## 电气工程代写|数字系统设计作业代写Digital System Design代考|COE328

statistics-lab™ 为您的留学生涯保驾护航 在代写数字系统设计Digital System Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字系统设计Digital System Design方面经验极为丰富，各种代写数字系统设计Digital System Design相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitter Antenna Losses

Several losses are associated with the antenna. Some of the possible losses, which may or may not be present in each antenna, are as follows:

• $L_{t r}$, radome losses on the transmitter antenna. The radome is the covering over the antenna that protects the antenna from the outside elements. Most antennas do not require a radome.
• $L_{t p o l}$, polarization mismatch losses. Many antennas are polarized (i.e., horizontal, vertical, or circular). This defines the spatial position or orientation of the electric and magnetic fields. A mismatch loss is due to the polarization of the transmitter antenna being spatially off with respect to the receiver antenna. The amount of loss is equal to the angle difference between them. For example, if both the receiver and transmitter antennas are vertically polarized, they would be at $90^{\circ}$ from the earth. If one is positioned at $80^{\circ}$ and the other is positioned at $100^{\circ}$, the difference is $20^{\circ}$. Therefore, the loss due to polarization would be
$$20 \log (\cos \theta)=20 \log (\cos 20)=0.54 \mathrm{~dB}$$
• $L_{t f o c}$, focusing loss or refractive loss. This is caused by imperfections in the shape of the antenna so that the energy is focused toward the feed. This is often a factor when the antenna receives signals at low elevation angles.
• $L_{\text {tpoint }}$, mispointed loss. This is caused by transmitting and receiving directional antennas that are not exactly lined up and pointed toward each other. Thus, the gains of the antennas do not add up without a loss of signal power.
• $L_{\text {tcon, }}$ conscan crossover loss. This loss is present only if the antenna is scanned in a circular search pattern, such as a conscan (conical scan) radar searching for a target. Conscan means that the antenna system is either electrically or mechanically scanned in a conical fashion or in a cone-shaped pattern. This is used in radar and other systems that desire a broader band of spatial coverage but must maintain a narrow beam width. This is also used for generating the pointing error for a tracking antenna.

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitted Effective Isotropic Radiated Power

An isotropic radiator is a theoretical radiator that assumes a point source radiating in all directions. Effective isotropic radiated power (EIRP) is the amount of power from a single point radiator that is required to equal the amount of power that is transmitted by the power amplifier, losses, and directivity of the antenna (antenna gain) in the direction of the receiver.

The EIRP provides a way to compare different transmitters. To analyze the output of an antenna, EIRP is used (Figure 1-2):
$$\operatorname{EIRP}=P_t-L_{t t}+G_t-L_{t o}$$
where
$P_t=$ transmitter power in $\mathrm{dBm}$
$L_{t t}=$ total negative losses in $\mathrm{dB}$; coaxial or waveguide line losses, switchers, circulators, antenna connections
$G_t=$ transmitter antenna gain in $\mathrm{dB}$ referenced to a isotropic antenna
$L_{t a}=$ total transmitter antenna losses in $\mathrm{dB}$
Effective radiated power (ERP) is another term used to describe the output power of an antenna. However, instead of comparing the effective power to an isotropic radiator, the power output of the antenna is compared to a dipole antenna. The relationship between EIRP and ERP is
$$\mathrm{EIRP}=\mathrm{ERP}+G_{\text {dipole }},$$
where $G_{\text {dipole }}$ is the gain of a dipole antenna, which is equal to approximately $2.14 \mathrm{~dB}$ (Figure 1-2). For example,
\begin{aligned} \mathrm{EIRP} &=10 \mathrm{dBm} \ \mathrm{ERP} &=\mathrm{EIRP}-G_{\text {dipole }}=10 \mathrm{dBm}-2.14 \mathrm{~dB}=7.86 \mathrm{dBm} \end{aligned}

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitter Antenna Losses

• $L_{t r}$ ，发射机天线上的天线罩损耗。天线罩是天线上的覆盖物，可保护天线免受外部元件的影响。大多数天线 不需要天线罩。
• $L_{t p o l}$ ，极化失配损失。许多天线是极化的（即水平、垂直或圆形）。这定义了电场和磁场的空间位置或方 向。失配损耗是由于发射器天线的极化相对于接收器天线在空间上偏离。损失量等于它们之间的角度差。例 如，如果接收器和发射器天线都是垂直极化的，它们将在 $90^{\circ}$ 来自地球。如果一个位于 $80^{\circ}$ 另一个位于 $100^{\circ}$ ， 区别是 $20^{\circ}$. 因此，极化引起的损耗为
$$20 \log (\cos \theta)=20 \log (\cos 20)=0.54 \mathrm{~dB}$$
• $L_{t f o c}$ ，聚焦损失或屈光损失。这是由天线形状的缺陷引起的，因此能量集中在馈源上。当天线以低仰角接收 信号时，这通常是一个因素。
• $L_{\text {tpoint }}$ ，误点损失。这是由于发射和接收定向天线末完全对齐并相互指向造成的。因此，天线的增益不会在 没有信号功率损失的情况下相加。
• $L_{\text {tcon, }}$ conscan 交叉损失。仅当以圆形搜索模式扫描天线时才会出现这种损失，例如搜索目标的 conscan (锥形扫描) 雷达。Conscan 意味着天线系统以雉形方式或以雉形图案进行电气或机械扫描。这用于雷达和 其他需要更宽的空间覆盖范围但必须保持窄波束宽度的系统。这也用于生成跟踪天线的指向误差。

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitted Effective Isotropic Radiated Power

EIRP 提供了一种比较不同发射机的方法。为了分析天线的输出，使用了 EIRP (图 1-2)：
$$\mathrm{EIRP}=P_t-L_{t t}+G_t-L_{t o}$$

$P_t=$ 发射机功率 $\mathrm{dBm}$
$L_{t t}=$ 总负损失 $\mathrm{dB} ;$ 同轴或波导线路损耗、开关、环行器、天线连接
$G_t=$ 发射机天线增益 $\mathrm{dB}$ 参考各向同性天线
$L_{t a}=$ 总发射机天线损耗 $\mathrm{dB}$

$$\mathrm{EIRP}=\mathrm{ERP}+G_{\text {dipole }},$$

$$\mathrm{EIRP}=10 \mathrm{dBm} \mathrm{ERP} \quad=\mathrm{EIRP}-G_{\text {dipole }}=10 \mathrm{dBm}-2.14 \mathrm{~dB}=7.86 \mathrm{dBm}$$

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

## 电气工程代写|数字系统设计作业代写Digital System Design代考|EE301

statistics-lab™ 为您的留学生涯保驾护航 在代写数字系统设计Digital System Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字系统设计Digital System Design方面经验极为丰富，各种代写数字系统设计Digital System Design相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitter Component Losses

Most transceiver systems contain RF components such as a circulator or a transmit/receive (T/R) switch that enable the transceiver to use the same antenna for both transmitting and receiving. Also, if the antenna arrays use multiple antennas, some of their components will interconnect the individual antenna elements. Since these elements have a loss associated with them, they need to be taken into account in the overall output power of the transmitter. These losses directly reduce the signal level or the power output of the transmitter. The component losses are labeled and are included in the analysis:
$L_{\text {tcomp }}=$ switchers, circulators, antenna connections
Whichever method is used, the losses directly affect the power output on a one-for-one basis. A $1 \mathrm{~dB}$ loss equals a $1 \mathrm{~dB}$ loss in transmitted power. Therefore, the losses after the final output power amplifier (PA) of the transmitter and the first amplifier (or low-noise amplifier [LNA]) of the receiver should be kept to a minimum. Each $\mathrm{dB}$ of loss in this path will either reduce the minimum detectable signal (MDS) by a dB or the transmitter gain will have to transmit a $\mathrm{dB}$ more power.

Since most transmitters are located at a distance from the antenna, the cable or waveguide connecting the transmitter to the antenna contains losses that need to be incorporated in the total power output:
$L_{t l l}=$ coaxial or waveguide line losses (in $\left.\mathrm{dB}\right)$
These transmitter line losses are included in the total power output analysis; a $1 \mathrm{~dB}$ loss equals a $1 \mathrm{~dB}$ loss in power output. Using larger diameter cables or higher quality cables can reduce the loss, which is a trade-off with cost. For example, heliax cables are used for very low-loss applications. However, they are generally more expensive and larger in diameter than standard cables. The total losses between the power amplifier and the antenna are therefore equal to
$$L_{t t}=L_{t l l}+L_{\text {tcomp }}$$
Another way to reduce the loss between the transmitter and the antenna is to locate the transmitter power amplifier as close to the antenna as possible. This will reduce the length of the cable, which reduces the overall loss in the transmitter.

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitter Antenna Gain

Most antennas experience gain because they tend to focus energy in specified directions compared with an ideal isotropic antenna, which radiates in all directions. Antennas do not amplify the signal power but focus the existing signal in a given direction. This is similar to a magnifying glass, which can be used to focus the sun rays in a specific direction, increasing the signal level at a single point (Figure 1-4).

A simple vertical dipole antenna experiences approximately $2.14 \mathrm{dBi}$ of gain compared with an isotropic radiator because it transmits most of the signal around the antenna, with very little of the signal transmitted directly up to the sky and directly down to the ground (Figure 1-5).
A parabolic dish radiator is commonly used at high frequencies to achieve gain by focusing the signal in the direction the antenna is pointing (Figure 1-6). The gain for a parabolic antenna is
$$G_t=10 \log \left[n(\pi D / \lambda)^2\right]$$
where
\begin{aligned} G_t &=\text { gain of the antenna (in dBi) } \ n &=\text { efficiency factor }<1 \ D &=\text { diameter of the parabolic dish } \ \lambda &=\text { wavelength } \end{aligned}

The efficiency factor is the actual gain of the antenna compared with the theoretical gain. This can happen when a parabolic antenna is not quite parabolic, when the surface of the antenna combined with the feed is not uniform, and when other anomalies occur in the actual implementation of the antenna system. Typically this ranges from $0.5$ to $0.8$, depending on the design and the frequency of operation.

Notice that the antenna gain increases both with increasing diameter and higher frequency (shorter wavelength). The gain of the antenna is a direct gain where a $1 \mathrm{~dB}$ gain equals a $1 \mathrm{~dB}$ improvement in the transmitter power output. Therefore, a larger gain will increase the range of the link. In addition, the more gain the antenna can produce, the less power the power amplifier has to deliver for the same range. This is another trade-off that needs to be considered to ensure the best design and the lowest cost for a given application.

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitter Component Losses

$L_{\text {tcomp }}=$ 切换器、循环器、天线连接

$$L_{t t}=L_{t l l}+L_{\text {tcomp }}$$

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Transmitter Antenna Gain

$$G_t=10 \log \left[n(\pi D / \lambda)^2\right]$$

$G_t=$ gain of the antenna (in dBi) $n=$ efficiency factor $<1 D=$ diameter of the parabolic

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

## 电气工程代写|数字系统设计作业代写Digital System Design代考|ECE4110

statistics-lab™ 为您的留学生涯保驾护航 在代写数字系统设计Digital System Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字系统设计Digital System Design方面经验极为丰富，各种代写数字系统设计Digital System Design相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Frequency of Operation

In a transceiver design, we first determine the radio frequency (RF) of operation. The frequency of operation depends on the following factors:

• RF availability: This is the frequency band that is available for use by a particular system and is dependent on the communications authority for each country. For example, in the United States it is specified by the Federal Communications Commission (FCC), and in the United Kingdom it is specified by the British Approvals Board for Telecommunications (BABT). These two groups have ultimate control over frequency band allocation. Other organizations that help to establish standards are the International Telecommunications Union Standardization Sector (ITU-T), the European Conference of Postal and Telecommunications Administrations (CEPT), and the European Telecommunications Standards Institute (ETSI).
• Cost: As the frequency increases, the components in the receiver tend to be more expensive. An exception to the rule is when there is a widely used frequency band, such as the cellular radio band, where supply and demand drive down the cost of parts and where integrated circuits are designed for specific applications. These are known as application-specific integrated circuits (ASICs).
• Range and antenna size: As a general rule, decreasing the frequency will also decrease the amount of loss between the transmitter and the receiver. This loss is mainly due to free-space attenuation and is calculated using the frequency or wavelength of the transmission. This results in an increase in range for line-of-sight applications or a decrease in the output power requirement, which would also affect cost. However, another factor that affects range is the ability of the signal to reflect or bounce off the atmosphere, mainly the ionosphere and sometimes the troposphere. For specific frequencies, this can increase the range tremendously. Amateur radio operators use frequencies that can bounce off the atmosphere and travel around the world with less than 100 watts of power. Also, the size of the antenna increases as the frequency decreases. Therefore, the size of the antenna might be too big for practical considerations and could also be a factor in the cost of the design.
• Customer specified: Oftentimes the frequency of operation is specified by the customer. If the application is for commercial applications, the frequency selection must follow the rules currently in place for that specific application to obtain the approval of the FCC and other agencies.
• Band congestion: Ideally, the frequency band selected is an unused band or serves very little purpose, especially with no high-power users in the band. This also needs to be approved by the FCC and other agencies. Generally the less used bands are very high, which increases the cost. Many techniques available today allow more users to operate successfully in particular bands, and some of these techniques will be discussed further in the book.

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Power from the Transmitter

The power from the transmitter $\left(P_t\right)$ is the amount of power output of the final stage of the power amplifier. For ease in the analysis of power levels, the power is specified in $\mathrm{dBm}$ or converted to $\mathrm{dBm}$ from milliwatts $(\mathrm{mW})$. The power in $\mathrm{mW}$ is converted to power in $\mathrm{dBm}$ by
$$P_{\mathrm{dbm}}=10 \log P_{\mathrm{mW}}$$
Therefore, $1 \mathrm{~mW}$ is equal to $0 \mathrm{dBm}$. The unit $\mathrm{dBm}$ is used extensively in the industry, and a good understanding of this term and other $\mathrm{dB}$ terms is important. The term $\mathrm{dBm}$ is actually a power level related to $1 \mathrm{~mW}$ and is not a loss or gain as is the term $\mathrm{dB}$.

A decibel $(\mathrm{dB})$ is a unit for expressing the ratio of two amounts of electric or acoustic signal power. The decibel is used to enable the engineer to calculate the resultant power level by simply adding or subtracting gains and losses instead of multiplying and dividing.
Gains and losses are expressed in $\mathrm{dB} . \mathrm{A} \mathrm{dB}$ is defined as a power ratio:
$$\mathrm{dB}=10 \log \left(P_o / P_i\right)$$
where
$P_i=$ the input power (in $\mathrm{mW}$ )
$P_o=$ the output power (in $\mathrm{mW}$ )

For example:
Given:
Amplifier power input $=0.15 \mathrm{~mW}=10 \log (0.15)=-8.2 \mathrm{dBm}$ Amplifier power gain $P_o / P_i=13=10 \log (13)=11.1 \mathrm{~dB}$
Calculate the power output:
Power output $=0.15 \mathrm{~mW} \times 13=1.95 \mathrm{~mW}$ using power and multiplication Power output (in $\mathrm{dBm}$ ) $=-8.2 \mathrm{dBm}+11.1 \mathrm{~dB}=2.9 \mathrm{dBm}$ using $\mathrm{dBm}$ and $\mathrm{dB}$ and addition
Note: $2.9 \mathrm{dBm}=10 \log (1.95)$
Another example of using $\mathrm{dBm}$ and $\mathrm{dB}$ is as follows:
In many applications, $\mathrm{dB}$ and $\mathrm{dBm}$ are misused, which can cause errors in the results. The unit $\mathrm{dB}$ is used for a change in power level, which is generally a gain or a loss. The unit $\mathrm{dBm}$ is used for absolute power; for example, $10 \log (1$ milliwatt $)=0 \mathrm{dBm}$. The unit $\mathrm{dBw}$ is also used for absolute power; for example, $10 \log (1 \mathrm{watt})=0 \mathrm{dBw}$. The terms $\mathrm{dBm}$ and $\mathrm{dBw}$ are never used for expressing a change in signal level. The following examples demonstrate this confusion.

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Frequency of Operation

• RF 可用性：这是可供特定系统使用的频段，取决于每个国家/地区的通信机构。例如，在美国由联邦通信委员会 (FCC) 指定，在英国由英国电信认证委员会 (BABT) 指定。这两组对频带分配具有最终控制权。其他帮助制定标准的组织包括国际电信联盟标准化部门 (ITU-T)、欧洲邮政和电信管理会议 (CEPT) 和欧洲电信标准协会 (ETSI)。
• 成本：随着频率的增加，接收器中的组件往往更昂贵。该规则的一个例外是当存在广泛使用的频段时，例如蜂窝无线电频段，供需降低了零件成本，并且集成电路是为特定应用设计的。这些被称为专用集成电路（ASIC）。
• 范围和天线尺寸：作为一般规则，降低频率也会减少发射器和接收器之间的损耗量。这种损耗主要是由于自由空间衰减造成的，并且是使用传输的频率或波长计算得出的。这导致视距应用范围的增加或输出功率要求的降低，这也会影响成本。然而，影响范围的另一个因素是信号反射或反射大气层的能力，主要是电离层，有时是对流层。对于特定频率，这可以极大地增加范围。业余无线电操作员使用的频率可以从大气层反弹并以不到 100 瓦的功率环游世界。此外，天线的尺寸随着频率的降低而增加。
• 客户指定：通常操作频率由客户指定。如果申请是用于商业应用，则频率选择必须遵循该特定应用的现行规则，以获得 FCC 和其他机构的批准。
• 频段拥塞：理想情况下，所选频段是未使用的频段或用途很少，尤其是频段内没有高功率用户。这也需要得到 FCC 和其他机构的批准。通常较少使用的频段非常高，这增加了成本。当今可用的许多技术允许更多用户在特定频段成功操作，其中一些技术将在本书中进一步讨论。

## 电气工程代写|数字系统设计作业代写Digital System Design代考|Power from the Transmitter

$$P_{\mathrm{dbm}}=10 \log P_{\mathrm{mW}}$$

$$\mathrm{dB}=10 \log \left(P_o / P_i\right)$$

$P_i=$ 输入功率 (在 $\left.\mathrm{mW}\right)$
$P_o=$ 输出功率 (在 $\mathrm{mW}$ )

$P_o / P_i=13=10 \log (13)=11.1 \mathrm{~dB}$

$=-8.2 \mathrm{dBm}+11.1 \mathrm{~dB}=2.9 \mathrm{dBm}$ 使用 $\mathrm{dBm}$ 和 $\mathrm{dB}$ 和补充

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

## 电子工程代写|数字系统设计作业代写Digital System Design代考|EE301

statistics-lab™ 为您的留学生涯保驾护航 在代写数字系统设计Digital System Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字系统设计Digital System Design方面经验极为丰富，各种代写数字系统设计Digital System Design相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电子工程代写|数字系统设计作业代写Digital System Design代考|POWER SIGNALS

The average power of a discrete time signal that is defined over the range $N_{1} \leq$ $n \leq N_{2}$ is defined as
$$P_{x}=\frac{1}{N_{2}-N_{1}+1} \sum_{n=N_{1}}^{N_{2}}|x(n)|^{2} .$$
Generally, if $N_{1} \rightarrow-\infty$ and/or $N_{2} \rightarrow \infty$, then
$$P_{x}=\lim {\substack{N{1} \rightarrow-\infty \ N_{2} \rightarrow \infty}} \frac{1}{N_{2}-N_{1}+1} \sum_{n=N_{1}}^{N_{2}}|x(n)|^{2} .$$
Note that the average power of a discrete time signal with infinite energy may be finite. Thus, while the energy of a discrete time signal, as defined in Eq. (2.37) may be infinite, the average power as defined in Eq. (2.42) may be finite. The definition of the average power applies to both real and complex signals because Eq. (2.42) uses the squared magnitude of $x(n)$ in the computation.

## 电子工程代写|数字系统设计作业代写Digital System Design代考|PERIODIC AND APERIODIC SIGNALS

A discrete time signal is periodic, with period $N$, if and only if [4]
$$x(n+N)=x(n) \quad \forall-\infty \leq n \leq \infty .$$
The smallest value of $N$ for which Eq. (2.43) holds is called the fundamental period. The signal is aperiodic if there is no value of $N$ which satisfies Eq. (2.43).
Observe that discrete time sinusoidal signals of the form
$$x(n)=A \sin \left(2 \pi f_{0} n\right)$$
are periodic if $f_{0}$ is a rational number that can be expressed as
$$f_{0}=\frac{k}{N}$$
whers both $k$ and $N$ are integers. If $f_{0}$ as given in Eq. (2.44) is not a rational number, then the corresponding sinusoidal signal is aperiodic.

The power of a periodic signal, with fundamental period $N$, can be computed as
$$P=\frac{1}{N} \sum_{n=0}^{N-1}|x(n)|^{2},$$
provided $x(n)$ is finite over the period $0 \leq n \leq N-1$. Alternatively, the energy of a periodic signal with infinite extent, is infinite because it has finite power over each period and its extent is infinite. Consequently, periodic signals are power signals [4].

## 电子工程代写|数字系统设计作业代写Digital System Design代考|POWER SIGNALS

$$P_{x}=\frac{1}{N_{2}-N_{1}+1} \sum_{n=N_{1}}^{N_{2}}|x(n)|^{2} .$$

$$P_{x}=\lim {N 1 \rightarrow-\infty} N{2} \rightarrow \infty \frac{1}{N_{2}-N_{1}+1} \sum_{n=N_{1}}^{N_{2}}|x(n)|^{2} .$$

## 电子工程代写|数字系统设计作业代写Digital System Design代考|PERIODIC AND APERIODIC SIGNALS

$$x(n+N)=x(n) \quad \forall-\infty \leq n \leq \infty .$$

$$x(n)=A \sin \left(2 \pi f_{0} n\right)$$

$$f_{0}=\frac{k}{N}$$

$$P=\frac{1}{N} \sum_{n=0}^{N-1}|x(n)|^{2},$$

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

## 电子工程代写|数字系统设计作业代写Digital System Design代考|ELEC2311

statistics-lab™ 为您的留学生涯保驾护航 在代写数字系统设计Digital System Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字系统设计Digital System Design方面经验极为丰富，各种代写数字系统设计Digital System Design相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电子工程代写|数字系统设计作业代写Digital System Design代考|REPRESENTING DISCRETE TIME SIGNALS

It is convenient to represent the values of the independent variable, for a discrete time signal, in terms of integer multiples of the sampling interval. For example, the sampling interval for a speech signal sampled at 8000 samples per second would be $T=125 \mu$. If the first sample occurs at time $t=0$, the second at $t=T$, the third at $2 T$, etc., then the time of each sample can be determined from its index $n$. The first sample occurs at $n=0$, the second sample at $n=T$, the third sample at $n=2 T$, etc. Thus, it is convenient to represent the value of the independent variable using the sampling interval, $T$, along with the index for the sample, $n$. For example, if a continuous time signal $x(t)$ was sampled using a sampling interval $T$, then the individual samples can be represented as $x(n T)$. This notation is typically shortened to the form $x(n)$ when the sampling is performed at regular intervals. The independent variable is therefore represented as the variable $n$ using this convention. This representation implies a normalization of the sampling interval to $T=1$ units. The impact of this normalization will be discussed later in this chapter.

There are several ways to represent a discrete time signal. Some of these ways are given below:

1. A table as given in Table $2.1$ and shown in Fig. 2.1,
2. A functional representation as given in Eq. (2.1) and also shown in Fig. 2.2,
$$x(n)=\left{\begin{array}{lll} 0 & \text { for } n<0 \\ (0.6)^{n} & \text { for } \quad 0 \leq n \leq 10 \\ 0 & \text { for } & n>10 \end{array}\right.$$
3. A sequence representation as given in Eq. (2.2) and shown in Fig. 2.3,
$$x(n)={-2,-1,1,5,3,-1,-3}$$
The up-arrow ( $\uparrow$ ) in Eq. (2.2) indicates the sample for $n=0$.

## 电子工程代写|数字系统设计作业代写Digital System Design代考|EVEN AND ODD SIGNALS

A signal is even if
$$x(-n)=x(n) .$$
Even signals are symmetric with respect to the origin $(n=0)$. The signal
$$s(n)=2 \cos (0.279 n)+\cos (0.813 n) \quad \forall-20 \leq n \leq 20$$
is an example of an even signal. This signal is shown in Fig. 2.8.
A signal is odd if
$$x(-n)=-x(-n) .$$
An odd signal is antisymmetric with respect to the origin. The signal
$$s(n)=2 \sin (0.381 n)+\sin (0.792 n) \quad \forall-20 \leq n \leq 20$$
is an example of an odd signal. This signal is shown in Fig. 2.9.

An arbitrary signal, $x(n)$, can be separated into its even and odd parts using the following equations:
\begin{aligned} x(n) &=x_{e}(n)+x_{o}(n), \ x_{e}(n) &=0.5[x(n)+x(-n)], \ x_{o}(n) &=0.5[x(n)-x(-n)] . \end{aligned}
This concept can be demonstrated by adding the even signal in Eq. (2.30), and shown in Fig. 2.8, to the odd signal in Eq. (2.33), and shown in Fig. 2.9, to obtain the signal which is neither even nor odd as shown in Fig. 2.10.

Fig. $2.11$ shows $x(-n)$ which is obtained by performing a left-right flip of the signal in Fig. 2.10.
Fig. $2.12$ shows the results of computing the even part of $x(n)$ using
$$x_{e}(n)=0.5[x(n)+x(-n)]$$
compared with the even signal in Fig. 2.8. The signals are the same (except for possible rounding errors during the computations).
Fig. $2.13$ shows the results of computing the odd part of $x(n)$ using
$$x_{\dot{o}}(n)=0.5[x(n)-x(-n)]$$
compared with the odd signal in Fig. 2.9. The signals are the same (except for possible rounding errors during the computations).

## 电子工程代写|数字系统设计作业代写Digital System Design代考|REPRESENTING DISCRETE TIME SIGNALS

1. 表中给出的表 $2.1$ 如图 $2.1$ 所示，
2. 方程式中给出的功能表示。(2.1) 也如图 $2.2$ 所示， $\$ \$$x(n)=l l e f t{ \begin{array}{lll}0 & \text { for } n<0 & \\ (0.6)^{n} & \text { for } 0 \leq n \leq 10 & \\ 0 & \text { for } & n>10\end{array} 【正确的。 \ \$$
3. 方程式中给出的序列表示。(2.2) 如图2.3所示，
$$x(n)=-2,-1,1,5,3,-1,-3$$
向上箭头 $(\uparrow)$ 在等式。(2.2) 表示样本为 $n=0$.

## 电子工程代写|数字系统设计作业代写Digital System Design代考|EVEN AND ODD SIGNALS

$$x(-n)=x(n) .$$

$$s(n)=2 \cos (0.279 n)+\cos (0.813 n) \quad \forall-20 \leq n \leq 20$$

$$x(-n)=-x(-n) .$$

$$s(n)=2 \sin (0.381 n)+\sin (0.792 n) \quad \forall-20 \leq n \leq 20$$

$$x(n)=x_{e}(n)+x_{o}(n), x_{e}(n)=0.5[x(n)+x(-n)], x_{o}(n)=0.5[x(n)-x(-n)] .$$

$$x_{e}(n)=0.5[x(n)+x(-n)]$$

$$x_{\dot{o}}(n)=0.5[x(n)-x(-n)]$$

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

## 电子工程代写|数字系统设计作业代写Digital System Design代考|ECE4110

statistics-lab™ 为您的留学生涯保驾护航 在代写数字系统设计Digital System Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字系统设计Digital System Design方面经验极为丰富，各种代写数字系统设计Digital System Design相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 电子工程代写|数字系统设计作业代写Digital System Design代考|DETERMINISTIC AND RANDOM SIGNALS

A deterministic signal is a function of one or more independent variables such as time, distance, position, temperature, and pressure. It can be uniquely determined by a well-defined process such as a mathematical expression of one or more independent variables, or by table look up. For example,
$$s(t)=3 \sin (2.1 \pi t+0.3198)$$
is a deterministic signal with independent variable $t$.
There are some important signals that cannot be uniquely represented by these methods, and therefore, they are not deterministic signals. Generally, speech is not considered to be a deterministic signal because it cannot be described functionally by a mathematical expression. However, a recorded segment of speech can be represented, to a high degree of accuracy, as the sum of several sinusoids of different amplitudes and frequencies such as [4]
$$s(t)=\sum_{k=1}^{N} A_{k}(t) \sin \left[2 \pi F_{k}(t) t+\theta_{k}(t)\right]$$
where $A_{k}(t)$ represents the amplitude of sinusoid $k$ at time $t, F_{k}(t)$ represents the frequency of sinusoid $k$ at time $t$, and $\theta_{k}(t)$ represents the phase of sinusoid $k$ at time $t$.

A signal that is determined in a random way and cannot be predicted ahead of time is a random signal. Statistical approaches are often used to analyze random signals. This text primarily covers deterministic signals.

## 电子工程代写|数字系统设计作业代写Digital System Design代考|ELEMENTARY TIME DOMAIN OPERATIONS

The three most basic operations for processing digital signals in the domain of the independent variable, such as the time domain, are scaling, delay, and addition. The scaling operation involves amplification or attenuation for continuous time signals and multiplication for digital signals. This operation can be represented as
$$y(t)=\alpha x(t)$$
for a continuous time system and by
$$y(n)=\alpha x(n)$$
for a discrete time system where $n$ is the sample number.
The delay operation generates a signal that is a delayed replica of the original signal. This can be represented by
$$y(t)=x\left(t-t_{0}\right)$$
for a continuous time signal where the signal is delayed by the amount $t_{0}$. The corresponding representation for the discrete time system is
$$y(n)=x(n-m)$$
where $m$ and $n$ are integers and the signal is delayed by $m$ samples.
Many applications involve two or more signals to generate a new signal. For example,
$$y(t)=x_{1}(t)+x_{2}(t)+x_{3}(t)$$
is a signal generated by the addition of three continuous time signals. Similarly,
$$y(n)=x_{1}(n)+x_{2}(n)+x_{3}(n)$$
is a signal generated by the addition of three discrete time signals.

## 电子工程代写|数字系统设计作业代写Digital System Design代考|DETERMINISTIC AND RANDOM SIGNALS

$$s(t)=3 \sin (2.1 \pi t+0.3198)$$

$$s(t)=\sum_{k=1}^{N} A_{k}(t) \sin \left[2 \pi F_{k}(t) t+\theta_{k}(t)\right]$$

## 电子工程代写|数字系统设计作业代写Digital System Design代考|ELEMENTARY TIME DOMAIN OPERATIONS

$$y(t)=\alpha x(t)$$

$$y(n)=\alpha x(n)$$

$$y(t)=x\left(t-t_{0}\right)$$

$$y(n)=x(n-m)$$

$$y(t)=x_{1}(t)+x_{2}(t)+x_{3}(t)$$

$$y(n)=x_{1}(n)+x_{2}(n)+x_{3}(n)$$

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。