数学代写|数学建模代写math modelling代考|A Model for Diabetes Mellitus
如果你也在 怎样代写数学建模Mathematical Modeling 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数学建模Mathematical Modeling是使用数学概念和语言对一个具体系统的抽象描述。建立数学模型的过程被称为数学建模。数学模型被用于自然科学(如物理学、生物学、地球科学、化学)和工程学科(如计算机科学、电气工程),以及非物理系统,如社会科学(如经济学、心理学、社会学、政治学)。使用数学模型来解决商业或军事行动中的问题是运筹学领域的一个重要部分。数学模型也被用于音乐、语言学、和哲学(例如,集中用于分析哲学)。
数学建模Mathematical Modeling可以有很多形式,包括动态系统、统计模型、微分方程或博弈论模型。这些和其他类型的模型可以重叠,一个特定的模型涉及各种抽象结构。一般来说,数学模型可能包括逻辑模型。在许多情况下,一个科学领域的质量取决于在理论方面开发的数学模型与可重复的实验结果的吻合程度。理论上的数学模型和实验测量结果之间缺乏一致性,往往导致更好的理论被开发出来,从而取得重要进展。
statistics-lab™ 为您的留学生涯保驾护航 在代写数学建模math modelling方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数学建模math modelling代写方面经验极为丰富,各种代写数学建模math modelling相关的作业也就用不着说。

数学代写|数学建模代写math modelling代考|A Model for Diabetes Mellitus
Let $x(t), y(t)$ be the blood sugar and insulin levels in the bloodstream at time $t$. The rate of change $d y / d t$ of the insulin level is proportional to $(i)$ the excess $x(t)-x_0$ of sugar in the blood over its fasting level, since this excess makes the pancreas secrete insulin into the bloodstream; (ii) the amount $y(t)$ of insulin, since insulin left to itself tends to decay at a rate proportional to its amount; and (iii) the insulin dose $d(t)$ injected per unit time. This gives
$$
\frac{d y}{d t}=a_1\left(x-x_0\right) H\left(x-x_0\right)-a_2 y+a_3 d(t)
$$
where $a_1, a_2, a_3$ are positive constants and $H(x)$ is a step function which takes the value unity when $x>0$ and takes the value zero otherwise. This occurs in Eqn. (95) because if the blood sugar level is less than $x_0$, there is no secretion of insulin from the pancreas.
Again the rate of change $d x / d t$ of sugar level is proportional to $(i)$ the product $x y$ since the higher the levels of sugar and insulin, the higher is the metabolism of sugar; (ii) $x_0-x$ since if the sugar level falls below fasting level, sugar is released from the stores to raise the sugar level to normal; (iii) $x-x_0$ since if $x>x_0$, there is a natural decay in sugar level proportional to its excess over the fasting level $(i v)$; and function of $t-t_0$, where $t_0$ is the time at which food is taken
$$
\frac{d x}{d t}=-b_1 x y+b_2\left(x_0-x\right) H\left(x_0-x\right)-b_3\left(x-x_0\right) H\left(x-x_0\right)+b_4 z\left(t-t_0\right)
$$
where a suitable form for $z\left(t-t_0\right)$ can be
$$
\begin{aligned}
z\left(t-t_0\right) & =0, tt_0
\end{aligned}
$$
Equations (95) and (96) give two simultaneous differential equations to determine $x(t)$ and $y(t)$. These equation can be numerically integrated.
数学代写|数学建模代写math modelling代考|Richardson’s Model for the Arms Race
Let $x(t), y(t)$ be the expenditures on arms by two countries $A$ and $B$, then the rate of change $d x / d t$ of the expenditure by the country $A$ has a term proportional to $y$, since the larger the expenditure in arms by $B$, the larger will be the rate of expenditure on arms by $A$. Similarly it has a term proportional to $(-x)$ since its own arms expenditure has an inhibiting effect on the rate of expenditure on arms by $A$. It may also contain a term independent of the expenditures depending on mutual suspicion or mutual goodwill. With these considerations, Richardson gave the model
$$
\frac{d x}{d t}=a y-m x+r, \frac{d y}{d t}=b x-n y+s
$$
Here $a, b, m, n$ are all $>0 . r$ and $s$ will be positive in the case of mutual suspicion and negative in the case of mutual goodwill.
A position of equilibrium $x_0, y_0$, if it exists, will be given by
$$
\begin{aligned}
& \begin{array}{l}
m x_0-a y_0-r=0 \
b x_0-n y_0+s=0
\end{array} \quad \text { or } \quad \frac{x_0}{-a s-n r}=\frac{y_0}{-b r-m s} \
& \frac{1}{-m n+a b} \
& x_0=\frac{a s+n r}{m n-a b}, \quad y_0=\frac{m s+b r}{m n-a b} \
&
\end{aligned}
$$
If $r, s$ are positive, a position of equilibrium exists if $a b<m n$. If $X=x-x_0, Y=y-y_0$, we get
$$
\frac{d X}{d t}=a Y-m X, \frac{d Y}{d t}=b X-n Y
$$
$X=A e^{\lambda t}, Y=B e^{\lambda t}$ will satisfy these equations if
$$
\left|\begin{array}{cc}
\lambda+m & -a \
-b & \lambda+n
\end{array}\right|=0, \lambda^2+\lambda(m+n)+m n-a b=0
$$

数学建模代写
数学代写|数学建模代写math modelling代考|A Model for Diabetes Mellitus
设$x(t), y(t)$为某一时刻血液中的血糖和胰岛素水平$t$。胰岛素水平的变化率$d y / d t$与血液中超过空腹水平的$(i)$过量$x(t)-x_0$成正比,因为过量的血糖会使胰腺分泌胰岛素进入血液;(ii)胰岛素的数量$y(t)$,因为留给胰岛素的胰岛素本身往往会以与其数量成比例的速度衰减;(三)单位时间注射胰岛素的剂量$d(t)$。这给出了
$$
\frac{d y}{d t}=a_1\left(x-x_0\right) H\left(x-x_0\right)-a_2 y+a_3 d(t)
$$
其中$a_1, a_2, a_3$是正常数,$H(x)$是阶跃函数,当$x>0$取值为单位,否则取值为零。这发生在Eqn。(95)因为如果血糖水平低于$x_0$,胰腺就不会分泌胰岛素。
糖类水平的变化率$d x / d t$与$(i)$产物成正比$x y$因为糖类和胰岛素的水平越高,糖的代谢就越高;(ii) $x_0-x$,因为如果血糖水平低于空腹水平,糖就会从储存中释放出来,使血糖水平恢复正常;(iii) $x-x_0$,因为如果$x>x_0$,糖水平的自然衰减与其超过禁食水平成正比$(i v)$;以及$t-t_0$的函数,其中$t_0$是进食的时间
$$
\frac{d x}{d t}=-b_1 x y+b_2\left(x_0-x\right) H\left(x_0-x\right)-b_3\left(x-x_0\right) H\left(x-x_0\right)+b_4 z\left(t-t_0\right)
$$
在哪里可以找到合适的$z\left(t-t_0\right)$表单
$$
\begin{aligned}
z\left(t-t_0\right) & =0, tt_0
\end{aligned}
$$
式(95)和式(96)给出了确定$x(t)$和$y(t)$的两个联立微分方程。这些方程可以进行数值积分。
数学代写|数学建模代写math modelling代考|Richardson’s Model for the Arms Race
设$x(t), y(t)$为两个国家的军备支出$A$和$B$,则该国家的军备支出变化率$d x / d t$$A$有一个与$y$成正比的项,因为军备支出$B$越大,军备支出比率$A$就越大。同样,它也有一个与$(-x)$成比例的项,因为它自己的军备支出对军备支出率的抑制作用为$A$。它还可能包含一个独立于取决于相互猜疑或相互善意的支出的术语。基于这些考虑,理查森给出了模型
$$
\frac{d x}{d t}=a y-m x+r, \frac{d y}{d t}=b x-n y+s
$$
这里$a, b, m, n$都是$>0 . r$和$s$在相互猜疑的情况下会是积极的,在相互善意的情况下会是消极的。
平衡位置$x_0, y_0$,如果存在,将由
$$
\begin{aligned}
& \begin{array}{l}
m x_0-a y_0-r=0 \
b x_0-n y_0+s=0
\end{array} \quad \text { or } \quad \frac{x_0}{-a s-n r}=\frac{y_0}{-b r-m s} \
& \frac{1}{-m n+a b} \
& x_0=\frac{a s+n r}{m n-a b}, \quad y_0=\frac{m s+b r}{m n-a b} \
&
\end{aligned}
$$
如果$r, s$为正,则存在一个平衡位置,如果$a b<m n$。如果$X=x-x_0, Y=y-y_0$,我们得到
$$
\frac{d X}{d t}=a Y-m X, \frac{d Y}{d t}=b X-n Y
$$
$X=A e^{\lambda t}, Y=B e^{\lambda t}$满足这些方程,如果
$$
\left|\begin{array}{cc}
\lambda+m & -a \
-b & \lambda+n
\end{array}\right|=0, \lambda^2+\lambda(m+n)+m n-a b=0
$$
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。