分类: 数字信号处理代写

电子工程代写|数字信号处理代写Digital Signal Processing代考|ECE310

如果你也在 怎样代写数字信号处理Digital Signal Processing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数字信号处理器(DSP)将现实世界的信号,如语音、音频、视频、温度、压力或位置,经过数字化处理,然后以数学方式处理它们。数字信号处理器被设计用于快速执行数学功能,如 “加”、”减”、”乘 “和 “除”。

statistics-lab™ 为您的留学生涯保驾护航 在代写数字信号处理Digital Signal Processing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字信号处理Digital Signal Processing方面经验极为丰富,各种代写数字信号处理Digital Signal Processing相关的作业也就用不着说。

我们提供的数字信号处理Digital Signal Processing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
电子工程代写|数字信号处理代写Digital Signal Processing代考|ECE310

电子工程代写|数字信号处理代写Digital Signal Processing代考|The Basic Network

Consider the simplest configuration for impedance matching, namely, the L-network shown in Fig. 3.1. $Z_{\mathrm{s}}$ is an $L C$ impedance and $Y_{p}$ is an $L C$ admittance such that when the network is terminated in $R_{L}$, the input impedance is $R_{S}$ at the frequencies of interest. Let, at $s=j \omega, Z_{s}=j X_{s}$ and $Y_{P}=j B_{P}$, where $X$ denotes reactance and $B$ denotes susceptance. Then, at the frequencies of interest, we should have
$$
R_{S}=j X_{s}+1 /\left(j B_{p}+G_{L}\right)
$$
where $G_{L}=1 / R_{L}$. Cross multiplying, simplifying, and equating the real and imaginary parts on both sides give the two equations
$$
X_{S} B_{p}=1-R_{S} G_{L} \text { and } R_{S} B_{p}=X_{S} G_{L}
$$
The second equation shows that $X_{s}$ and $B_{p}$ must be of the same sign, both positive or both negative. Combining this fact with the first Equation in (3.2), we note that $R_{S} G_{L}$ must be less than unity, i.e. $R_{S}$ must be less than $R_{L}$. However, this is no restriction because the other situation, i.e. $R_{S}>R_{L}$, can be taken care of by simply interchanging the positions of $R_{S}$ and $R_{L}$ in Fig. 3.1. Eliminating $B_{p}$ from the two Equations in (3.2), we get
$$
X_{s}^{2}=R_{S}\left(R_{L}-R_{S}\right)=R_{1}^{2}, \text { say }
$$

Or,
$$
X_{\mathrm{s}}=\pm R_{1}
$$
Combining this with the second Equation in (3.2) gives
$$
B_{p}=\pm R_{1} /\left(R_{L} R_{S}\right)=\pm G_{2} \text {, say }
$$
As already stated, the signs in Eqs. (3.4) and (3.5) should be either both positive or both negative.

电子工程代写|数字信号处理代写Digital Signal Processing代考|Impedance Matching at a Single Frequency

For matching $R_{L}$ to $R_{S}$ at a single frequency $\omega_{0}$, we can choose either an inductance $L_{s}$ for $X_{s}$ and a capacitance $C_{p}$ for $B_{p}$, or a capacitance $C_{s}$ for $X_{s}$ and an inductance $L_{p}$ for $B_{p}$. In the first case, to be referred to as Design 1 (D1)
$$
L_{s}=R_{1} / \omega_{0} \text { and } C_{p}=G_{2} / \omega_{0}
$$
while for the alternative design, to be called Design 2 (D2),
$$
C_{s}=1 /\left(R_{1} \omega_{0}\right) \text { and } L_{p}=1 /\left(G_{2} \omega_{0}\right)
$$
We shall mostly use D1 in our further discussions, it is being implied that D2 is equally applicable, giving another set of solutions.

电子工程代写|数字信号处理代写Digital Signal Processing代考|ECE310

数字信号处理代考

电子工程代写|数字信号处理代写Digital Signal Processing代考|The Basic Network

考虑最简单的阻抗匹配配置,即图 $3.1$ 所示的 $L$ 网络。 $Z_{\mathrm{s}}$ 是一个 $L C$ 阻抗和 $Y_{p}$ 是一个 $L C$ 准入使得当网络终止时 $R_{L}$ ,输入阻抗为 $R_{S}$ 在感兴趣的频率。让,在 $s=j \omega, Z_{s}=j X_{s}$ 和 $Y_{P}=j B_{P}$ ,在哪里 $X$ 表示电抗和 $B$ 表示电 纳。然后,在感兴趣的频率上,我们应该有
$$
R_{S}=j X_{s}+1 /\left(j B_{p}+G_{L}\right)
$$
在哪里 $G_{L}=1 / R_{L}$. 对两边的实部和虚部进行交叉乘法,化简和等式,得到两个方程
$$
X_{S} B_{p}=1-R_{S} G_{L} \text { and } R_{S} B_{p}=X_{S} G_{L}
$$
第二个等式表明 $X_{s}$ 和 $B_{p}$ 必须是相同的符号,都为正或都为负。将这一事实与(3.2) 中的第一个方程结合起来, 我们注意到 $R_{S} G_{L}$ 必须小于统一,即 $R_{S}$ 必须小于 $R_{L}$. 但是,这没有限制,因为其他情况,即 $R_{S}>R_{L}$ ,可以通 过简单地互换位置来处理 $R_{S}$ 和 $R_{L}$ 在图 $3.1$ 中。消除 $B_{p}$ 从 (3.2) 中的两个方程,我们得到
$$
X_{s}^{2}=R_{S}\left(R_{L}-R_{S}\right)=R_{1}^{2} \text {, say }
$$
或者,
$$
X_{\mathrm{s}}=\pm R_{1}
$$
将此与 (3.2) 中的第二个等式结合起来,得到
$$
B_{p}=\pm R_{1} /\left(R_{L} R_{S}\right)=\pm G_{2}, \text { say }
$$
如前所述,方程式中的符号。(3.4) 和 (3.5) 应为正数或负数。

电子工程代写|数字信号处理代写Digital Signal Processing代考|Impedance Matching at a Single Frequency

用于匹配 $R_{L}$ 至 $R_{S}$ 在单一频率 $\omega_{0}$ ,我们可以选择任一电感 $L_{s}$ 为了 $X_{s}$ 和一个电容 $C_{p}$ 为了 $B_{p}$ ,或电容 $C_{s}$ 为了 $X_{s}$ 和一个电感 $L_{p}$ 为了 $B_{p}$. 在第一种情况下,称为设计 1 (D1)
$$
L_{s}=R_{1} / \omega_{0} \text { and } C_{p}=G_{2} / \omega_{0}
$$
而对于替代设计,称为设计 2 (D2),
$$
C_{s}=1 /\left(R_{1} \omega_{0}\right) \text { and } L_{p}=1 /\left(G_{2} \omega_{0}\right)
$$
我们将在进一步的讨论中主要使用 D1,暗示 D2 同样适用,给出了另一组解决方案。

电子工程代写|数字信号处理代写Digital Signal Processing代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

电子工程代写|数字信号处理代写Digital Signal Processing代考|EE615

如果你也在 怎样代写数字信号处理Digital Signal Processing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数字信号处理器(DSP)将现实世界的信号,如语音、音频、视频、温度、压力或位置,经过数字化处理,然后以数学方式处理它们。数字信号处理器被设计用于快速执行数学功能,如 “加”、”减”、”乘 “和 “除”。

statistics-lab™ 为您的留学生涯保驾护航 在代写数字信号处理Digital Signal Processing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字信号处理Digital Signal Processing方面经验极为丰富,各种代写数字信号处理Digital Signal Processing相关的作业也就用不着说。

我们提供的数字信号处理Digital Signal Processing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
电子工程代写|数字信号处理代写Digital Signal Processing代考|EE615

电子工程代写|数字信号处理代写Digital Signal Processing代考|BWER of the Asymmetrical BTC

For a general transfer function of the form of Eq. (2.14), combining Eqs. (2.17) and (2.18) with Eq. (2.15), we get the following expression for the BWER of the asymmetrical BTC:
$$
\eta=(1+b+2 m) \sqrt{\frac{b+m}{(1+m)\left(b-m^{2}\right)}} \times \sqrt{\left(1-2 \varsigma^{2}\right)+\sqrt{\left(1-2 \varsigma^{2}\right)^{2}+1}}
$$
For MFM, $5=1 / \sqrt{2}$ and Eq. (2.24) becomes
$$
\eta=(1+b+2 m)\left(\frac{b+m}{(1+m)\left(b-m^{2}\right)}\right)^{\frac{1}{2}}
$$
Further, putting $\zeta=1 / \sqrt{2}$, we get
$$
2=\frac{(b+m)^{3}}{(1+m)\left(b+m^{2}\right)}
$$
Thus for MFM response, $b$ and $m$ have to satisfy Eq. (2.26) and for any such set, $\eta$ is given by Eq. (2.25). Combining Eqs. (2.25) with (2.26), the expression for $\eta$ gets further simplified to the following:
$$
\eta=\sqrt{2}\left(1+\frac{1+m}{b+m}\right)
$$
It is difficult to find, analytically, the variation of $b$ with $m$ from Eq. (2.26) or that of $\eta$ with $m$ from Eq. (2.27). One way is to simplify Eq. (2.26) to get a cubic equation in $b$ and to solve it; however, as is well known $[35,36]$, an explicit expression for $b$ in terms of $m$ cannot be written and one has to take recourse to numerical computations. An alternative, and a simpler way, is to introduce the variable $\beta=b / m$.

电子工程代写|数字信号处理代写Digital Signal Processing代考|Technology Simulation Results

Using Agilent’s Advanced Design System tools with models of United Microelectronics $130 \mathrm{~nm}$ (1P8M) technology, simulation studies were carried out for a few specific designs of Table $2.1$ with $R_{T}=50 \Omega$ and $C_{L}=5 \mathrm{pF}$. The results of simulation are rather disappointing and indicate that parasitics cause appreciable deviations from the ideal characteristics and that the distortions increase with increasing coefficient of coupling. Simulations with only the device parasitics indicate that the BTC parasitics have dominant effect on the deviations from maximal flatness and reduction of the BWER. Realizing the full potential of the theoretical results derived here will therefore have to wait for improved technologies for inductor fabrication in future.

A comprehensive theoretical analysis has been carried out in this chapter of the general asymmetrical BTC network used as the load of a wide-band amplifier, and it has been shown that the BWER achievable is unlimited, the limit being set only by practical considerations of tight coupling, large spreads in inductance and capacitance values, and of course, parasitics. Unlimited bandwidth has never been reported earlier, by either the BTC or any other network, and it is believed that the results of this chapter will set a new trend in the design of wide-band and ultra wide-band amplifiers.

电子工程代写|数字信号处理代写Digital Signal Processing代考|EE615

数字信号处理代考

电子工程代写|数字信号处理代写Digital Signal Processing代考|BWER of the Asymmetrical BTC

对于方程形式的一般传递函数。(2.14),结合方程式。(2.17)和 (2.18) 与等式。(2.15),我们得到以下不对称 BTC的BWER表达式:
$$
\eta=(1+b+2 m) \sqrt{\frac{b+m}{(1+m)\left(b-m^{2}\right)}} \times \sqrt{\left(1-2 \varsigma^{2}\right)+\sqrt{\left(1-2 \varsigma^{2}\right)^{2}+1}}
$$
对于 MFM, $5=1 / \sqrt{2}$ 和等式。(2.24) 变为
$$
\eta=(1+b+2 m)\left(\frac{b+m}{(1+m)\left(b-m^{2}\right)}\right)^{\frac{1}{2}}
$$
此外,把 $\zeta=1 / \sqrt{2}$ ,我们得到
$$
2=\frac{(b+m)^{3}}{(1+m)\left(b+m^{2}\right)}
$$
因此对于 MFM 响应,b和 $m$ 必须满足方程。(2.26)并且对于任何这样的集合, $\eta$ 由方程式给出。(2.25)。结合方程 式。(2.25) 和 (2.26),表达式为 $\eta$ 进一步简化为以下内容:
$$
\eta=\sqrt{2}\left(1+\frac{1+m}{b+m}\right)
$$
很难从分析上找到 $b$ 和 $m$ 从方程式。(2.26) 或 $\eta$ 和 $m$ 从方程式。(2.27)。一种方法是简化方程式。(2.26) 得到一个三 次方程 $b$ 并解决它;然而,众所周知 $[35,36]$ ,的显式表达式 $b$ 按照 $m$ 不能写,必须求助于数值计算。另一种更简单 的方法是引入变量 $\beta=b / m$.

电子工程代写|数字信号处理代写Digital Signal Processing代考|Technology Simulation Results

将安捷伦的高级设计系统工具与联微电子模型结合使用130 n米(1P8M) 技术,对 Table 的一些具体设计进行了仿真研究2.1和R吨=50哦和C大号=5pF. 仿真结果相当令人失望,并表明寄生效应会导致与理想特性的明显偏差,并且失真会随着耦合系数的增加而增加。仅使用器件寄生参数的模拟表明,BTC 寄生参数对最大平坦度的偏差和 BWER 的降低具有主要影响。因此,要充分发挥此处得出的理论结果的潜力,必须等待未来电感器制造技术的改进。

本章对用作宽带放大器负载的一般非对称 BTC 网络进行了全面的理论分析,结果表明可实现的 BWER 是无限的,该限制仅由严格的实际考虑来设定耦合、电感和电容值的大范围分布,当然还有寄生效应。BTC 或任何其他网络之前从未报道过无限带宽,相信本章的成果将开创宽带和超宽带放大器设计的新趋势。

电子工程代写|数字信号处理代写Digital Signal Processing代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

电子工程代写|数字信号处理代写Digital Signal Processing代考|ELEC3104

如果你也在 怎样代写数字信号处理Digital Signal Processing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数字信号处理器(DSP)将现实世界的信号,如语音、音频、视频、温度、压力或位置,经过数字化处理,然后以数学方式处理它们。数字信号处理器被设计用于快速执行数学功能,如 “加”、”减”、”乘 “和 “除”。

statistics-lab™ 为您的留学生涯保驾护航 在代写数字信号处理Digital Signal Processing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字信号处理Digital Signal Processing方面经验极为丰富,各种代写数字信号处理Digital Signal Processing相关的作业也就用不着说。

我们提供的数字信号处理Digital Signal Processing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
电子工程代写|数字信号处理代写Digital Signal Processing代考|ELEC3104

电子工程代写|数字信号处理代写Digital Signal Processing代考|Analysis of the General BTC

The small-signal equivalent circuit of Fig. $2.1$ is shown in Fig. 2.2, where $g_{m}$ is the transconductance of the NMOS transistor. In [16], this circuit was analysed by using the extra-element theorem [33] whereas in [17]. a much simpler analysis was carried out by using classical techniques.
In either case, the result obtained is the following:
$$
\begin{aligned}
Z_{T}=& V_{0} / I_{i}=R_{T} N(s) / D(s) \
N(s)=& s^{2} C_{c}\left(L_{a}+L_{b}+2 M\right)+s\left(\left(L_{b}+M\right) / R_{T}\right)+1 \
D(s)=& s^{4} C_{c} C_{L}\left(L_{a} L_{b}-M^{2}\right)+s^{3} C_{c} C_{L} R_{T}\left(L_{a}+L_{b}+2 M\right) \
&+s^{2}\left(C_{c}\left(L_{a}+L_{b}+2 M\right)+C_{L} L_{b}\right)+s C_{L} R_{T}+1
\end{aligned}
$$
The transfer impedance $Z_{T}$ is of the fourth order, and it is difficult to proceed further analytically. Following [16], we, therefore, convert it to a second-order one by forcing pole-zero cancellation, i.e. we write $$
D(s)=\left(p s^{2}+q s+1\right) N(s)
$$
and determine the constraints on the element values by equating the coefficients of powers of $s$ on both sides. Carrying out these steps, we get [16]
$$
\begin{gathered}
p=C_{L}\left(L_{a} L_{b}-M^{2}\right) /\left(L_{a}+L_{b}+2 M\right) \
q=C_{L} R_{T}-\frac{C_{L}\left(L_{a} L_{b}-M^{2}\right)\left(L_{b}+M\right)}{C_{c} R_{T}\left(L_{a}+L_{b}+2 M\right)^{2}} \
\frac{q\left(L_{b}+M\right)}{R_{T}}+p-C_{L} L_{b}
\end{gathered}
$$
and
$$
q=C_{L} R_{T}-\frac{L_{b}+M}{R_{T}}
$$
Comparing Eqs. (2.4) and (2.6) gives
$$
\frac{C_{c}}{C_{L}}=\frac{L_{a} L_{b}-M^{2}}{\left(L_{a}+L_{b}+2 M\right)^{2}}
$$

电子工程代写|数字信号处理代写Digital Signal Processing代考|Symmetrical BTC

For the symmetrical BTC, $b=1$, and Eqs. (2.15) and (2.16) simplify to the following:
$$
\omega_{3}=\frac{2}{C_{L} R_{T}} \sqrt{\frac{1+m}{1-m}}
$$
and
$$
2 \varsigma=\sqrt{\frac{1+m}{1-m}}
$$
With $b=1$, Eq. (2.9) gives $k=m$, and from Eq. (2.20), we get
$$
k=\frac{4 \varsigma^{2}-1}{4 \zeta^{2}+1}
$$
Putting $b=1$ in Eqs. (2.10) and (2.11), and using Eq. (2.21), we get
$$
L=\frac{C_{L} R_{T}^{2}}{4}\left(1+\frac{1}{4 \varsigma^{2}}\right) \text { and } C_{c}=C_{L} /\left(16 \varsigma^{2}\right) .
$$
These results agree with those derived by many authors earlier.
Now combine Eqs. (2.18) with (2.17) and then use Eqs. (2.19)-(2.21), along with the fact that $k=m$. The result is
$$
\eta=4 \varsigma \sqrt{\left(1-2 \varsigma^{2}\right)+\sqrt{\left(1-2 \varsigma^{2}\right)^{2}+1}}
$$
Equation (2.17) shows that as $\zeta$ increases from 0 to $1, \omega_{3}$ decreases monotonically from $(\sqrt{2}+1)^{1 / 2} \omega_{0}$ to $(\sqrt{2}-1)^{1 / 2} \omega_{0}$, passing through the value $\omega_{0}$ at $\zeta=1 / \sqrt{2}$.

电子工程代写|数字信号处理代写Digital Signal Processing代考|ELEC3104

数字信号处理代考

电子工程代写|数字信号处理代写Digital Signal Processing代考|Analysis of the General BTC

图 1 小信号等效电路2.1如图 $2.2$ 所示,其中 $g_{m}$ 是 NMOS 晶体管的跨导。在 [16] 中,该电路通过使用额外元素定 理 [33] 进行了分析,而在 [17] 中。使用经典技术进行了更简单的分析。
无论哪种情况,获得的结果如下:
$$
Z_{T}=V_{0} / I_{i}=R_{T} N(s) / D(s) N(s)=s^{2} C_{c}\left(L_{a}+L_{b}+2 M\right)+s\left(\left(L_{b}+M\right) / R_{T}\right)+1 D(s)=s^{4} C_{\text {}}
$$
传输阻抗 $Z_{T}$ 是四阶,很难进一步分析。因此,在 [16]之后,我们通过强制零极点抵消将其转换为二阶,即我们写
$$
D(s)=\left(p s^{2}+q s+1\right) N(s)
$$
并通过使的幂系数相等来确定对元素值的约束 $s$ 两侧。执行这些步骤,我们得到 [16]
$$
p=C_{L}\left(L_{a} L_{b}-M^{2}\right) /\left(L_{a}+L_{b}+2 M\right) q=C_{L} R_{T}-\frac{C_{L}\left(L_{a} L_{b}-M^{2}\right)\left(L_{b}+M\right)}{C_{c} R_{T}\left(L_{a}+L_{b}+2 M\right)^{2}} \frac{q\left(L_{b}+M\right)}{R_{T}}+p
$$

$$
q=C_{L} R_{T}-\frac{L_{b}+M}{R_{T}}
$$
比较方程式。( $2.4)$ 和 (2.6) 给出
$$
\frac{C_{c}}{C_{L}}=\frac{L_{a} L_{b}-M^{2}}{\left(L_{a}+L_{b}+2 M\right)^{2}}
$$

电子工程代写|数字信号处理代写Digital Signal Processing代考|Symmetrical BTC

对于对称 $\mathrm{BTC}, b=1$ ,和等式。 (2.15) 和 (2.16) 简化为:
$$
\omega_{3}=\frac{2}{C_{L} R_{T}} \sqrt{\frac{1+m}{1-m}}
$$

$$
2 \varsigma=\sqrt{\frac{1+m}{1-m}}
$$
和 $b=1$, 方程。(2.9) 给出 $k=m$ ,并从方程式。(2.20),我们得到
$$
k=\frac{4 \varsigma^{2}-1}{4 \zeta^{2}+1}
$$
推杆 $b=1$ 在方程式中。(2.10) 和 (2.11),并使用等式。(2.21),我们得到
$$
L=\frac{C_{L} R_{T}^{2}}{4}\left(1+\frac{1}{4 \varsigma^{2}}\right) \text { and } C_{c}=C_{L} /\left(16 \varsigma^{2}\right) .
$$
这些结果与许多作者之前得出的结果一致。
现在结合方程式。(2.18) 和 (2.17) 然后使用方程。(2.19)-(2.21),以及以下事实 $k=m$. 结果是
$$
\eta=4 \varsigma \sqrt{\left(1-2 \varsigma^{2}\right)+\sqrt{\left(1-2 \varsigma^{2}\right)^{2}+1}}
$$
等式 (2.17) 表明,如 $\zeta$ 从 0 增加到 $1, \omega_{3}$ 从单调递减 $(\sqrt{2}+1)^{1 / 2} \omega_{0}$ 至 $(\sqrt{2}-1)^{1 / 2} \omega_{0}$ ,通过值 $\omega_{0}$ 在 $\zeta=1 / \sqrt{2}$

电子工程代写|数字信号处理代写Digital Signal Processing代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写