分类: 粒子物理代写

物理代写|粒子物理代写Particle Physics代考|PHYS522

如果你也在 怎样代写粒子物理Particle Physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

粒子物理学或高能物理学是对构成物质和辐射的基本粒子和力量的研究。

statistics-lab™ 为您的留学生涯保驾护航 在代写粒子物理Particle Physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写粒子物理Particle Physics代写方面经验极为丰富,各种代写粒子物理Particle Physics相关的作业也就用不着说。

我们提供的粒子物理Particle Physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|粒子物理代写Particle Physics代考|PHYS522

物理代写|粒子物理代写Particle Physics代考|Confirmation of Rutherford Scattering Cross Section

In 1913 , Geiger and Marsden [18] performed a far more accurate experiment to check the details of Rutherford’s formula (1.12). They checked the dependence of the rate on the scattering angle and found consistency with the prediction
$$
N(\theta) \propto \frac{1}{\sin ^4(\theta / 2)} .
$$
Their results, shown in Fig. 1.5, agree remarkably well.
By using foils of different thickness, they showed that the number of particles scattered through a given angle was proportional to the thickness of the foil, and by using foils made from different metals (tin, silver, copper and aluminium) they were able to show that this number was proportional to the square of the atomic number, $Z$, of the material of the foil.

They were able to slow down the incident $\alpha$-particles, by placing thin sheets of mica immediately in front of the radioactive source. From this they were able to verify that the number of scattered particles was inversely proportional to the fourth power of their velocity, as indicated in (1.12).

物理代写|粒子物理代写Particle Physics代考|What About Quantum Effects

One might ask whether it was correct to assume that classical physics was applicable for the description of Rutherford scattering, which probes sub-atomic scales where we might expect quantum effects to be significant. Of course, at the time of Rutherford’s calculation, Quantum Physics was unknown, but nowadays we know that the incident $\alpha$-particle has an associated de Broglie wave, and that, in general, a wave scattering from a regular configuration of gold atoms will produce a diffraction pattern. The angular scale of such diffraction patterns is of the order of the de Broglie wavelength divided by the mean separation of the gold atoms in the foil.
The de Broglie wavelength, $\lambda$, is given by
$$
\lambda=\frac{h}{m_\alpha v}=\frac{h}{\sqrt{2 m_\alpha T}},
$$
( $h$ is Planck’s constant), the mass of an $\alpha$-particle is $6.6 \times 10^{-27} \mathrm{~kg}$, and for $\alpha$ particles with kinetic energy $5 \mathrm{MeV}\left(8 \times 10^{-13} \mathrm{~J}\right)$ this gives a wavelength
$$
\lambda \approx 6 \times 10^{-15} \mathrm{~m}
$$
In contrast, the separation of the gold atoms is around $170 \mathrm{~nm}$.
This means that the effect of diffraction from the gold atoms is negligible. On the other hand, the size of the nucleus itself is indeed of the order of the de Broglie wavelength of the incident particles, so that for projectiles with somewhat smaller wavelengths, diffraction patterns can be observed from diffraction off single nuclei and these patterns can yield useful information about the structure of nuclei. This is the subject of Chap. $2 .$

物理代写|粒子物理代写Particle Physics代考|PHYS522

粒子物理代考

物理代写|粒子物理代写粒子物理学代考|卢瑟福散射截面的确认


1913年,Geiger和Marsden进行了一个精确得多的实验来检验Rutherford公式(1.12)的细节。他们检查了速率对散射角的依赖性,发现与预测一致
$$
N(\theta) \propto \frac{1}{\sin ^4(\theta / 2)} .
$$
他们的结果,如图1.5所示,非常一致。通过使用不同厚度的箔,他们表明,通过给定角度散射的粒子数量与箔的厚度成正比,通过使用不同金属(锡,银,铜和铝)制成的箔,他们能够表明,这个数字与箔材料的原子序数$Z$的平方成正比


他们能够通过将云母薄片直接放置在辐射源的前面来减缓事件$\alpha$ -粒子。由此,他们能够验证散射粒子的数量与它们速度的四次方成反比,如(1.12)所示。

物理代写|粒子物理代写粒子物理学代考|关于量子效应

. . .


有人可能会问,假设经典物理学适用于描述卢瑟福散射是否正确,卢瑟福散射探测亚原子尺度,在那里我们可能预期量子效应是显著的。当然,在卢瑟福计算的时候,量子物理学还不为人知,但现在我们知道这个事件 $\alpha$-粒子有一个相关的德布罗意波,一般来说,从金原子的规则结构中散射出来的波会产生衍射图样。这种衍射图样的角度尺度是德布罗意波长除以箔中金原子的平均分离的量级。
德布罗意波长, $\lambda$,由
给出$$
\lambda=\frac{h}{m_\alpha v}=\frac{h}{\sqrt{2 m_\alpha T}},
$$
( $h$ 是普朗克常数),an的质量 $\alpha$-particle是 $6.6 \times 10^{-27} \mathrm{~kg}$,和 $\alpha$ 具有动能的粒子 $5 \mathrm{MeV}\left(8 \times 10^{-13} \mathrm{~J}\right)$ 它给出的波长
$$
\lambda \approx 6 \times 10^{-15} \mathrm{~m}
$$相比之下,金原子的分离是在周围 $170 \mathrm{~nm}$
这意味着金原子衍射的影响可以忽略不计。另一方面,原子核本身的大小确实与入射粒子的德布罗意波长相当,因此,对于波长稍小的抛射物,可以从单个原子核的衍射上观察到衍射图样,这些图样可以提供有关原子核结构的有用信息。这是本章的主题。 $2 .$

物理代写|粒子物理代写Particle Physics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|粒子物理代写Particle Physics代考|PHY357H1

如果你也在 怎样代写粒子物理Particle Physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

粒子物理学或高能物理学是对构成物质和辐射的基本粒子和力量的研究。

statistics-lab™ 为您的留学生涯保驾护航 在代写粒子物理Particle Physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写粒子物理Particle Physics代写方面经验极为丰富,各种代写粒子物理Particle Physics相关的作业也就用不着说。

我们提供的粒子物理Particle Physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|粒子物理代写Particle Physics代考|PHY357H1

物理代写|粒子物理代写Particle Physics代考|Flux and Cross Section

The “flux”, $F$, of incident particles is defined as the number of incident particles arriving per unit area per second at the target.

The number of particles, $d N(b)$, with impact parameter between $b$ and $b+d b$ is the flux multiplied by the area between two concentric circles of radius $b$ and $b+d b$ (see Fig. 1.4)
$$
d N(b)=F 2 \pi b d b .
$$

Differentiating (1.3) gives us
$$
d b=-\frac{D}{4 \sin ^2(\theta / 2)} d \theta
$$
which allows us to write an expression for the number of $\alpha$-particles scattered through an angle between $\theta$ and $\theta+d \theta$ after substituting (1.5) and (1.3) into (1.4):
$$
d N(\theta)=F \pi \frac{D^2}{4} \frac{\cos (\theta / 2)}{\sin ^3(\theta / 2)} d \theta
$$
(the minus sign has been dropped as it merely indicates that as $b$ increases, the scattering angle $\theta$ decreases $-d N(\theta)$ must be positive).

The “differential cross section”, $d \sigma / d \theta$, with respect to the scattering angle is the number of scatterings between $\theta$ and $\theta+d \theta$ per unit flux, per unit range of angle, i.e.
$$
\frac{d \sigma}{d \theta}=\frac{d N(\theta)}{F d \theta}=\pi \frac{D^2}{4} \frac{\cos (\theta / 2)}{\sin ^3(\theta / 2)}
$$
It is more usual to quote the differential cross section with respect to a given interval of solid angle, $d \Omega$. Solid angle is defined such that an area element, $d S$, of a sphere of radius $r$ subtends a solid angle (at the centre of the sphere)
$$
d \Omega=\frac{d S}{r^2} .
$$
The unit of solid angle is the “steradian” (sr). Solid angle is related to the scattering angle $\theta$ and the “azimuthal angle”, $\phi$, by
$$
d \Omega=\sin \theta d \theta d \phi
$$

物理代写|粒子物理代写Particle Physics代考|Inconsistency of the “Plum Pudding” Model

Let us consider what would be expected if the “Plum Pudding” model were indeed correct.

We know from Gauss’ law that at a distance $r$ from the centre of the atom, the electric field is determined by the charge enclosed in a sphere of radius $r$ surrounding the centre of the atom.

The volume of a sphere of radius $r$ is proportional to $r^3$. Therefore for $r$ smaller than the radius, $R$, of the atom, the electric charge enclosed with a sphere of radius $r$ is a fraction $r^3 / R^3$ of the total electric charge (assuming a uniform distribution of electric charge throughout the “dough”), so that the magnitude of the electric field at a distance $r$ from the centre of the atom is given by
$$
\left(\frac{r^3}{R^3}\right) \frac{Z e}{4 \pi \varepsilon_0 r^2},(r \leq R)
$$
This is a maximum for $r=R$. This means that the scattering angle cannot be larger than the scattering angle corresponding to impact parameter $b=R$. For values of impact parameter $b<R$, the scattering angle decreases as $b$ decreases.

We have seen above that for $\alpha$-particles with typical kinetic energy of $5 \mathrm{MeV}$, this corresponds to a maximum scattering angle of around $3 \times 10^{-4}$ radians $\left(\approx 0.017^{\circ}\right)$. Such an angle would have heen far ton small to he observed in any of the GeigerMarsden experiments and they certainly would not have observed any scattering exceeding $90^{\circ}$.In fact, the scattering from the “Plum Pudding” model is expected to be even smaller as the above estimate neglects any attractive force between the $\alpha$-particle and the electrons (the “plums”) embedded in the “dough”.

物理代写|粒子物理代写Particle Physics代考|PHY357H1

粒子物理代考

物理代写|粒子物理代写粒子物理代考|通量和截面

.

入射粒子的“通量”$F$定义为每单位面积每秒到达目标的入射粒子数量 碰撞参数在$b$和$b+d b$之间的粒子数量$d N(b)$是通量乘以半径为$b$和$b+d b$的两个同心圆之间的面积(见图1.4)
$$
d N(b)=F 2 \pi b d b .
$$

微分(1.3)得到
$$
d b=-\frac{D}{4 \sin ^2(\theta / 2)} d \theta
$$
,这允许我们在将(1.5)和(1.3)代入(1.4)之后,写出$\alpha$ -粒子通过$\theta$和$\theta+d \theta$之间的角度散射的数量的表达式:
$$
d N(\theta)=F \pi \frac{D^2}{4} \frac{\cos (\theta / 2)}{\sin ^3(\theta / 2)} d \theta
$$
(负号被删除了,因为它仅仅表示随着$b$的增加,散射角度$\theta$减小$-d N(\theta)$一定是正的) “微分截面”,$d \sigma / d \theta$,相对于散射角是$\theta$到$\theta+d \theta$之间的每单位通量,每单位角度范围的散射数,即
$$
\frac{d \sigma}{d \theta}=\frac{d N(\theta)}{F d \theta}=\pi \frac{D^2}{4} \frac{\cos (\theta / 2)}{\sin ^3(\theta / 2)}
$$
更常用的是引用相对于给定的立体角区间的微分截面$d \Omega$。实心角的定义是:半径为$r$的球体的面积元$d S$对应一个实心角(在球体的中心)
$$
d \Omega=\frac{d S}{r^2} .
$$
实心角的单位是“立体角”(sr)。立体角与散射角$\theta$和“方位角”$\phi$相关,由
$$
d \Omega=\sin \theta d \theta d \phi
$$

物理代写|粒子物理代写粒子物理学代考|“Plum Pudding”模型的不一致性

.


让我们考虑一下,如果“葡萄干布丁”模型确实是正确的,我们会期待什么


我们从高斯定律得知,在距离原子中心$r$的地方,电场是由围绕原子中心半径为$r$的球体内的电荷决定的


半径为$r$的球体的体积与$r^3$成正比。因此,对于半径为$R$小于$r$的原子,半径为$r$的球体所包围的电荷是总电荷$r^3 / R^3$的一部分(假设电荷在整个“面团”中均匀分布),因此,从原子中心到$r$处的电场的大小由
$$
\left(\frac{r^3}{R^3}\right) \frac{Z e}{4 \pi \varepsilon_0 r^2},(r \leq R)
$$
给出,这是$r=R$的最大值。这意味着散射角不能大于冲击参数$b=R$对应的散射角。对于冲击参数$b<R$,散射角随$b$的减小而减小


我们在上面已经看到,对于典型动能为$5 \mathrm{MeV}$的$\alpha$ -粒子,这对应的最大散射角约为$3 \times 10^{-4}$弧度$\left(\approx 0.017^{\circ}\right)$。这个角度比盖格·马斯登的任何一个实验都要小得多,他们当然也不会观察到任何超过$90^{\circ}$的散射。事实上,“葡萄干布丁”模型的散射预计会更小,因为上面的估计忽略了$\alpha$粒子和嵌入在“面团”中的电子(“李子”)之间的引力

物理代写|粒子物理代写Particle Physics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|粒子物理代写Particle Physics代考|PHYS3717

如果你也在 怎样代写粒子物理Particle Physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

粒子物理学或高能物理学是对构成物质和辐射的基本粒子和力量的研究。

statistics-lab™ 为您的留学生涯保驾护航 在代写粒子物理Particle Physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写粒子物理Particle Physics代写方面经验极为丰富,各种代写粒子物理Particle Physics相关的作业也就用不着说。

我们提供的粒子物理Particle Physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|粒子物理代写Particle Physics代考|PHYS3717

物理代写|粒子物理代写Particle Physics代考|The Geiger-Marsden Experiments

As we shall see later the “Plum Pudding” model predicts that a charged particle which is moving through such a positively charged “dough” will experience a very weak electric force and will only undergo very small angular deflections. In order to verify this, Hans Geiger and Ernest Marsden, at the behest of Ernest Rutherford, carried out three experiments between 1908 and 1910 in which $\alpha$-particles from a radioactive source were incident on a very thin foil of gold (gold was selected because it can be beaten very thin – the foil used by Geiger and Marsden had a thickness of $400 \mathrm{~nm}$ ). The entire apparatus was encased in a tube, which was evacuated in order to minimize energy loss of the $\alpha$-particles before they scattered off the foil. A schematic sketch of the experimental setup is shown in Fig. 1.1.
In the first experiment, [13] a screen was placed behind the gold foil and scintillations caused by the $\alpha$-particles landing on the screen, were observed with a travelling microscope. Although most $(86 \%)$ of the $\alpha$-particles passed through with a deflection of less than $1^{\circ}$, a substantial angular spread of scintillations was observed.

In the second experiment [14], the screen was placed on the incident side of the gold foil in order to observe reflected $\alpha$-particles. The screen was protected from direct $\alpha$-particles by placing an impenetrable lead plate in the direct path of the particles. They nevertheless observed that about one particle in 8000 was reflected by the foil, implying that there had been scattering through an angle of greater than $90^{\circ}$ – way above the limit predicted by the “Plum Pudding” model.

In a third experiment [15], a year later, Geiger and Marsden used several different foils of different thickness and made of different materials. In this experiment, they managed to determine the most probable deflection angle. They showed that the most probable angle of scattering:

  1. Increased with increasing thickness of the foil,
  2. Increased with the atomic mass of the material the foil,
  3. Decreased with increasing velocity of the incident $\alpha$-particles.

物理代写|粒子物理代写Particle Physics代考|Rutherford’s Scattering Formula

Rutherford’s surprise at the results of the Geiger-Marsden experiment, particularly the fact that some of the $\alpha$-particles were scattered though an angle of more than $90^{\circ}$, led him to state during a lecture at Cambridge University:

It was almost as incredible as if you fired a 15 -inch shell at a piece of tissue paper and it came back and hit you. On consideration, I realized that this scattering backward must be the result of a single collision. ..
In 1911, he adopted the model postulated 7 years earlier by the Japanese physicist Hantaro Nagaoka [16]. This model comprised of a small positively charged nucleus at the centre of an atom with electrons orbiting around it. Within this model, Rutherford calculated the probability of scattering of the $\alpha$-particles through an angle $\theta[17]$ under the following assumptions:

  • The atom contains a nucleus of charge $Z e$, where $Z$ is the atomic number of the atom (i.e. the number of electrons in the neutral atom),
  • The nucleus can be treated as a point particle,
  • The nucleus is sufficiently massive compared with the mass of the incident $\alpha$ particle that the nuclear recoil may be neglected,
  • The laws of classical mechanics and Electromagnetism can be applied and that no other forces are present,
  • The collision is elastic.
    If the collision between the nucleus and incident particle, with kinetic energy $T$ and electric charge $z e^1$ were head-on, as shown in Fig. 1.2, the distance of closest approach $D$ is obtained by equating the initial kinetic energy to the Coulomb energy at closest approach, i.e.
    $$
    T=\frac{z Z e^2}{4 \pi \varepsilon_0 D}
    $$
    so that the distance of closest approach is given by
    $$
    D=\frac{z Z e^2}{4 \pi \varepsilon_0 T}
    $$
    at which point the $\alpha$-particle reverses direction.
    In general, the collision is not head-on, but is described by a quantity, $b$, called the “impact parameter”. This is the perpendicular distance between the nucleus and the initial line of the incident projectile, as shown in Fig. 1.3.
物理代写|粒子物理代写Particle Physics代考|PHYS3717

粒子物理代考

物理代写|粒子物理代写粒子物理学代考|盖格-马斯登实验


正如我们稍后将看到的,“葡萄干布丁”模型预测,一个带电粒子在穿过这样一个带正电的“面团”时,将经历一个非常弱的电场,并且只会发生非常小的角偏转。为了证实这一点,汉斯·盖革和欧内斯特·马斯登在欧内斯特·卢瑟福的要求下,在1908年到1910年间进行了三次实验,在实验中,来自辐射源的$\alpha$粒子被入射到非常薄的金箔上(选择金是因为它可以被打得非常薄——盖革和马斯登使用的金箔的厚度为$400 \mathrm{~nm}$)。整个装置被封装在一个管子里,管子被清空,以便在$\alpha$ -粒子从箔上分散之前将能量损失降到最低。实验装置的示意图如图1.1所示。在第一个实验中,在金箔后面放置一个屏幕,用移动显微镜观察$\alpha$ -粒子落在屏幕上引起的闪烁。虽然$\alpha$ -粒子中的大多数$(86 \%)$以小于$1^{\circ}$的偏转度穿过,但仍观察到闪烁的大量角度扩散


在第二个实验[14]中,为了观察反射的$\alpha$ -粒子,将屏幕放置在金箔的入射侧。通过在颗粒的直接路径上放置一个不可穿透的铅板,屏幕免受直接$\alpha$颗粒的影响。尽管如此,他们还是观察到大约每8000个粒子中就有一个被箔片反射,这意味着已经通过一个大于$90^{\circ}$的角度进行了散射——远高于“葡萄干布丁”模型预测的极限


一年后,在第三个实验中,盖革和马斯登使用了几种不同厚度、不同材料制成的箔片。在这个实验中,他们成功地确定了最可能的偏转角度。他们表明,最可能的散射角度:

  1. 随箔片厚度的增加而增加,
  2. 随箔片材料原子质量的增加而增加,
  3. 随入射$\alpha$ -粒子速度的增加而减少
    物理代写|粒子物理代写粒子物理学代考|卢瑟福散射公式
    卢瑟福对盖格-马斯登实验的结果感到惊讶,特别是有些$\alpha$粒子的散射角度超过了$90^{\circ}$,这使他在剑桥大学的一次演讲中说这简直不可思议,就像你向一张薄纸发射一枚15英寸的炮弹,它却打回来打在你身上。经过思考,我意识到这种向后散射一定是一次碰撞的结果。1911年,他采用了7年前由日本物理学家长冈汉太郎提出的模型。这个模型由一个位于原子中心的带正电的小原子核组成,原子核周围环绕着电子。在这个模型中,Rutherford计算了$\alpha$ -粒子通过$\theta[17]$角度散射的概率,在以下假设条件下:原子含有一个带电荷的原子核 $Z e$,其中 $Z$ 为原子的原子序数(即中性原子中的电子数),
  4. 核可视为点粒子,
  5. 与入射质量相比,核的质量足够大 $\alpha$ 粒子的核后坐力可以忽略,
  6. 经典力学和电磁学定律可以应用,并且没有其他力存在,
  7. 碰撞是弹性的。如果原子核与入射粒子之间发生碰撞,则具有动能 $T$ 电荷 $z e^1$ 如图1.2所示,最接近的距离 $D$ 将初始动能与最接近处的库仑能相等,即
    $$
    T=\frac{z Z e^2}{4 \pi \varepsilon_0 D}
    $$
    使最接近的距离由
    给出$$
    D=\frac{z Z e^2}{4 \pi \varepsilon_0 T}
    $$
    $\alpha$粒子反转方向。一般来说,碰撞不是正面的,而是用一个量来描述的, $b$,称为“冲击参数”。这是核与入射弹的初始线之间的垂直距离,如图1.3所示。
物理代写|粒子物理代写Particle Physics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写