在前面的单元中看到的那样,统计学擅长回答需要数字答案的问题。但是,这个单元的问题是一个非常模糊的问题。例如,我们可能对有多少特定儿童逃学感兴趣,或者我们可能想要比较不同学校的逃学情况。
首先,假设我们正在观察特定的儿童。
活动 1 影响孩子逃学的因素
花几分钟思考一下哪些因素可能会影响孩子逃学的程度。然后写下您认为可能相关的三个因素。
假设一名儿童心理学家正在帮助一名儿童解决逃学问题。心理学家想知道孩子的出勤记录以及影响孩子逃学的环境因素。然后心理学家会考虑这些因素,看看出勤记录中是否有任何模式支持给定的因素。
如果您从考虑个人逃学转向与不同学校相关的逃学,则采用相同的方法。我们将集中精力研究与学校有关的模式,而不是个别儿童。
有很多不同的学校,逃学的数量也会相差很大。有趣的问题之一是不同类型的学校是否有不同数量的逃学。
活动 2 影响学校逃学的因素
写下可能影响学校逃学人数的三个因素。

儿童年龄是逃学人数中最重要的因素之一。小学的逃学现象比中学少得多。年幼的孩子更有可能被父母送去上学,而且,由于他们通常一直和同一个班主任一起上学,逃学更容易被发现,也能更快地得到跟进。我们将专注于中学。
正如您在活动 2 的解决方案中看到的那样,即使我们通过仅查看中学在一定程度上考虑了年龄,仍然有许多因素可能会影响逃学率。它们包括学校类型、学校位置和学校规模,还有其他因素,例如教师的态度,这些因素更难衡量。我们将在本单元的课程中研究其中的几个因素,但我们将从学校的规模开始。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国英国加拿大澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。