分类: 数据可视化代写

CS代写|数据可视化代写Data visualization代考|EDS240

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
CS代写|数据可视化代写Data visualization代考|EDS240

CS代写|数据可视化代写Data visualization代考|Human Resource Management

Human resource management (HRM) is the part of an organization that focuses on an organization’s recruitment, training, and retention of employees. With the increased use of analytics in business, HRM has become much more data-driven. Indeed, HRM is sometimes now referred to as “people analytics.” HRM professionals use data and analytical models to form high-performing teams, monitor productivity and employee performance, and ensure diversity of the workforce. Data visualization is an important component of HRM, as HRM professionals use data dashboards to monitor relevant data supporting their goal of having a high-performing workforce.
A key interest of HRM professionals is employee churn, or turnover in an organization’s workforce. When employees leave and others are hired, there is often a loss of productivity as positions go unfilled. Also, new employees typically have a training period and then must gain experience, which means employees will not be fully productive at the beginning of their tenure with the company. Figure $1.8$, a stacked column chart, is an example of a visual display of employee turnover. It shows gains and losses of employees by month. A stacked column chart is a column chart that shows part-to-whole comparisons, either over time or across categories. Different colors or shades of color are used to denote the different parts of the whole within a column. In Figure 1.8, gains in employees (new hires) are represented by positive numbers in darker blue and losses (people leaving the company) are presented as negative numbers and lighter blue bars. We see that January and July-October are the months during which the greatest numbers of employees left the company, and the months with the highest numbers of new hires are April through June.Visualizations like Figure $1.8$ can be helpful in better understanding and managing workforce fluctuations.

CS代写|数据可视化代写Data visualization代考|Marketing

Marketing is one of the most popular application areas of analytics. Analytics lis used for optimal pricing, markdown pricing for seasonal goods, and optimal allocation of marketing budget. Sentiment analysis using text data such as tweets, social networks to determine influence, and website analytics for understanding website traffic and sales, are just a few examples of how data visualization can be used to support more effective marketing.
Let us consider a software company’s website effectiveness. Figure $1.9$ shows a funnel chart of the conversion of website visitors to subscribers and then to renewal customers. A funnel chart is a chart that shows the progression of a numerical variable for various categories from larger to smaller values. In Figure 1.9, at the top of the funnel, we track $100 \%$ of the first-time visitors to the website over some period of time, for example, a six-month period. The funnel chart shows that of those original visitors, $74 \%$ return to the website one or more times after their initial visit. Sixty-one percent of the first-time visitors downloaded a 30-day trial version of the software, $47 \%$ eventually contacted support services, $28 \%$ purchased a one-year subscription to the software, and $17 \%$ eventually renewed their subscription. This type of funnel chart can be used to compare the conversion effectiveness of different website configurations, the use of bots, or changes in support services.

CS代写|数据可视化代写Data visualization代考|EDS240

数据可视化代考

CS代写|数据可视化代写Data visualization代考|Human Resource Management

人力资源管理 (HRM) 是组织的一部分,专注于组织的招聘、培训和留住员工。随着在业务中越来越多地使用分析,HRM 变得更加数据驱动。事实上,人力资源管理现在有时被称为“人员分析”。人力资源管理专业人员使用数据和分析模型来组建高绩效团队,监控生产力和员工绩效,并确保员工队伍的多样性。数据可视化是 HRM 的重要组成部分,因为 HRM 专业人员使用数据仪表板来监控相关数据,以支持他们拥有高绩效员工队伍的目标。
人力资源管理专业人士的一个主要兴趣是员工流失或组织劳动力的流动。当员工离开并雇用其他人时,由于职位空缺,通常会降低生产力。此外,新员工通常有一个培训期,然后必须获得经验,这意味着员工在公司任职之初不会充分发挥生产力。数字1.8,堆积柱形图,是员工流失率的可视化显示示例。它按月显示员工的得失。堆积柱形图是一种柱形图,显示了部分与整体的比较,无论是随着时间的推移还是跨类别的比较。不同的颜色或颜色深浅用于表示列内整体的不同部分。在图 1.8 中,员工(新员工)的收益用深蓝色的正数表示,损失(离开公司的人)用负数和浅蓝色条表示。我们看到,1 月和 7 月至 10 月是员工离职人数最多的月份,而新员工人数最多的月份是 4 月至 6 月。1.8有助于更好地理解和管理劳动力波动。

CS代写|数据可视化代写Data visualization代考|Marketing

营销是分析最流行的应用领域之一。分析列表用于优化定价、季节性商品的降价定价以及营销预算的优化分配。使用文本数据(例如推文、社交网络来确定影响力)和网站分析来了解网站流量和销售的情感分析只是数据可视化如何用于支持更有效营销的几个例子。
让我们考虑一个软件公司的网站有效性。数字1.9显示网站访问者转换为订阅者,然后再转换为续订客户的漏斗图。漏斗图是显示各种类别的数值变量从较大值到较小值的进展的图表。在图 1.9 中,在漏斗的顶部,我们跟踪100%在某个时间段内(例如,六个月的时间段)首次访问该网站的访问者。漏斗图显示了那些原始访问者,74%在初次访问后返回网站一次或多次。61% 的首次访问者下载了该软件的 30 天试用版,47%最终联系了支持服务,28%购买了一年的软件订阅,并且17%最终续订了他们的订阅。这种漏斗图可用于比较不同网站配置、机器人使用或支持服务变化的转化效果。

CS代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

CS代写|数据可视化代写Data visualization代考|INF552

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
CS代写|数据可视化代写Data visualization代考|INF552

CS代写|数据可视化代写Data visualization代考|Big Data

There is no universally accepted definition of big data. However, probably the most general definition of big data is any set of data that is too large or too complex to be handled by standard data-processing techniques using a typical desktop computer. People refer to the four $\mathrm{Vs}$ of big data:

  • volume-the amount of data generated
  • velocity-the speed at which the data are generated
  • variety-the diversity in types and structures of data generated
  • veracity-the reliability of the data generated
    Volume and velocity can pose a challenge for processing analytics, including data visualization. Special data management software such as Hadoop and higher capacity hardware (increased server or cloud computing) may be required. The variety of the data is handled by converting video, voice, and text data to numerical data, to which we can then apply standard data visualization techniques.
    In summary, the type of data you have will influence the type of graph you should use to convey your message. The zoo attendance data in Figure $1.1$ are time series data. We used a column chart in Figure $1.1$ because the numbers are the total attendance for each month, and we wanted to compare the attendance by month. The height of the columns allows us to easily compare attendance by month. Contrast Figure $1.1$ with Figure 1.4, which is also time series data. Here we have the value of the Dow Jones Index. These data are a snapshot of the current value of the DJI on the first trading day of each month. They provide what is essentially a time path of the value, and so we use a line graph to emphasize the continuity of time.

CS代写|数据可视化代写Data visualization代考|Data Visualization in Practice

Data visualization is used to explore and explain data and to guide decision making in all areas of business and science. Even the most analytically advanced companies such as Google, Uber, and Amazon rely heavily on data visualization. Consumer goods giant Procter \& Gamble (P\&G), the maker of household brands such as Tide, Pampers, Crest, and Swiffer, has invested heavily in analytics, including data visualization. P\&G has built what it calls the Business Sphere ${ }^{\mathrm{TM}}$ in more than 50 of its sites around the world. The Business Sphere is a conference room with technology for displaying data visualizations on its walls. The Business Sphere displays data and information P\&G executives and managers can use to make better-informed decisions. Let us briefly discuss some ways in which the functional areas of business, engineering, science, and sports use data visualization.

Accounting is a data-driven profession. Accountants prepare financial statements and examine financial statements for accuracy and conformance to legal regulations and best practices, including reporting required for tax purposes. Data visualization is a part of every accountant’s tool kit. Data visualization is used to detect outliers that could be an indication of a data error or fraud. As an example of data visualization in accounting, let us consider Benford’s Law.
Benfords Law, also known as the First-Digit Law, gives the expected probability that the first digit of a reported number takes on the values one through nine, based on many real-life numerical data sets such as company expense accounts. A column chart displaying Benford’s Law is shown in Figure 1.5. We have rounded the probabilities to four digits. We see, for example, that the probability of the first digit being a 1 is $0.3010$. The probability of the first digit being a 2 is $0.1761$, and so forth.

Benford’s Law can be used to detect fraud. If the first digits of numbers in a data set do not conform to Bedford’s Law, then further investigation of fraud may be warranted. Consider the accounts payable (money owed the company) for Tucker Software. Figure $1.6$ is a clustered column chart (also known as a side-by-side column chart). A clustered column chart is a column chart that shows multiple variables of interest on the same chart, with the different variables usually denoted by different colors or shades of a color. In Figure 1.6, the two variables are Benford’s Law probability and the first digit data for a random sample of 500 of Tucker’s accounts payable entries. The frequency of occurrence in the data is used to estimate the probability of the first digit for all of Tucker’s accounts payable entries. It appears that there are an inordinate number of first digits of 5 and 9 and a lower than expected number of first digits of 1 . These might warrant further investigation by Tucker’s auditors.

CS代写|数据可视化代写Data visualization代考|INF552

数据可视化代考

CS代写|数据可视化代写Data visualization代考|Big Data

大数据没有普遍接受的定义。然而,大数据最一般的定义可能是任何太大或太复杂而无法通过使用典型台式计算机的标准数据处理技术处理的数据集。人们指的是四在s大数据:

  • volume——产生的数据量
  • 速度——生成数据的速度
  • 多样性——生成的数据类型和结构的多样性
  • 准确性——生成的数据的可靠性
    数量和速度可能对处理分析(包括数据可视化)提出挑战。可能需要特殊的数据管理软件,例如 Hadoop 和更高容量的硬件(增加的服务器或云计算)。通过将视频、语音和文本数据转换为数字数据来处理各种数据,然后我们可以对其应用标准数据可视化技术。
    总之,您拥有的数据类型将影响您应该用来传达信息的图表类型。动物园出勤数据如图1.1是时间序列数据。我们在图中使用了柱形图1.1因为这些数字是每个月的总出勤率,我们想按月比较出勤率。列的高度使我们可以轻松地按月比较出勤率。对比图1.1图 1.4 也是时间序列数据。这里我们有道琼斯指数的价值。这些数据是每个月第一个交易日 DJI 当前价值的快照。它们提供了本质上是价值的时间路径,因此我们使用折线图来强调时间的连续性。

CS代写|数据可视化代写Data visualization代考|Data Visualization in Practice

数据可视化用于探索和解释数据,并指导所有商业和科学领域的决策。即使是分析能力最先进的公司,如谷歌、优步和亚马逊,也严重依赖数据可视化。消费品巨头宝洁 (P\&G) 是 Tide、帮宝适、佳洁士和 Swiffer 等家居品牌的制造商,它在数据可视化等分析方面投入了大量资金。宝洁建立了它所谓的商业领域吨米在其全球 50 多个站点中。Business Sphere 是一个会议室,其墙壁上显示数据可视化技术。业务领域显示宝洁高管和经理可以用来做出更明智决策的数据和信息。让我们简要讨论商业、工程、科学和体育等职能领域使用数据可视化的一些方式。

会计是一个数据驱动的职业。会计师准备财务报表并检查财务报表的准确性和是否符合法律法规和最佳实践,包括出于税收目的所需的报告。数据可视化是每个会计师工具包的一部分。数据可视化用于检测可能表明数据错误或欺诈的异常值。作为会计中数据可视化的一个例子,让我们考虑一下本福德定律。
本福德定律,也称为第一位定律,根据许多现实生活中的数字数据集(例如公司费用账户)给出了报告数字的第一位数字取值 1 到 9 的预期概率。显示本福德定律的柱形图如图 1.5 所示。我们将概率四舍五入为四位数。例如,我们看到第一个数字是 1 的概率是0.3010. 第一个数字是 2 的概率是0.1761,等等。

本福德定律可用于检测欺诈。如果数据集中数字的前几位不符合贝德福德定律,则可能需要对欺诈行为进行进一步调查。考虑一下 Tucker Software 的应付账款(欠公司的钱)。数字1.6是聚集柱形图(也称为并排柱形图)。聚集柱形图是在同一个图表上显示多个感兴趣的变量的柱形图,不同的变量通常用不同的颜色或颜色的深浅来表示。在图 1.6 中,这两个变量是 Benford 定律概率和随机样本的 500 个 Tucker 应付账款分录的第一位数据。数据中出现的频率用于估计 Tucker 的所有应付账款条目的第一位数字的概率。似乎有过多的第一位数字 5 和 9 以及低于预期的第一位数字 1 。这些可能需要 Tucker 的审计师进一步调查。

CS代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

CS代写|数据可视化代写Data visualization代考|BINF7003

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
CS代写|数据可视化代写Data visualization代考|BINF7003

CS代写|数据可视化代写Data visualization代考|Data Visualization for Exploration

Data visualization is a powerful tool for exploring data to more easily identify patterns, recognize anomalies or irregularities in the data, and better understand the relationships between variables. Our ability to spot these types of characteristics of data is much stronger and quicker when we look at a visual display of the data rather than a simple listing.
As an example of data visualization for exploration, let us consider the zoo attendance data shown in Table $1.1$ and Figure 1.1. These data on monthly attendance to a zoo can be found in the file Zoo. Comparing Table $1.1$ and Figure 1.1, observe that the pattern in the data is more detectable in the column chart of Figure $1.1$ than in a table of numbers. A column chart shows numerical data by the height of the column for a variety of categories or time periods. In the case of Figure 1.1, the time periods are the different months of the year.

Our intuition and experience tells us that we would expect zoo attendance to be highest in the summer months when many school-aged children are out of school for summer break. Figure $1.1$ confirms this, as the attendance at the zoo is highest in the summer months of June, July, and August. Furthermore, we see that attendance increases gradually each month from February through May as the average temperature increases, and attendance gradually decreases each month from September through November as the average temperature decreases. But why does the zoo attendance in December and January not follow these patterns? It turns out that the zoo has an event known as the “Festival of Lights” that runs from the end of November through early January. Children are out of school during the last half of December and early January for the holiday season, and this leads to increased attendance in the evenings at the zoo despite the colder winter temperatures.
Visual data exploration is an important part of descriptive analytics. Data visualization can also be used directly to monitor key performance metrics, that is, measure how an organization is performing relative to its goals. A data dashboard is a data visualization tool that gives multiple outputs and may update in real time. Just as the dashboard in your car measures the speed, engine temperature, and other important performance data as you drive, corporate data dashboards measure performance metrics such as sales, inventory levels, and service levels relative to the goals set by the company. These data dashboards alert management when performances deviate from goals so that corrective actions can be taken.
Visual data exploration is also critical for ensuring that model assumptions hold in predictive and prescriptive analytics. Understanding the data before using that data in modeling builds trust and can be important in determining and explaining which type of model is appropriate.

CS代写|数据可视化代写Data visualization代考|Data Visualization for Explanation

Data visualization is also important for explaining relationships found in data and for explaining the results of predictive and prescriptive models. More generally, data visualization is helpful in communicating with your audience and ensuring that your audience understands and focuses on your intended message.

Let us consider the article, “Check Out the Culture Before a New Job,” which appeared in The Wall Street Journal. ${ }^3$ The article discusses the importance of finding a good cultural fit when seeking a new job. Difficulty in understanding a corporate culture or misalignment with that culture can lead to job dissatisfaction. Figure $1.3$ is a re-creation of a bar chart that appeared in this article. A bar chart shows a summary of categorical data using the length of horizontal bars to display the magnitude of a quantitative variable.

The chart shown in Figure $1.3$ shows the percentage of the 10,002 survey respondents who listed a factor as the most important in seeking a job. Notice that our attention is drawn to the dark blue bar, which is “Company culture” (the focus of the article). We immediately see that only “Salary and bonus” is more frequently cited than “Company culture.” When you first glance at the chart, the message that is communicated is that corporate culture is the second most important factor cited by job seekers. And as a reader, based on that message, you then decide whether the article is worth reading.

CS代写|数据可视化代写Data visualization代考|BINF7003

数据可视化代考

CS代写|数据可视化代写Data visualization代考|Data Visualization for Exploration

数据可视化是一种强大的工具,用于探索数据以更轻松地识别模式、识别数据中的异常或不规则性以及更好地理解变量之间的关系。当我们查看数据的可视化显示而不是简单的列表时,我们发现这些类型的数据特征的能力要强得多、更快。
作为探索的数据可视化示例,让我们考虑表中所示的动物园出勤数据1.1图 1.1。这些关于动物园每月出勤人数的数据可以在文件 Zoo 中找到。比较表1.1和图1.1,观察数据中的模式在图的柱形图中更容易察觉1.1比在数字表中。柱形图按柱高显示各种类别或时间段的数值数据。在图 1.1 的情况下,时间段是一年中的不同月份。

我们的直觉和经验告诉我们,当许多学龄儿童放暑假时,我们预计动物园的出勤率会在夏季最高。数字1.1证实了这一点,因为动物园的出勤率在 6 月、7 月和 8 月的夏季月份最高。此外,我们看到从 2 月到 5 月,随着平均温度的升高,每个月的出勤率逐渐增加,而从 9 月到 11 月,随着平均温度的降低,出勤率每个月都在逐渐减少。但为什么 12 月和 1 月的动物园出勤率不遵循这些模式?原来,动物园有一个被称为“灯光节”的活动,从 11 月底一直持续到 1 月初。孩子们在 12 月下半月和 1 月初的假期期间不上学,这导致尽管冬季气温较低,但动物园晚上的出勤人数有所增加。
可视化数据探索是描述性分析的重要组成部分。数据可视化还可以直接用于监控关键绩效指标,即衡量组织相对于其目标的绩效。数据仪表板是一种数据可视化工具,可提供多种输出并可实时更新。就像您汽车中的仪表板在您驾驶时测量速度、发动机温度和其他重要性能数据一样,公司数据仪表板测量与公司设定的目标相关的销售、库存水平和服务水平等绩效指标。当绩效偏离目标时,这些数据仪表板会提醒管理层,以便采取纠正措施。
可视化数据探索对于确保模型假设适用于预测性和规范性分析也至关重要。在建模中使用数据之前了解数据可以建立信任,并且对于确定和解释哪种模型是合适的很重要。

CS代写|数据可视化代写Data visualization代考|Data Visualization for Explanation

数据可视化对于解释数据中发现的关系以及解释预测和规范模型的结果也很重要。更一般地说,数据可视化有助于与您的受众交流并确保您的受众理解并关注您的预期信息。

让我们考虑一下发表在《华尔街日报》上的文章“在新工作之前检查文化”。3这篇文章讨论了在寻找新工作时找到良好文化契合度的重要性。难以理解企业文化或与该文化不一致会导致工作不满。数字1.3是本文中出现的条形图的重新创建。条形图显示分类数据的摘要,使用水平条的长度来显示定量变量的大小。

如图所示的图表1.3显示了 10,002 名受访者中将某个因素列为求职最重要因素的百分比。请注意,我们的注意力被吸引到深蓝色条上,即“公司文化”(本文的重点)。我们立即看到只有“薪水和奖金”比“公司文化”更频繁地被引用。当您第一眼看到图表时,传达的信息是企业文化是求职者引用的第二个最重要的因素。作为读者,根据该信息,您可以决定这篇文章是否值得一读。

CS代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|INFO2001

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|INFO2001

统计代写|数据可视化代写Data visualization代考|Another Asymmetry

There is still one more small, but nagging, problem with this description of Galton’s development of regression and the idea of correlation. In Figure 6.13, which shows Galton’s sweet pea data, we were careful to plot the size of child seeds on the vertical $y$ axis against that of their parent seeds on the horizontal $x$ axis, as is the modern custom for a scatterplot, whose goal is to show how $y$ depends on, or varies with, $x$. Modern statistical methods that flow from Galton and Pearson are all about directional relationships, and they try to predict $y$ from $x$, not vice-versa. It makes sense to ask how a child’s height is related to that of its parents, but it stretches the imagination to go in the reverse direction and contemplate how a child’s height might influence that of its parents.

So, why didn’t Galton put child height on the $y$ axis and parent height on the $x$ axis in Figure 6.16, as one would do today? One suggestion is that such graphs were in their infancy, so the convention of plotting the outcome variable on the ordinate had not yet been established. Yet in Playfair’s timeseries graphs (Plate 10) and in all other not-quite-scatterplots such as Halley’s (Figure 6.2), the outcome variable was always shown on the $y$ axis.

The answer is surely that Galton’s Figure $6.16$ started out as a table, listing mid-parent heights in the rows and heights of children in the columns. Parent height was the first grouping variable, and he tallied the heights of their children in the columns.

In a table, the rows are typically displayed in increasing order (of $y$ ) from top to bottom; a plot does the reverse, showing increasing values of $y$ from bottom to top. Hence, it seems clear that Galton constructed his Table I (Figure 6.14) and figures based on it (Figure $6.15$ and Figure 6.16) as if he thought of them as plots.

统计代写|数据可视化代写Data visualization代考|Some Remarkable Scatterplots

As Galton’s work shows, scatterplots had advantages over earlier graphic forms: the ability to see clusters, patterns, trends, and relations in a cloud of points. Perhaps most importantly, it allowed the addition of visual annotations (point symbols, lines, curves, enclosing contours, etc.) to make those relationships more coherent and tell more nuanced stories. This $2 \mathrm{D}$ form of the scatterplot allows these higher-level visual explanations to be placed firmly in the foreground. John Tukey later expressed this as, “The greatest value of a picture is when it forces us to notice what we never expected to see” (1977, p. vi).

In the first half of the twentieth century, data graphics entered the mainstream of science, and the scatterplot soon became an important tool in new discoveries. Two short examples must serve to illustrate applications in physical science and economics.

One key feature was the idea that discovery of something interesting could come from the perception-and understanding-of classifications of objects based on clusters, groupings, and patterns of similarity, rather than direct relations, linear or nonlinear. Observations shown in a scatterplot could belong to different groups, revealing other laws. The most famous example concerns the Hertzsprung-Russell (HR) diagram, which revolutionized astrophysics.
The original version of the Hertzsprung-Russell diagram, shown here in Figure 6.17, is not a graph of great beauty, but nonetheless it radically changed thinking in astrophysics by showing that scatterplots of measurements of stars could lead to a new understanding of stellar evolution.

Astronomers had long noted that stars varied, not only in brightness (luminosity), but also in color, from blue-white to orange, yellow, and red. But until the early 1900 s, they had no general way to classify them or interpret variations in color. In 1905, the Danish astronomer Ejnar Hertzsprung presented tables of luminosity and star color. He noted some apparent correlations and trends, but the big picture-an interpretable classification, leading to theory-was lacking, probably because his data were displayed in tables.

统计代写|数据可视化代写Data visualization代考|INFO2001

数据可视化代考

统计代写|数据可视化代写数据可视化代考|另一种不对称


在对高尔顿发展的回归和相关概念的描述中,还有一个小而恼人的问题。在图6.13中,显示了Galton的甜豌豆数据,我们小心地在垂直轴$y$上绘制了子种子的大小,在水平轴$x$上绘制了父种子的大小,这是现代散点图的习惯,其目的是显示$y$如何依赖于$x$,或如何随变化。来自高尔顿和皮尔森的现代统计方法都是关于方向性关系的,它们试图从$x$预测$y$,而不是反之。问孩子的身高与父母的身高有什么关系是有道理的,但反过来思考孩子的身高会如何影响父母的身高,则是在拓展想象力


那么,为什么Galton不像今天的人那样,在图6.16中把子身高放在$y$轴上,把父身高放在$x$轴上呢?一个建议是,这样的图表还处于初级阶段,所以在纵坐标上绘制结果变量的惯例还没有建立起来。然而,在Playfair的时间序列图(图10)和所有其他非完全散点图(如Halley的图6.2)中,结果变量总是显示在$y$轴上


答案肯定是Galton的图$6.16$一开始是一个表,列中列中列父高。父母的身高是第一个分组变量,他在列中统计了他们的孩子的身高


在表中,行通常按递增顺序($y$)从上到下显示;另一张图则相反,显示$y$的值从下往上递增。因此,高尔顿根据表一(图6.14)和图(图$6.15$和图6.16)构建了他的表一,似乎把它们看作是图

统计代写|数据可视化代写数据可视化代考|一些显著的散点图


Galton的工作表明,散点图比早期的图形形式有优势:能够在点云中看到集群、模式、趋势和关系。也许最重要的是,它允许添加视觉注释(点符号、线、曲线、外围轮廓等),使这些关系更连贯,讲述更微妙的故事。这种$2 \mathrm{D}$形式的散点图可以让这些更高层次的视觉解释牢牢地放在前景中。约翰·杜克(John Tukey)后来将其表达为:“一幅画的最大价值在于它迫使我们注意到我们从未期望看到的东西”(1977,p. vi)


在20世纪上半叶,数据图形进入了科学的主流,散点图很快成为新发现的重要工具。必须用两个简短的例子来说明在物理科学和经济学中的应用


一个关键的特点是,发现有趣的东西可以来自对基于群集、分组和相似模式的对象分类的感知和理解,而不是直接的关系、线性或非线性。在散点图中显示的观察结果可能属于不同的组,揭示了其他的规律。最著名的例子是赫茨普林-罗素(HR)图,它彻底改变了天体物理学。图6.17所示的hertzspring – russell图的原始版本并不是一个非常漂亮的图,但它从根本上改变了天体物理学的思维,表明了恒星测量的散点图可以导致对恒星演化的新理解


天文学家早就注意到,恒星不仅在亮度(光度)上变化,而且在颜色上也有变化,从蓝白色到橙色、黄色和红色。但直到20世纪初,他们还没有一个通用的方法来对它们进行分类或解释颜色的变化。1905年,丹麦天文学家埃纳尔·赫茨斯普朗提出了光度和恒星颜色的表格。他注意到一些明显的相关性和趋势,但缺乏一个可解释的分类,从而形成理论,这可能是因为他的数据是用表格显示的

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|STAT1100

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|STAT1100

统计代写|数据可视化代写Data visualization代考|Francis Galton and the Idea of Correlation

Francis Galton [1822-1911] was among the first to show a purely empirical bivariate relation in graphical form using actual data with his work on questions of heritability of traits. He began with plots showing the relationship between physical characteristics of people (head circumference and height) or between parents and their offspring, as a means to study the association and inheritance of traits: Do tall people have larger heads than average? Do tall parents have taller than average children?

Inspecting and calculating from his graphs, he discovered a phenomenon he called “regression toward the mean,” and his work on these problems can be considered to be the foundation of modern statistical methods. His insight from these diagrams led to much more: the ideas of correlation and linear regression; the bivariate normal distribution; and eventually to nearly all of classical statistical linear models (analysis of variance, multiple regression, etc.).
The earliest known example is a chart of head circumference compared to stature from Galton’s notebook (circa 1874) “Special Peculiarities,” shown in Figure 6.11. ${ }^{16}$ In this hand-drawn chart, the intervals of height are shown horizontally against head circumference vertically. The entries in the body are the tallies in the pairs of class intervals. Galton included the total counts of height and head circumference in the right and bottom margins and drew smooth curves to represent their frequency distributions. The conceptual origin of this chart as a table rather than a graph can be seen in the fact that the smallest values of the two variables are shown at the top left (first row and first column), rather than in the bottom right, as would be more natural in a graph. One may argue that Galton’s graphic representations of bivariate relations were both less and more than true scatterplots of data, as these are used today. They are less because at first glance they look like little more than tables with some graphic annotations. They are more because he used these as devices to calculate and reason with. ${ }^{17} \mathrm{He}$ did this because the line of regression he sought was initially defined as the trace of the mean of the vertical variable $y$ as the horizontal variable $x$ varied $^{18}$ (what we now think of as the conditional mean function, $\mathcal{E}(y \mid x)$ ), and so required grouping at least the $x$ variable into class intervals. Galton’s displays of these data were essentially graphic transcriptions of these tables, using count-symbols $(/, / /, / / /, \ldots)$ or numbers to represent the frequency in each cell-what in 1972 the Princeton polymath John Tukey called “semi-graphic displays,” making them a visual chimera: part table, part plot.

统计代写|数据可视化代写Data visualization代考|Galton’s Elliptical Insight

Galton’s next step on the problem of filial correlation and regression turned out to be one of the most important in the history of statistics. In 1886, he published a paper titled “Regression Towards Mediocrity in Hereditary Stature” containing the table shown in Figure 6.14. The table records the frequencies of the heights of 928 adult children born to 205 pairs of fathers and mothers, classified by the average height of their father and mother (“mid-parent” height).$^{22}$

If you look at this table, you may see only a table of numbers with larger values in the middle and some dashes (meaning 0 ) in the upper left, and bottom right corners. But for Galton, it was something he could compute with, both in his mind’s eye and on paper.

I found it hard at first to catch the full significance of the entries in the table, which had curious relations that were very interesting to investigate. They came out distinctly when I “smoothed” the entries by writing at each intersection of a horizontal column with a vertical one, the sum of the entries in the four adjacent squares, and using these to work upon. (Galton, 1886, p. 254)

Consequently, Galton first smoothed the numbers in this table, which he did by the simple step of summing (or averaging) each set of four adjacent cells. We can imagine that he wrote that average number larger in red ink, exactly at the intersection of these four cells. When he had completed this task, we can imagine him standing above the table with a different pen and trying to connect the dots-to draw curves, joining the points of approximately equal frequency. We tried to reproduce these steps in Figure 6.15, except that we did the last step mechanically, using a computer algorithm, whereas Galton probably did it by eye and brain, in the manner of Herschel, with the aim that the resulting curves should be gracefully smooth.

统计代写|数据可视化代写Data visualization代考|STAT1100

数据可视化代考

统计代写|数据可视化代写数据可视化代考|Francis Galton和相关性的思想


Francis Galton[1822-1911]是第一个使用实际数据以图形形式展示纯经验二元关系的人之一,他的工作涉及性状的遗传力问题。他从展示人的身体特征(头围和身高)之间的关系,或父母和他们的后代之间的关系的图表开始,作为一种研究特征的关联和遗传的手段:高个子的人的头比普通人大吗?个子高的父母生的孩子比一般人高吗?


从他的图表中检查和计算,他发现了一种被他称为“趋均数回归”的现象,他对这些问题的研究可以被认为是现代统计方法的基础。他从这些图表中得出的见解带来了更多:相关性和线性回归的思想;二元正态分布;并最终对几乎所有的经典线性统计模型(方差分析、多元回归等)进行了分析。已知最早的例子是高尔顿笔记本上的头围与身高对比图(约1874年)。“特殊特性”如图6.11所示。${ }^{16}$在这张手绘的图表中,身高的间隔水平地与头围垂直地对比。主体中的条目是类间隔对的计数。Galton将身高和头围的总数包括在右侧和底部的空白中,并画出光滑的曲线来表示它们的频率分布。这张图表的概念起源是表格而不是图形,这可以从两个变量的最小值显示在左上角(第一行和第一列),而不是显示在右下角(在图形中更自然)这一事实中看出。有人可能会说,高尔顿对二元关系的图形表示既不是真实的数据散点图,也不是真实的数据散点图,就像今天所使用的那样。它们之所以少,是因为乍一看,它们不过是一些带有图形注释的表格。更重要的是,他把这些作为计算和推理的工具。${ }^{17} \mathrm{He}$这样做是因为他所寻求的回归线最初被定义为垂直变量$y$的平均值的轨迹,而水平变量$x$的变化是$^{18}$(我们现在认为是条件均值函数$\mathcal{E}(y \mid x)$),因此至少需要将$x$变量分组到类间隔中。高尔顿对这些数据的显示,本质上是对这些表格的图形复制,使用计数符号$(/, / /, / / /, \ldots)$或数字来表示每个细胞的频率——1972年,普林斯顿大学的博学家约翰·杜克(John Tukey)将其称为“半图形显示”,使它们成为视觉上的嵌合体:部分是表格,部分是图表

统计代写|数据可视化代写数据可视化代考|高尔顿椭圆洞察


高尔顿在子相关和回归问题上的下一步被证明是统计史上最重要的一步。1886年,他发表了一篇题为《世袭身材向平庸的回归》的论文,其中包含了如图6.14所示的表格。该表格记录了205对父亲和母亲所生的928名成年子女的身高频率,并根据他们的父亲和母亲的平均身高(“中间父母”身高)进行了分类。$^{22}$


如果你看一下这个表格,你可能只会看到一个数字表,中间是较大的值,左上角和右下角有一些破折号(表示0)。但对高尔顿来说,这是他可以用脑子和纸来计算的东西


一开始我发现很难抓住表中条目的全部意义,它们之间有着非常有趣的关系,值得研究。当我在水平列和垂直列的每一个交叉点上写下四个相邻方格中条目的和,并使用这些条目来“平滑”条目时,它们明显地显现出来。(高尔顿,1886,p. 254)


因此,高尔顿首先平滑了该表中的数字,他通过简单的步骤,对每组相邻的四个单元格进行求和(或平均)。我们可以想象他用红墨水把平均数写大了,正好在这四个单元格的交点处。当他完成这项任务后,我们可以想象他站在桌子上方,拿着另一支笔,试图把点连接起来——画曲线,把频率大致相等的点连接起来。我们试着在图6.15中重现这些步骤,除了最后一步是机械地用计算机算法完成的,而高尔顿可能是用眼睛和大脑,以赫歇尔的方式完成的,目的是要得到优雅光滑的曲线

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|BINF7003

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|BINF7003

统计代写|数据可视化代写Data visualization代考|John Herschel and the Orbits of Twin Stars

In the hundred years from 1750 to 1850 , during which most of the modern graphic forms were invented, fundamentally important problems of measurement attracted the best mathematical minds, including Euler, Laplace,

Legendre, Newton, and Gauss, and led to the inventions of calculus, least squares, curve fitting, and interpolation. ${ }^8$ In these scientific and mathematical domains, graphs had begun to play an increasing role in the explanation of scientific phenomena, as we described earlier in the case of Johann Lambert.
Among this work, we find the remarkable paper of Sir John Frederick W. Herschel [1792-1871], On the Investigation of the Orbits of Revolving Double Stars, which he read to the Royal Astronomical Society on January 13, 1832, and published the next year. Double stars had long played a particularly important role in astrophysics because they provided the best means to measure stellar masses and sizes, and this paper was prepared as andendum to another 1833 paper, in which Herschel had meticulously cataloged observations on the orbits of 364 double stars.

The printed paper refers to four figures, presented at the meeting. Alas, the version printed in the Memoirs of the Royal Astronomical Society did not include them, presumably owing to the cost of engraving. Herschel noted, “The original charts and figures which accompanied the paper being all deposited with the Society.” These might have been lost to historians, but Thomas Hankins discovered copies of them in research for his insightful 2006 paper on Herschel’s graphical method.

To see why Herschel’s paper is remarkable, we must follow his exposition of the goals, the construction of scatterplots, and the idea of visual smoothing to produce a more satisfactory solution for parameters of the orbits of double stars than were available by analytic methods.

统计代写|数据可视化代写Data visualization代考|Herschel’s Graphical Impact Factor

The critical reader may object, thinking that Herschel’s graphical method, as ingenious as it might be, did not produce true scatterplots in the modern sense because the horizontal axis in Figure $6.9$ is time rather than a separate variable. Thus one might argue that all we have is another time-series graph,so priority really belongs to Playfair, or further back, to Lambert, who stated the essential ideas. On the surface this is true.

But it’s only true on the surface. We argue that a close and appreciative reading of Herschel’s description of his graphical method can, at the very least, be considered a true innovation in visual thinking, worthy of note in the present account. More importantly, Herschel’s true objective was to calculate the parameters of the orbits of twin stars based on the relation between position angle and separation distance; the use of time appears in the graph as a proxy or indirect means to overcome the scant observations and perhaps extravagant errors in the data on separation distance.

Yet Herschel’s graphical development of calculation based on a scatterplot attracted little attention outside the field of astronomy, where his results were widely hailed as groundbreaking in the Royal Astronomical Society. But this notice was for his scientific achievement rather than for his contribution of a graphical method, which scientists probably rightly considered just a means to an end.

It took another 30-50 years for graphical methods to be fully welcomed into the family of data-based scientific explanation, and seen as something more than mere illustrations. This change is best recorded in presentations at the Silver Jubilee of the Royal Statistical Society in 1885 . Even at that time, most British statisticians still considered themselves “statists”, mere recorders of statistical facts in numerical tables; but “graphists” had finally been invited to the party.

On June 23, the influential British economist Alfred Marshall [1842-1924] addressed the attendees on the benefits of the graphic method, a radical departure for a statist. His French counterpart Émile Levasseur [1828-1911] presented a survey of the wide variety of graphs and statistical maps then in use. Yet even then, the scientific work of Lambert and Herschel, and the concept of the scatterplot as a new graphical form remained largely unknown. This would soon change with Francis Galton.

统计代写|数据可视化代写Data visualization代考|BINF7003

数据可视化代考

统计代写|数据可视化代写数据可视化代考|约翰·赫歇尔和双星轨道


从1750年到1850年的几百年里,在这段时间里,大多数现代图形形式被发明出来,最重要的测量问题吸引了最优秀的数学头脑,包括欧拉,拉普拉斯


勒让德,牛顿和高斯,并导致了微积分,最小二乘,曲线拟合和插值的发明。${ }^8$在这些科学和数学领域,图已经开始在解释科学现象方面发挥越来越大的作用,正如我们之前在约翰·兰伯特的例子中所描述的那样。在这些著作中,我们发现了约翰·弗雷德里克·赫歇尔爵士[1792-1871]的杰出论文《关于旋转双星轨道的研究》,他于1832年1月13日向皇家天文学会宣读了这篇论文,并于次年发表。双星长期以来一直在天体物理学中发挥着特别重要的作用,因为它们提供了测量恒星质量和大小的最佳手段。这篇论文是1833年另一篇论文的附录,在那篇论文中,赫舍尔对364颗双星的轨道观测进行了细致入微的编目


印刷的文件是指在会议上提出的四个数字。可惜的是,印在《皇家天文学会回忆录》上的版本没有包括它们,大概是由于雕刻成本的原因。赫歇尔说:“随论文而来的原始图表和数据都存放在协会。”历史学家可能已经遗失了它们,但托马斯·汉金斯(Thomas Hankins)在2006年发表的关于赫歇尔图解法的论文中发现了它们的副本


要了解为什么Herschel的论文是卓越的,我们必须遵循他对目标的阐述,散点图的构建,以及视觉平滑的思想,以产生一个比解析方法更令人满意的双星轨道参数的解

统计代写|数据可视化代写数据可视化代考|赫歇尔的图形影响因子


挑剔的读者可能会反对,认为赫歇尔的图解方法,尽管可能很巧妙,但并没有产生现代意义上真正的散点图,因为图$6.9$中的横轴是时间,而不是一个单独的变量。因此,有人可能会说,我们所拥有的只是另一个时间序列图,所以优先级实际上属于Playfair,或者更早以前的Lambert,他阐述了基本理念。从表面上看,这是正确的


但这只是表面上的事实。我们认为,仔细阅读赫歇尔对他的图解方法的描述,至少可以被认为是视觉思维的真正创新,在目前的叙述中值得注意。更重要的是,赫歇尔的真正目的是根据位置角和分离距离的关系计算出双星轨道的参数;在图中,时间的使用作为一种代理或间接手段,以克服分离距离数据中观测的不足和可能存在的巨大误差


然而,赫歇尔基于散点图的计算图形化发展在天文学领域之外几乎没有引起注意,他的结果在皇家天文学会被广泛称赞为开创性的。但是,这个通告是为了表彰他的科学成就,而不是表彰他对图形方法的贡献,科学家们可能正确地认为图形方法只是达到目的的一种手段


又过了30-50年,图形方法才被完全纳入基于数据的科学解释的大家庭,并被视为不仅仅是插图的东西。这一变化在1885年皇家统计学会银禧庆典上的演讲中得到了最好的记录。即使在那个时候,大多数英国统计学家仍然认为自己是“统计学家”,仅仅是用数字表格记录统计事实;但是“绘图家”最终还是被邀请参加了这个聚会


6月23日,有影响力的英国经济学家阿尔弗雷德·马歇尔(Alfred Marshall, 1842-1924)向与会者发表了关于图表方法的好处的演讲,这是对中央集权主义者的一种激进的背离。他的法国同行Émile Levasseur[1828-1911]对当时使用的各种各样的图表和统计地图进行了调查。然而,即使在那时,兰伯特和赫歇尔的科学工作,以及散点图作为一种新的图形形式的概念,在很大程度上仍然是未知的。弗朗西斯·高尔顿很快改变了这种情况

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|INFO2001

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|INFO2001

统计代写|数据可视化代写Data visualization代考|The Broad Street Pump

Snow’s opportunity to test his theory came with the new eruption that began toward the end of August in 1854. His celebrated 1855 report, On the Mode of Communication of Cholera, ${ }^{16}$ describes it dramatically:
The most terrible outbreak of cholera which ever occurred in this kingdom, is probably that which took place in Broad Street, Golden Square, and the adjoining streets, a few weeks ago. Within two hundred and fifty yards of the spot where Cambridge Street joins Broad Street, there were upwards of five hundred fatal attacks of cholera in ten days. The mortality in this limited area probably equals any that was ever caused in this country, even by the plague; and it was much more sudden, as the greater number of cases terminated in a few hours. (p. 38)

The full story of Snow’s discovery of the waterborne cause of cholera has been told in rich detail many times, by medical historians ${ }^{17}$ and cartographers, ${ }^{18}$ and it was brought to the attention of statisticians and those interested in the history of data visualization by Edward Tufte. ${ }^{19}$

The short, if slightly apocryphal, version of this story is that, during the outbreak of cholera in Soho in 1854, Snow created a dot map of the locations of deaths and immediately noticed that they clustered on Broad Street, near the site of one of the public pumps from which residents drew their water. This narrative continues: Snow recognized that cases of death were strongly associated with drinking water from this pump. He petitioned the Board of Guardians of St. James Parish to remove the pump handle, whereupon the cholera epidemic subsided.

统计代写|数据可视化代写Data visualization代考|The Neighborhoods Map

The version of Snow’s map shown in Figure $4.7$ is the most famous, but a second version is more interesting graphically and scientifically. The Cholera Inquiry Committee, appointed by the Vestry of St. James, submitted its report on July 25, 1855. ${ }^{22}$ The section titled “Dr. Snow’s Report” contained a new map that attempted a more detailed and direct visual analysis of the association of death with the Broad Street pump.

This new map, shown in Figure 4.8, states and tests a geospatial hypothesis: people are most likely to draw their water from the nearest pump (by walking distance). The outlined region in this map “shews the various points which have been found by careful measurement to be at an equal distance by the nearest road from the pump in Broad Street and the surrounding pumps.” 23

If the source of the outbreak was indeed the Broad Street pump, one should expect to find the highest concentration of deaths within this area, and also a low prevalence outside it. He stated his conclusion as “it will be observed that the deaths either very much diminish, or cease altogether, at every point where it becomes decidedly nearer to send to another pump than to the one in Broad street.” 24

The final explanation for the source of the outbreak came slightly later, through the work of Reverend Henry Whitehead, the curate at a local church and a member of the Cholera Inquiry Committee. He identified the first (“index”) case as the death of a five-month-old infant, Frances Lewis, whose family lived at 40 Broad Street, immediately adjacent to the pump. When severe diarrhea struck the child, her mother, Sarah Lewis, soaked the diapers and emptied the pails into the cesspool at the front of their house, only three feet from the well. Unfortunately, the cesspool walls had decayed and the effluent flowed directly into the pump well. Thomas Lewis, the baby’s father and a local constable, suffered a fatal attack of the disease on September 8, the same day that the pump handle was removed.

统计代写|数据可视化代写Data visualization代考|INFO2001

数据可视化代考

统计代写|数据可视化代写Data visualization代考|The Broad Street Pump

斯诺检验他的理论的机会来自于 1854 年 8 月底开始的新喷发。他在 1855 年的著名报告《霍乱的传播方式》,16戏剧性地描述了它:
这个王国曾经发生过的最可怕的霍乱爆发,可能是几周前发生在布罗德街、黄金广场和毗邻街道的那次。在剑桥街与布罗德街交汇处的 250 码范围内,十天内发生了超过 500 起致命的霍乱袭击。这个有限地区的死亡人数可能与这个国家曾经造成的死亡人数相等,即使是瘟疫也是如此;而且它更加突然,因为更多的案件在几个小时内就结束了。(第 38 页)

医学历史学家多次详细讲述了斯诺发现霍乱水源性病因的全部故事17和制图师,18爱德华·塔夫特 (Edward Tufte) 引起了统计学家和那些对数据可视化历史感兴趣的人的注意。19

这个故事的简短版本是,1854 年苏荷区霍乱爆发期间,斯诺创建了一张死亡地点的点图,并立即注意到他们聚集在布罗德街,靠近一个居民抽水的公共水泵。这种叙述仍在继续:斯诺认识到死亡病例与该泵的饮用水密切相关。他请求圣詹姆斯教区的监护委员会拆除泵把手,霍乱疫情随即消退。

统计代写|数据可视化代写Data visualization代考|The Neighborhoods Map

雪诺的版本如图4.7是最著名的,但第二个版本在图形和科学上更有趣。由圣詹姆斯教区任命的霍乱调查委员会于 1855 年 7 月 25 日提交了报告。22标题为“博士”的部分。斯诺的报告”包含一张新地图,试图对死亡与布罗德街水泵的关联进行更详细和直接的视觉分析。

这张新地图如图 4.8 所示,陈述并检验了一个地理空间假设:人们最有可能从最近的泵(步行距离)取水。这张地图中的轮廓区域“显示了通过仔细测量发现的各个点,距离 Broad Street 的泵和周围的泵最近的道路距离相等。” 23

如果爆发的源头确实是布罗德街的水泵,那么人们应该会发现该地区的死亡人数最高,而该地区以外的流行率也很低。他说他的结论是“可以观察到,死亡人数要么大大减少,要么完全停止,在每一个地方,与布罗德街的泵相比,泵送至另一台泵变得明显更近。” 24

通过当地教堂的牧师和霍乱调查委员会成员亨利怀特黑德牧师的工作,对爆发源头的最终解释来得稍晚一些。他确定第一个(“索引”)病例是一个五个月大的婴儿弗朗西斯·刘易斯(Frances Lewis)的死亡,她的家人住在布罗德街 40 号,紧邻水泵。当孩子出现严重腹泻时,她的母亲莎拉·刘易斯(Sarah Lewis)浸湿了尿布,并将桶倒进了他们家门前的污水池,距离井只有三英尺。不幸的是,污水池的墙壁已经腐烂,污水直接流入泵井。婴儿的父亲和当地警察托马斯·刘易斯于 9 月 8 日患上了致命的疾病,就在泵把手被拆除的同一天。

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|STAT1100

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|STAT1100

统计代写|数据可视化代写Data visualization代考|The Transcendent Effect of Water

Farr was certainly meticulous in evaluating the impact of potential causes on mortality from cholera. But he lacked an effective method for doing so, even for one potential cause, and the idea of accounting for the combination of several causes stretched him to the limit. His general method was to prepare tables of cholera mortality in the districts of London, broken down and averaged over classes of a possible explanatory variable.

For example, Farr divided the 38 districts into the 19 highest and 19 lowest values on other variables and calculated the ratio of cholera mortality for each; elevation had the largest ratio (3:1), while all other variables showed smaller ratios (e.g., 2.1:1 for house values). Having hit on elevation above the Thames as his principal cause, he prepared many other tables showing mortality by districts also in relation to density of the population, value of houses and shops, relief to the poor, and geographical features.

Figure $4.5$ illustrates the depth of this inquiry, in an ingenious semigraphic combination of small tables for each district overlaid on a schematic map of their spatial arrangement along the Thames. The tables show the numbers for elevation, cholera deaths, deaths from all causes, and population density, and identify the water companies supplying each district. Unfortunately, this lovely diagram concealed more than it revealed: the signal was there, but the wealth of detail provided too much noise.

It would later turn out that the direct cause of cholera could be traced to contamination of the water supply from which people drew. It was probably confusing that water was provided by nine water companies, as Farr shows in Figure 4.5, so he divided the registration districts into three groups based on the region along the Thames for their water supply: Thames, between Kew and Hammersmith bridges (western London), between Battersea and Waterloo bridges (central London), and districts that obtained their water from tributaries of the Thames (New River, Lea River, and Ravensbourne River).

统计代写|数据可视化代写Data visualization代考|John Snow on Cholera

Another terrible wave of cholera struck London toward the end of summer 1854, concentrated in the parish of St. James, Westminster (the present-day district of Soho). This time, a correct explanation of the cause would eventually be found with the aid of meticulous data collection, a map of disease incidence, keen medical detective work, and logical reasoning to rule out alternative explanations. It is useful to understand why John Snow succeeded while William Farr did not.

The physician John Snow [1813-1858] lived in the Soho district at the time of this new outbreak. He had been an eighteen-year-old medical assistant in Newcastle upon Tyne in 1831 when cholera first struck there with great loss of life. At the time of the second great epidemic, in 1848-1849, Snow observed the severity of the disease in his district. In 1849, in a two-part paper in the Medical Gazette and Times ${ }^{11}$ and a longer monograph ${ }^{12}$ he proposed that cholera was transmitted by water rather than through the air and passed from person to person through the intestinal discharges of the sick, either transmitted directly or entering the water supply.

Snow’s reasoning was entirely that of a clinician based on the form of pathology of the disease, rather than that of a statistician seeking associations with potential causal factors. Had cholera been an airborne disease, one would expect to see its effects in the lungs and then perhaps spread to others by respiratory discharge. But the disease clearly acted mainly in the gut, causing vomiting, intense diarrhea, and the massive dehydration that led to death. Whatever causal agent was responsible, it must have been something ingested rather than something inhaled.

William Farr was well aware of Snow’s theory when he wrote his 1852 report. ${ }^{13} \mathrm{He}$ described it quite politely but rejected Snow’s theory of the pathology of cholera. He could not understand any mechanism whereby something ingested by one individual could be passed to a larger community. To Farr, who was then considered the foremost authority on the outbreak and contagion of cholera, Snow’s contention of a single causal agent (some unknown poisonous matter, materies morbi) and a limited vector of transmission (water) was too circumscribed, too restrictive. Snow presented his argument and the evidence to support it as if ingestion and waterborne transmission could be the only causes; he also lacked the crucial data, either from a natural experiment or from direct knowledge of the water that cholera victims drank.

统计代写|数据可视化代写Data visualization代考|STAT1100

数据可视化代考

统计代写|数据可视化代写Data visualization代考|The Transcendent Effect of Water

法尔在评估潜在原因对霍乱死亡率的影响方面无疑是一丝不苟的。但是他缺乏有效的方法来做到这一点,即使是针对一个潜在的原因,而考虑多种原因的组合的想法使他走到了极限。他的一般方法是准备伦敦各地区的霍乱死亡率表,对可能的解释变量进行分类和平均。

例如,Farr 将 38 个地区划分为其他变量的 19 个最高值和 19 个最低值,并计算了每个地区的霍乱死亡率;海拔的比例最大(3:1),而所有其他变量的比例都较小(例如,房屋价值为 2.1:1)。将泰晤士河以上的海拔作为他的主要原因后,他准备了许多其他表格,显示各地区的死亡率,这些表格还与人口密度、房屋和商店的价值、对穷人的救济以及地理特征有关。

数字4.5展示了这项调查的深度,在每个地区的小桌子的巧妙半图形组合中,覆盖在泰晤士河沿岸空间布置的示意图上。这些表格显示了海拔、霍乱死亡人数、各种原因造成的死亡人数和人口密度,并确定了为每个地区供水的供水公司。不幸的是,这个可爱的图表隐藏的比它揭示的要多:信号在那里,但丰富的细节提供了太多的噪音。

后来发现,霍乱的直接原因可以追溯到人们取水的供水受到污染。正如法尔在图 4.5 中显示的那样,供水由九家供水公司提供可能令人困惑,因此他根据泰晤士河沿岸的供水地区将登记区分为三组:泰晤士河,在 Kew 和 Hammersmith 桥之间(西部伦敦),在巴特西和滑铁卢桥(伦敦市中心)之间,以及从泰晤士河支流(新河、利亚河和拉文斯伯恩河)取水的地区。

统计代写|数据可视化代写Data visualization代考|John Snow on Cholera

1854 年夏末,另一波可怕的霍乱袭击了伦敦,集中在威斯敏斯特的圣詹姆斯教区(现在的苏活区)。这一次,在细致的数据收集、疾病发病率地图、敏锐的医学侦探工作以及排除其他解释的逻辑推理的帮助下,最终将找到对原因的正确解释。理解为什么约翰·斯诺成功而威廉·法尔没有成功是很有用的。

在这次新的疫情爆发时,医生约翰·斯诺 [1813-1858] 住在苏荷区。1831 年,当霍乱首次袭击泰恩河畔纽卡斯尔时,他还是一名 18 岁的医疗助理,造成了巨大的生命损失。在 1848-1849 年第二次大流行病爆发时,斯诺观察了他所在地区疾病的严重程度。1849 年,在《医学公报》和《泰晤士报》的两篇论文中11和更长的专着12他提出,霍乱是通过水而不是空气传播的,并通过病人的肠道排泄物在人与人之间传播,要么直接传播,要么进入供水系统。

斯诺的推理完全是基于疾病病理学形式的临床医生的推理,而不是寻求与潜在因果因素关联的统计学家的推理。如果霍乱是一种空气传播的疾病,人们会期望看到它对肺部的影响,然后可能会通过呼吸道排出物传播给其他人。但这种疾病显然主要作用于肠道,导致呕吐、剧烈腹泻和导致死亡的大量脱水。无论病因是什么,它一定是被摄入的东西而不是被吸入的东西。

威廉·法尔 (William Farr) 在撰写 1852 年的报告时非常了解斯诺的理论。13H和描述得很客气,但拒绝了斯诺关于霍乱病理学的理论。他无法理解任何一种机制,可以将一个人摄入的东西传递给更大的社区。对于当时被认为是霍乱爆发和传染的最高权威的法尔来说,斯诺关于单一病原体(一些未知的有毒物质,即 morbi)和有限的传播媒介(水)的论点过于局限,过于严格。斯诺提出了他的论点和支持它的证据,好像摄入和水传播可能是唯一的原因;他还缺乏来自自然实验或直接了解霍乱受害者饮用的水的关键数据。

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|BINF7003

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|BINF7003

统计代写|数据可视化代写Data visualization代考|Vital Statistics

In the previous chapter we explained how concerns in France about crime led to the systematic collection of social data. This combination of important social issues and available data led Guerry to new developments involving data display in graphs, maps, and tables.

A short time later, an analogous effort began in the United Kingdom, in the context of social welfare, poverty, public health, and sanitation. These efforts produced two new heroes of data visualization, William Farr and John Snow, who were influential in the attempt to understand the causes of several epidemics of cholera and how the disease could be mitigated.

In the United Kingdom the Age of Data can be said to have begun with the creation of the General Register Office (GRO) by an Act of Parliament in 1836. ${ }^1$ The initial intent was simply to track births and deaths in England and Wales as the means of ensuring the lawful transfer of property rights between generations of the landed gentry.

But the 1836 act did much more. It required that every single child of an English parent, even those born at sea, have the particulars reported to a local registrar on standard forms within fifteen days. It also required that every marriage and death be reported and that no dead body could be buried without a certificate of registration, and it imposed substantial fines (10-50£) for failure in this reporting duty. The effect was to create a complete data base of the entire population of England, which is still maintained by the GRO today.

The following year, William Farr [1807-1883], a 30-year-old physician, was hired, initially to handle the vital registration of live births, deaths, marriages, and divorces for the upcoming Census of 1841. After he wrote a chapter ${ }^2$ on “Vital statistics; or, the statistics of health, sickness, diseases, and death,” he was given a new post as the “compiler of scientific abstracts”, becoming the first official statistician of the UK.

Like Guerry at the Ministry of Justice in France, Farr had access to, and had to make sense of, a huge mountain of data. Farr quickly realized that these data could serve a far greater purpose: saving lives. Life expectancy could be broken down and compared over geographic regions, down to the county level. Information about the occupations of deceased persons was also recorded, so Farr could also begin to tabulate life expectancy according to economic and social station. Information about the cause of death was lacking, and Farr probably exceeded his initial authority by adding instructions to list the cause(s) of death on the standard form. This simple addition opened a vast new world of medical statistics and public health that would eventually be called epidemiology, involving the study of patterns of incidence, causes, and control of disease conditions in a population.

统计代写|数据可视化代写Data visualization代考|Farr’s Diagrams

Figure $4.1$ is one of five lithographed plates (three in color) that appear in Farr’s report. Farr takes many liberties with the vertical scales (we would now call these graphical sins) to try to show any relation between the daily numbers of deaths from cholera and diarrhea to metrological data on those days. Most apparent are the spikes of cholera deaths in August and September. Temperature was also elevated, but perhaps no more than in the adjacent months. The weather didn’t seem to be a sufficient causal factor in 1849 . Or was it? Plate 2 takes a longer view, showing the possible relationship between temperature and mortality for every week over the eleven years from 1840 to 1850. This is a remarkable chart-a new invention in the language of statistical graphs. This graphical form, now called a radial diagram (or windrose), is ideally suited to showing and comparing several related series of events having a cyclical structure, such as weeks or months of the year or compass directions. The radial lines in Plate 2 serve as axes for the fifty-two weeks of each year. The outer circles show the average weekly number of deaths (corrected for increase in population) in relation to the mean number of deaths over all years. When these exceed the average, the area is shaded black (excess mortality); they are shaded yellow when they are below the average (salubrity).
Similarly, the inner circles show average weekly temperature against a baseline of the mean temperature $\left(48^{\circ} \mathrm{F}\right)$ of the seventy-nine years from 1771 to 1849 . Weeks exceeding this average are outside the baseline circle and shaded red, while those weeks that were colder than average are said to be shaded blue (but appear as gray).

In this graph we can immediately see that something very bad happened in London in summer 1849 (row 3, column 2), leading to a huge spike in deaths from July through September, and the winter months in 1847 (row 2, column 3) also stand out. This larger view, using the idea later called “small multiples” by Tufte, ${ }^6$ does something more, which might not be noticed in a series of separate charts: it shows a general pattern across years of fewer deaths on average in the warmer months of April (at 9:00) through September (at 3:00), but the dramatic spikes point to something huge that can not be explained by temperature.

统计代写|数据可视化代写Data visualization代考|BINF7003

数据可视化代考

统计代写|数据可视化代写Data visualization代考|Vital Statistics

在上一章中,我们解释了法国对犯罪的担忧如何导致系统地收集社会数据。这种重要的社会问题和可用数据的结合使 Guerry 获得了新的发展,包括以图表、地图和表格的形式显示数据。

不久之后,在社会福利、贫困、公共卫生和卫生方面,英国也开始了类似的努力。这些努力产生了两个新的数据可视化英雄,威廉·法尔和约翰·斯诺,他们在试图了解几种霍乱流行的原因以及如何缓解这种疾病方面发挥了重要作用。

在英国,数据时代可以说是从 1836 年议会法案创建的总登记处 (GRO) 开始的。1最初的意图只是追踪英格兰和威尔士的出生和死亡情况,以此作为确保土地绅士世代之间合法转移财产权的手段。

但 1836 年的法案做得更多。它要求英国父母的每个孩子,即使是在海上出生的孩子,都必须在十五天内以标准表格向当地登记员报告详细信息。它还要求报告每一次结婚和死亡,并且没有登记证明不得埋葬尸体,并因未能履行报告义务而处以巨额罚款(10-50 英镑)。其效果是创建了一个完整的英格兰全部人口数据库,该数据库至今仍由 GRO 维护。

次年,30 岁的医生威廉·法尔 (William Farr) [1807-1883] 受雇,最初为即将到来的 1841 年人口普查处理活产、死亡、婚姻和离婚的人口登记。在他写了一篇章节2关于“生命统计;或者,健康、疾病、疾病和死亡的统计数据”,他被任命为“科学文摘编辑”的新职位,成为英国第一位官方统计学家。

与法国司法部的 Guerry 一样,Farr 可以访问并且必须理解大量数据。Farr 很快意识到这些数据可以服务于一个更大的目的:拯救生命。预期寿命可以按地理区域细分并进行比较,直至县级。死者的职业信息也被记录下来,因此法尔也可以开始根据经济和社会地位对预期寿命进行制表。由于缺乏有关死因的信息,法尔可能超出了他最初的权限,在标准表格上添加了列出死因的说明。这个简单的添加打开了一个巨大的医学统计和公共卫生新世界,最终被称为流行病学,涉及对发病率、原因、

统计代写|数据可视化代写Data visualization代考|Farr’s Diagrams

数字4.1是法尔报告中出现的五个平版印刷版(三色)之一。Farr 对垂直尺度(我们现在将这些图形称为罪恶)采取了许多自由,试图显示霍乱和腹泻的每日死亡人数与当时的计量数据之间的任何关系。最明显的是 8 月和 9 月的霍乱死亡高峰。温度也升高了,但可能不会超过接下来的几个月。在 1849 年,天气似乎不是一个充分的原因。或者是吗?图 2 采用更长的视角,显示了从 1840 年到 1850 年的 11 年中每周温度和死亡率之间可能存在的关系。这是一张非凡的图表——统计图表语言的一项新发明。这种图形形式,现在称为径向图(或风玫瑰图),非常适合显示和比较具有周期性结构的几个相关系列事件,例如一年中的几周或几个月或指南针方向。图 2 中的径向线作为每年 52 周的轴。外圈显示与所有年份的平均死亡人数相关的每周平均死亡人数(根据人口增加进行校正)。当这些超过平均值时,该区域将显示为黑色(超额死亡率);当它们低于平均值(盐度)时,它们会显示为黄色。外圈显示与所有年份的平均死亡人数相关的每周平均死亡人数(根据人口增加进行校正)。当这些超过平均值时,该区域将显示为黑色(超额死亡率);当它们低于平均值(盐度)时,它们会显示为黄色。外圈显示与所有年份的平均死亡人数相关的每周平均死亡人数(根据人口增加进行校正)。当这些超过平均值时,该区域将显示为黑色(超额死亡率);当它们低于平均值(盐度)时,它们会显示为黄色。
同样,内圈显示平均每周温度相对于平均温度的基线(48∘F)从 1771 年到 1849 年的七十九年。超过这个平均值的周在基线圈之外并带有红色阴影,而那些比平均温度低的周被称为蓝色阴影(但显示为灰色)。

在这张图中,我们可以立即看到 1849 年夏天(第 3 行,第 2 列)在伦敦发生了一件非常糟糕的事情,导致从 7 月到 9 月以及 1847 年的冬季(第 2 行,第 3 列)死亡人数激增也脱颖而出。这个更大的视图,使用后来被 Tufte 称为“小倍数”的想法,6做了更多的事情,这在一系列单独的图表中可能不会被注意到:它显示了在 4 月(9:00)到 9 月(3:00)的温暖月份平均死亡人数减少的年份的一般模式,但是剧烈的尖峰指向无法用温度解释的巨大现象。

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据可视化代写Data visualization代考|STAT1100

如果你也在 怎样代写数据可视化Data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是将信息转化为视觉背景的做法,如地图或图表,使数据更容易被人脑理解并从中获得洞察力。数据可视化的主要目标是使其更容易在大型数据集中识别模式、趋势和异常值。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化Data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化Data visualization代写方面经验极为丰富,各种代写数据可视化Data visualization相关的作业也就用不着说。

我们提供的数据可视化Data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写Data visualization代考|STAT1100

统计代写|数据可视化代写Data visualization代考|Reconstruct Test DATA

We try to reconstruct the test data using the lower dimensional representation $y$ (of the point $x$ ) such that
$$
x^{\prime}=U y
$$
We know that $y=U^{T} x$. By substituting y with $U^{T} x$ in the (3.14), we get
$$
x^{\prime}=U U^{T} x
$$
We know that $U=X V D^{-1}$. By substituting $U$ with $X V D^{-1}$ and $U^{T}$ with $D^{-1} V^{T} X^{T}$
$$
\begin{gathered}
x^{\prime}=X V D^{-1} D^{-1} V^{T} X^{T} x \
x^{\prime}=X V D^{-2} V^{T} X^{T} x
\end{gathered}
$$
Hence, test data $x^{\prime}$ can be reconstructed from the lower dimensional representation $y$.
Dual PCA is a variant of PCA used when the number of features is greater than the number of data points. Since it is just a variant of PCA, it follows all the advantages and limitations of PCA.

统计代写|数据可视化代写Data visualization代考|EXPLANATION AND WORKING

After understanding the concept of dimensionality reduction and a few algorithms for the same, let us now examine some plots given in Figure 4.1. What is the true dimensionality of these plots?

All dimensionality reduction techniques are based on the implicit assumption that the data lies along some low dimensional manifold. This is the case for the first three examples in Figure 4.1, which lie along a one-dimensional manifold even though it is plotted in a two-dimensional plane. In the fourth example in Figure 4.1, the data has been randomly plotted on a two-dimensional plane, so dimensionality reduction without losing information is not possible.

For the first two examples, we can use Principal Component Analysis (PCA) to find the approximate lower dimensional linear subspace. However, PCA will make no difference in the case of the third and fourth example because the structure is nonlinear and PCA only aims at finding the linear subspace. However, there are ways to find nonlinear lower dimensional manifolds.

Any form of linear projection to one dimension on this nonlinear data will result in linear principal components and we might lose information about the original dataset. This is because we need to consider nonlinear projection to one dimension to obtain the manifold on which the data points lie. So, how do we modify the PCA algorithm to solve for the nonlinear subspace in which the data points lie? In short, how do we make PCA nonlinear?

This is done using an idea similar to Support Vector Machines. Instead of using the original two-dimensional data points in one dimension using linear projections, we first write the data points as points in higher dimensional space. For example, say we write every two-dimensional point $x_{t}=\left(X_{r}, Y_{t}\right)$ into a 3-dimensional point given by mapping $\Phi$ as
$$
\Phi\left(x_{t}\right)=\left(X_{t}, Y_{t}, X_{t}^{2}+Y_{t}^{2}\right)
$$
After this, instead of doing PCA on the original dataset, we perform PCA on $\Phi\left(x_{1}\right)$, $\Phi\left(x_{2}\right), \ldots, \Phi\left(x_{n}\right)$. This process is known as Kernel PCA. So, the basic idea of Kernel PCA is to take the original data set and implicitly map it to a higher dimensional space using mapping $\Phi$. Then we perform PCA on this space, which is linear projection in this higher dimensional space that already captures non-linearities in the original dataset $[1,2,3]$.

统计代写|数据可视化代写Data visualization代考|STAT1100

数据可视化代考

统计代写|数据可视化代写Data visualization代考|Reconstruct Test DATA

我们尝试使用低维表示重建测试数据 $y($ 重点 $x)$ 使得
$$
x^{\prime}=U y
$$
我们知道 $y=U^{T} x$. 通过将 $\mathrm{y}$ 替换为 $U^{T} x$ 在 (3.14) 中,我们得到
$$
x^{\prime}=U U^{T} x
$$
我们知道 $U=X V D^{-1}$. 通过替换 $U$ 和 $X V D^{-1}$ 和 $U^{T}$ 和 $D^{-1} V^{T} X^{T}$
$$
x^{\prime}=X V D^{-1} D^{-1} V^{T} X^{T} x x^{\prime}=X V D^{-2} V^{T} X^{T} x
$$
因此,测试数据 $x^{\prime}$ 可以从低维表示重构 $y$.
Dual PCA 是在特征数量大于数据点数量时使用的 PCA 的一种变体。由于它只是 PCA 的一种变体,因此它遵循了 PCA 的所有优点和局限性。

统计代写|数据可视化代写Data visualization代考|EXPLANATION AND WORKING

在理解了降维的概念和一些相同的算法之后,现在让我们检查图 $4.1$ 中给出的一些图。这些图的真实维度是多少?
所有降维技术都基于数据位于某个低维流形的隐含假设。图 $4.1$ 中的前三个示例就是这种情况,它们位于一维流形 上,即使它是在二维平面上绘制的。在图 $4.1$ 的第四个例子中,数据被随机绘制在一个二维平面上,因此不可能在 不丟失信息的情况下进行降维。
对于前两个示例,我们可以使用主成分分析 (PCA) 来找到近似的低维线性子空间。但是,PCA在第三个和第四个 示例的情况下没有区别,因为结构是非线性的,并且 PCA 仅旨在找到线性子空间。然而,有一些方法可以找到非 线性的低维流形。
在这个非线性数据上对一维进行任何形式的线性投影都会导致线性主成分,我们可能会丟失有关原始数据集的信 息。这是因为我们需要考虑非线性投影到一维来获得数据点所在的流形。那么,我们如何修改 PCA 算法来求解数 据点所在的非线性子空间呢? 简而言之,我们如何使 PCA 成为非线性的?
这是使用类似于支持向量机的想法完成的。我们不是使用线性投影在一维中使用原始二维数据点,而是首先将数据 点写为高维空间中的点。例如,假设我们写每个二维点 $x_{t}=\left(X_{r}, Y_{t}\right)$ 通过映射给定的 3 维点 $\Phi$ 作为
$$
\Phi\left(x_{t}\right)=\left(X_{t}, Y_{t}, X_{t}^{2}+Y_{t}^{2}\right)
$$
之后,我们不再对原始数据集进行 PCA,而是在 $\Phi\left(x_{1}\right), \Phi\left(x_{2}\right), \ldots, \Phi\left(x_{n}\right)$. 此过程称为内核 PCA。 因此, Kernel PCA 的基本思想是取原始数据集并使用映射将其隐式映射到更高维空间 $\Phi$. 然后我们在这个空间上执行 $\mathrm{PCA}$ ,这是在这个高维空间中的线性投影,它已经捕获了原始数据集中的非线性 $[1,2,3] .$

统计代写|数据可视化代写Data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写