统计代写|算法设计代写Algorithm Design代考|CSE531
如果你也在 怎样代写算法设计Algorithm Design这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
算法设计是指一种解决问题和工程算法的方法或数学过程。算法设计是许多解决理论的一部分,如运筹学中的分割与征服或动态编程。
statistics-lab™ 为您的留学生涯保驾护航 在代写算法设计Algorithm Design方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写算法设计Algorithm Design代写方面经验极为丰富,各种代写算法设计Algorithm Design相关的作业也就用不着说。
我们提供的算法设计Algorithm Design及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

统计代写|算法设计代写Algorithm Design代考|Demonstrating Incorrectness
The best way to prove that an algorithm is incorrect is to produce an instance on which it yields an incorrect answer. Such instances are called counterexamples. No rational person will ever defend the correctness of an algorithm after a counter-example has been identified. Very simple instances can instantly defeat reasonable-looking heuristics with a quick touché. Good counterexamples have two important properties:
- Verifiability – To demonstrate that a particular instance is a counterexample to a particular algorithm, you must be able to (1) calculate what answer your algorithm will give in this instance, and (2) display a better answer so as to prove that the algorithm didn’t find it.
- Simplicity-Good counter-examples have all unnecessary details stripped away. They make clear exactly why the proposed algorithm fails. Simplicity is important because you must be able to hold the given instance in your head in order to reason about it. Once a counterexample has been found, it is worth simplifying it down to its essence. For example, the counterexample of Figure 1.6(1) could have been made simpler and better by reducing the number of overlapped segments from five to two.
Hunting for counterexamples is a skill worth developing. It bears some similarity to the task of developing test sets for computer programs, but relies more on inspiration than exhaustion. Here are some techniques to aid your quest:
- Think small – Note that the robot tour counter-examples I presented boiled down to six points or less, and the scheduling counter-examples to only three intervals. This is indicative of the fact that when algorithms fail, there is usually a very simple example on which they fail. Amateur algorists tend to draw a big messy instance and then stare at it helplessly. The pros look carefully at several small examples, because they are easier to verify and reason about.
统计代写|算法设计代写Algorithm Design代考|Induction and Recursion
Failure to find a counterexample to a given algorithm does not mean “it is obvious” that the algorithm is correct. A proof or demonstration of correctness is needed. Often mathematical induction is the method of choice.
When I first learned about mathematical induction it seemed like complete magic. You proved a formula like $\sum_{i=1}^n i=n(n+1) / 2$ for some basis case like $n=1$ or 2 , then assumed it was true all the way to $n-1$ before proving it was in fact true for general $n$ using the assumption. That was a proof? Ridiculous!
When I first learned the programming technique of recursion it also seemed like complete magic. The program tested whether the input argument was some basis case like 1 or 2 . If not, you solved the bigger case by breaking it into pieces and calling the subprogram itself to solve these pieces. That was a program? Ridiculous!
The reason both seemed like magic is because recursion is mathematical induction in action. In both, we have general and boundary conditions, with the general condition breaking the problem into smaller and smaller pieces. The initial or boundary condition terminates the recursion. Once you understand either recursion or induction, you should be able to see why the other one also works.
I’ve heard it said that a computer scientist is a mathematician who only knows how to prove things by induction. This is partially true because computer scientists are lousy at proving things, but primarily because so many of the algorithms we study are either recursive or incremental.
Consider the correctness of insertion sort, which we introduced at the beginning of this chapter. The reason it is correct can be shown inductively:
- The basis case consists of a single element, and by definition a one-element array is completely sorted.
- We assume that the first $n-1$ elements of array $A$ are completely sorted after $n-1$ iterations of insertion sort.
- To insert one last element $x$ to $A$, we find where it goes, namely the unique spot between the biggest element less than or equal to $x$ and the smallest element greater than $x$. This is done by moving all the greater elements back by one position, creating room for $x$ in the desired location.
One must be suspicious of inductive proofs, however, because very subtle reasoning errors can creep in. The first are boundary errors. For example, our insertion sort correctness proof above boldly stated that there was a unique place to insert $x$ between two elements, when our basis case was a single-element array. Greater care is needed to properly deal with the special cases of inserting the minimum or maximum elements.
The second and more common class of inductive proof errors concerns cavalier extension claims. Adding one extra item to a given problem instance might cause the entire optimal solution to change. This was the case in our scheduling problem (see Figure 1.8). The optimal schedule after inserting a new segment may contain none of the segments of any particular optimal solution prior to insertion. Boldly ignoring such difficulties can lead to very convincing inductive proofs of incorrect algorithms.

算法设计代考
统计代写|算法设计代写Algorithm Design代考|Demonstrating Incorrectness
证明算法不正确的最好方法是生成一个实例,在该实例上它会产生不正确的答案。这样的例子称为反例。在识别出反例之后,任何理性的人都不会为算法的正确性辩护。非常简单的实例可以通过快速接触立即击败看起来合理的启发式方法。好的反例有两个重要的属性:
- 可验证性——为了证明一个特定的实例是一个特定算法的反例,你必须能够(1)计算你的算法在这种情况下会给出什么答案,并且(2)显示一个更好的答案,以证明该算法没找到。
- 简单——好的反例都去掉了所有不必要的细节。他们清楚地说明了为什么提出的算法会失败。简单很重要,因为您必须能够在脑海中记住给定的实例才能对其进行推理。一旦找到反例,就值得将其简化为本质。例如,图 1.6(1) 的反例可以通过将重叠段的数量从五个减少到两个而变得更简单和更好。
寻找反例是一项值得培养的技能。它与为计算机程序开发测试集的任务有一些相似之处,但更多地依赖于灵感而不是疲惫。这里有一些技巧可以帮助你完成任务:
- 小处思考——请注意,我提出的机器人巡回反例归结为六个点或更少,而调度反例仅包含三个间隔。这表明当算法失败时,通常有一个非常简单的例子说明它们失败了。业余算法学家倾向于画一个大而杂乱的实例,然后无助地盯着它。专业人士会仔细查看几个小例子,因为它们更容易验证和推理。
统计代写|算法设计代写Algorithm Design代考|Induction and Recursion
未能找到给定算法的反例并不意味着“很明显”该算法是正确的。需要证明或证明正确性。通常数学归纳法是选择的方法。
当我第一次了解数学归纳法时,它似乎完全是魔法。你证明了一个公式∑一世=1n一世=n(n+1)/2对于一些基本情况,例如n=1或 2 ,然后假设它一直是真的n−1在证明它实际上对一般来说是正确的之前n使用假设。那是证据?荒谬的!
当我第一次学习递归编程技术时,它似乎也完全是魔法。该程序测试输入参数是否是一些基本情况,如 1 或 2 。如果没有,你解决了更大的情况,方法是把它分成几块并调用子程序本身来解决这些块。那是一个程序?荒谬的!
两者看起来都很神奇的原因是因为递归是数学归纳法。在这两种情况下,我们都有一般条件和边界条件,一般条件将问题分解成越来越小的部分。初始或边界条件终止递归。一旦你理解了递归或归纳,你应该能够明白为什么另一个也有效。
我听说计算机科学家是只知道如何通过归纳证明事物的数学家。这部分是正确的,因为计算机科学家在证明事物方面很糟糕,但主要是因为我们研究的许多算法要么是递归的,要么是增量的。
考虑一下我们在本章开头介绍的插入排序的正确性。它正确的原因可以归纳地表明:
- 基本情况由一个元素组成,根据定义,一个元素数组是完全排序的。
- 我们假设第一个n−1数组元素一个完全排序后n−1插入排序的迭代。
- 插入最后一个元素X至一个,我们找到它去哪里,即最大元素之间的唯一点小于或等于X和大于的最小元素X. 这是通过将所有较大的元素向后移动一个位置来完成的,为X在所需的位置。
然而,人们必须怀疑归纳证明,因为非常微妙的推理错误可能会蔓延。第一个是边界错误。比如我们上面的插入排序正确性证明就大胆的说有一个唯一的地方可以插入X在两个元素之间,当我们的基本案例是一个单元素数组时。需要更加小心地正确处理插入最小或最大元素的特殊情况。
第二类和更常见的归纳证明错误涉及骑士扩展声明。向给定的问题实例添加一个额外的项目可能会导致整个最佳解决方案发生变化。我们的调度问题就是这种情况(见图 1.8)。插入新段后的最优调度可能不包含插入前任何特定最优解的段。大胆地忽略这些困难可能会导致对错误算法的非常有说服力的归纳证明。

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。
R语言代写 | 问卷设计与分析代写 |
PYTHON代写 | 回归分析与线性模型代写 |
MATLAB代写 | 方差分析与试验设计代写 |
STATA代写 | 机器学习/统计学习代写 |
SPSS代写 | 计量经济学代写 |
EVIEWS代写 | 时间序列分析代写 |
EXCEL代写 | 深度学习代写 |
SQL代写 | 各种数据建模与可视化代写 |
The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.
Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.
数学代写|图论作业代写Graph Theory代考|The previous diagrams
The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.
Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

图论代考
数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R
由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。
上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。
为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)
- MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
- 每个面的三个顶点必须是三种不同的颜色。
- 每条边由两个相邻的三角形共享,形成一个四边形。
- 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
- 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
- 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分
链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:
- 画一张R顶点和一个是由边连接的顶点。
- 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
- 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
- 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
- RY 链要么继续增长,要么被 B 包围,G.
- 如果你关注 B 和 G,你会为它的链条得出类似的结论。
- 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。
数学代写|图论作业代写Graph Theory代考|In the previous figure
在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。
- A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。
上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。
Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。
数学代写|图论作业代写Graph Theory代考|The previous diagrams
前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。
请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。