## 澳洲代写 随机过程Stochastic process代考2023

statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！

statistics-lab™ 为您的留学生涯保驾护航 在代写代考随机过程Stochastic process方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考随机过程Stochastic process相关的作业也就用不着说。

## 随机过程Stochastic process代考

#### 傅立叶分析Fourier analysis代写代考

• 数学模型Mathematical model
• 线性代数Linear algebra
• 概率学Probability

## 随机过程Stochastic process定义

A stochastic or stochastic process can be defined as a collection of random variables indexed by some mathematical set, which means that each random variable in the stochastic process is uniquely related to some element in the set. Historically, the index set was some subset of the real lines, such as the natural numbers, which gave the index set a temporal interpretation. For example, the state space can be integers, solid lines, or… n-dimensional Euclidean space]. An increment is the amount of change of a random process between two exponential values, usually interpreted as two points in time. Due to randomness, a random process can have many outcomes, and a single outcome of a random process is called a sample function or realization.

Many fields use observations as functions of time (or, more rarely, spatial variables). In the simplest case, these observations yield a well-defined curve. In fact, from the earth sciences to the humanities, observations are more or less unstable. Therefore, there is a certain uncertainty in the interpretation of these observations, which may be reflected in the use of probabilities to express them.

Stochastic processes generalize the concept of random variables used in probability. It is defined as a sequence of random variables X(t) related to all values t ∈ T (usually time).

From a statistical perspective, we treat all available observations x(t) as realizations of the process, which creates certain difficulties. The first problem concerns the fact that the duration of the build process is usually infinite, whereas the implementation covers a finite duration. Therefore, it is impossible to perfectly reproduce reality. A second, more serious difficulty is that, unlike random variable problems, the available information about the process is often reduced to a single realization.

## 随机过程Stochastic process的重难点

$p$ e $q=1$ – $p$ :
\begin{aligned} & P\left(X_i=1\right)=p ; \ & P\left(X_i=0\right)=q=1-p . \end{aligned}

$$P\left(S_n=k\right)=\left(\begin{array}{l} n \ k \end{array}\right) p^k q^{n-k}$$

$$P(N=n)=P\left(S_{n-1}=0\right) \cdot P\left(X_n=1\right)=q^n \frac{p}{q} .$$

$P\left(N_k=n\right)=P\left(S_{n-1}=k-1\right) \cdot P\left(X_n=1\right)=\left(\begin{array}{c}n-1 \ k-1\end{array}\right) p^k q^{n-k}$

$$P\left(P_k=r\right)=P\left(N_k=r+k\right)=\left(\begin{array}{c} r+k-1 \ k-1 \end{array}\right) p^k q^r=(-1)^k\left(\begin{array}{c} -r \ k \end{array}\right) p^k q^r$$
Applicazioni
[ modifica | modifica wikitesto ]

$$P{X=N}=\frac{(2 N) !}{N !(2 N-N) !} p^N(1-p)^N=\left(\begin{array}{c} 2 N \ N \end{array}\right)\left(p-p^2\right)^N .$$

$$P{X=N}=\left(\begin{array}{c} 2 N \ N \end{array}\right)\left(\frac{1}{2}\right)^{2 N} \approx \frac{1}{\sqrt{N \pi}},$$我们对足够大的 $N$ 应用斯特林近似，

$$N ! \sim \sqrt{2 \pi N}\left(\frac{N}{e}\right)^N .$$现在记住随机变量的期望值由下式给出

$$E[X]=\sum_{n=0}^{\infty} n P(n)$$

## 随机过程Stochastic process的相关课后作业范例

Show that in successive tosses of a fair die indefinitely, the probability of obtaining no 6 is 0 .

Solution: For $n \geq 1$, let $E_n$ be the event of at least one 6 in the first $n$ tosses of the die. Clearly,
$$E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq E_{n+1} \subseteq \cdots .$$
Therefore, $E_n$ ‘s form an increasing sequence of events. Note that $\lim {n \rightarrow \infty} E_n=\bigcup{i=1}^{\infty} E_i$ is the event that in successive tosses of the die indefinitely, eventually a 6 will occur. By the Continuity of the Probability Function (Theorem 1.8), we have
$$P\left(\lim {n \rightarrow \infty} E_n\right)=\lim {n \rightarrow \infty} P\left(E_n\right)=\lim {n \rightarrow \infty}\left[1-\left(\frac{5}{6}\right)^n\right]=1-\lim {n \rightarrow \infty}\left(\frac{5}{6}\right)^n=1-0=1 .$$
This shows that, with probability 1 , eventually a 6 will occur. Therefore, the probability of no 6 ever is 0 .

## 澳洲代写 多元统计分析代写Multivariate Statistical Analysis代考2023

statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！

statistics-lab™ 为您的留学生涯保驾护航 在代写代考多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

## 多元统计分析代写Multivariate Statistical Analysis代考

#### 概率论Probability distribution代写代考

\begin{aligned}
& \beta_{0 j}=\gamma_{00}+\gamma_{01} W_j+u_{0 j} \
& \beta_{1 j}=\gamma_{10}+u_{1 j}
\end{aligned}
$$\gamma_{00} -总截距（当所有预测因子等于 0 时，所有组的因变量得分平均值） • W_j – 二级预测因子。 • \gamma_{01} – 因变量 \beta_{1 j}与二级预测因子 W_j 之间的总体回归系数（斜率 • u_{0 j}- 组截距与总体截距之差的随机误差 • \gamma_{10} – 因变量\beta_{1 j} 与第 1 层预测因子X_{i j} 之间的总体回归系数（斜率 • u_{1 j}斜率的误差成分{ }^{[2]}（总体斜率与组斜率之差） ## 多尺度模型Multilevel Models的相关课后作业范例 这是一篇关于图论Graph Theoryry的作业 问题 1. This box summarizes the terminology for the various algebraic terms used in the models i y_{i j} is the dependent variable: the outcome for individual i living in neighbourhood j. Individuals are numbered from i=1, \ldots, N and each lives in one neighbourhood j=1, \ldots, J. There are n_j individuals from neighbourhood j so N=\sum_{j=1}^J n_j. x_{p i j} are the independent variables, measured on individual i in neighbourhood j. The subscript p is used to distinguish between the variables. x_{p j} are independent variables, measured at the neighbourhood level; this variable takes the same value for all individuals living in neighbourhood j. \beta_0 is used to denote the intercept. \beta_p is the regression coefficient associated with x_{p i j} or x_{p j}. u_{0 j} is the estimated effect or residual for area j. This is the difference in the outcome for an individual in neighbourhood j compared to an individual in the average neighbourhood, after taking into account those characteristics that have been included in the model. The 0 in the subscript denotes that this is a random intercept residual, a departure from the overall intercept \beta_0 applying equally to everyone in neighbourhood j regardless of individual characteristics. u_{p j} is the slope residual for neighbourhood j that is associated with the independent variable x_{p i j} or x_{p j}. Just as u_{0 j} denotes a departure from the overall intercept \beta_0, u_{p j} indicates the extent of a departure from the overall slope in a random slope model. e_{0 i j} is the individual-level residual or error term for individual i in neighbourhood j. \sigma_{u 0}^2 is the| variance of the neighbourhood-level intercept residuals u_{0 j}. \sigma_{u p}^2 is the variance of the neighbourhood-level slope residuals u_{p j}. \sigma_{u 0 p} is the covariance between the neighbourhood-level intercept residuals u_{0 j} and slope residuals u_{p j}. \sigma_{e 0}^2 is the variance of the individual-level errors e_{0 i j}. \rho_{\mathrm{I}} is the intraclass correlation coefficient or the proportion of the total variation in the outcome that is attributable to differences between areas. ## 最后的总结： 通过对多尺度模型Multilevel Models各方面的介绍，想必您对这门课有了初步的认识。如果你仍然不确定或对这方面感到困难，你仍然可以依靠我们的代写和辅导服务。我们拥有各个领域、具有丰富经验的专家。他们将保证你的 essay、assignment或者作业都完全符合要求、100%原创、无抄袭、并一定能获得高分。需要如何学术帮助的话，随时联系我们的客服。 ## 图论代写Graph Theory代考2023 如果你也在图论Graph Theory这个学科遇到相关的难题，请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！ statistics-lab™ 为您的留学生涯保驾护航 在代写代考图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考图论Graph Theory相关的作业也就用不着说。 ## 图论代写Graph Theory代考 图形可用于显示不同事物之间的关系。 由六个节点和七条边组成的图形示例 例如，在考虑铁路或公共汽车线路图时，问题是车站（节点）如何通过线路（边）连接起来，而铁路线的具体弯曲度往往不是一个重要问题。 因此，线路图对车站之间的距离、微妙的布局和线路形状的描述往往与地理实际情况不同。 换句话说，对于线路图的用户来说，车站之间 “如何 “连接才是最重要的信息。 图论探讨了图的各种特性。 当问题不仅是 “如何连接”，而且是 “从哪里连接到哪里 “时，就会在边上附加箭头。 这种图称为有向图或数字图。 没有箭头的图称为无向图。 图论Graph Theory包含几个不同的主题，列举如下： #### 数学结构Mathematical structure代写代考 在数学中，集合的结构是由额外的数学对象组成的，这些对象在某种程度上与集合重叠，使集合可视化、可研究、可用作计算工具，并为集合及其元素赋予特定的意义。 一些可能的结构包括度量、代数结构（群、场等）、拓扑、度量、排序、等价和微分结构。有时，一个集合会同时被赋予几种结构，这使得数学家可以研究结构之间丰富的协同作用。例如，阶诱导拓扑。另一个例子是，集合既是群又具有拓扑结构，如果这两种结构以某种方式相关联，它们就会成为拓扑群。 在数学的许多领域中，保留某些结构的集合之间的应用（如域上的结构映射到代域上的等效结构）都非常重要，被称为态。例如，保留代数结构的同态；保留拓扑结构的同态；以及保留微分结构的差分同态。 #### 离散数学Discrete mathematics代写代考 离散数学是原则上处理离散（换句话说，非连续、零星）对象的数学。 它有时也被称为有限数学或离散数学。 在涉及图论、组合学、优化问题、计算几何、程序设计和算法理论的应用领域中，它经常被用来全面而抽象地描述相关领域[1]。 当然，离散数学也包括数论，但除了初等数论之外，它还与分析和其他领域（解析数论）相关，超出了离散数学的范围。 其他相关科目课程代写： • 多图式Multigraph • 代数图论Algebraic graph theory ## 图论Graph Theory历史 欧拉发表的 “哥尼斯堡七桥 “是第一篇将图形视为数学实体的文章。这篇文章也代表了拓扑几何中一个不依赖于任何测量的问题：哥尼斯堡桥问题的首次讨论。 19 世纪，人们提出并讨论了四色问题，事实证明这个问题非常具有挑战性，直到 20 世纪下半叶才得到解决。汉密尔顿路径问题也被提出。直到 20 世纪中叶，几乎没有其他发现。 20 世纪下半叶，随着组合学和自动计算的蓬勃发展，研究和成果也得到了广泛的发展。一方面，计算机的引入使图论的实验研究得以发展（特别是四色定理的证明），另一方面，图论需要研究具有强大应用影响力的算法和模型。短短五十年间，图论已成为数学中高度发达的一章，成果丰富而深刻，应用影响巨大。 The first text to consider graphs as mathematical entities is Euler’s publication on the ‘Seven Bridges of Königsberg’. This text also represents the first time that a problem in topological geometry, which does not depend on any measurement, is addressed: the Königsberg bridges problem. In the 19th century, the four-colour problem was posed and discussed, which proved to be very challenging and was only solved in the second half of the 20th century. The problem of Hamiltonian paths was also introduced. Until the middle of the 20th century little else was discovered. In the second half of the 20th century, studies and results developed extensively, in tune with the strong developments in combinatorics and automatic calculation. On the one hand, the introduction of the computer allowed for the development of experimental investigations of graphs (as, in particular, in the proof of the four-colour theorem) and, on the other hand, required graph theory to investigate algorithms and models with a strong application impact. Within fifty years, graph theory has become a highly developed chapter of mathematics, rich in profound results and with strong application influences. 统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。 ## 图论Graph Theory的重难点 什么是顶点（图形理论）Vertex (graph theory)？ 在离散数学中，更具体地说，在图论中，顶点（复数顶点）或节点是构成图的基本单位：无向图由一组顶点和一组边（无序的顶点对）组成，而有向图由一组顶点和一组弧（有序的顶点对）组成。在图的示意图中，顶点通常用带有标签的圆来表示，而边则用从一个顶点延伸到另一个顶点的线或箭头来表示。 从图论的角度来看，顶点被视为无特征且不可分割的对象，但根据图的应用情况，顶点可能具有额外的结构；例如，语义网络就是一个顶点代表概念或对象类别的图。 有 6 个顶点和 7 条边的图，其中最左边的 6 号顶点是叶顶点或垂顶点 构成一条边的两个顶点称为这条边的端点，这条边称为顶点的入射边。如果图中包含一条边 (v,w)，则顶点 w 与另一个顶点 v 相邻。顶点 v 的邻域是由与 v 相邻的所有顶点组成的图的诱导子图。 什么是有向图Directed graph？ 从形式上看，有向图是一对有序的 G=（V，A），其中 • V 是一个集合，其元素称为顶点、节点或点、 简单有向图 • A 是一组有序的顶点对，称为弧、有向边（有时简称为边，相应的集合称为 E 而不是 A）、箭或有向线。 它与普通或无向图不同，后者是由无序的顶点对定义的，通常称为边、链接或线。 上述定义不允许有向图具有具有相同源节点和目标节点的多条弧，但有些作者考虑了一个更宽泛的定义，允许有向图具有这样的多条弧（即允许弧集是一个多集）。有时，这些实体被称为有向多图（或多图）。 另一方面，上述定义允许有向图具有循环（即直接连接节点与自身的弧），但有些作者认为狭义的定义不允许有向图具有循环。没有循环的有向图可称为简单有向图，而有循环的有向图可称为循环图（参见 “有向图的类型 “一节）。 什么是图形着色Graph coloring 图形着色是为图形中的某些元素分配颜色，使其满足某些约束条件。 最简单地说，就是给所有顶点着色，使相邻顶点不具有相同颜色。 这就是顶点着色。 同样，边着色是给所有边着色，使相邻边不具有相同颜色的问题；面着色是给平面图中边所围成的每个区域（面）着色，使相邻面不具有相同颜色的问题。 ## 图论Graph Theory的相关课后作业范例 这是一篇关于图论Graph Theoryry的作业 问题 1. Let T be a normal tree in G. (i) Any two vertices x, y \in T are separated in G by the set \lceil x\rceil \cap\lceil y\rceil. (ii) If S \subseteq V(T)=V(G) and S is down-closed, then the components of G-S are spanned by the sets \lfloor x\rfloor with x minimal in T-S. Proof. (i) Let P be any x-y path in G. Since T is normal, the vertices of P in T form a sequence x=t_1, \ldots, t_n=y for which t_i and t_{i+1} are always comparable in the tree oder of T. Consider a minimal such sequence of vertices in P \cap T. In this sequence we cannot have t_{i-1}t_{i+1} for any i, since t_{i-1} and t_{i+1} would then be comparable and deleting t_i would yield a smaller such sequence. \mathrm{Sp}$$
x=t_1>\ldots>t_k<\ldots<t_n=y
$$for some k \in{1, \ldots, n}. As t_k \in\lceil x\rceil \cap\lceil y\rceil \cap V(P), the result follows. (ii) Since S is down-closed, the upper neighbours in T of any vertex of G-S are again in G-S (and clearly in the same component), so the components C of G-S are up-closed. As S is down-closed, minimal vertices of C are also minimal in G-S. By (i), this means that C has only one minimal vertex x and equals its up-closure \lfloor x\rfloor. Normal spanning trees are also called depth-first search trees, because of the way they arise in computer searches on graphs. This fact is often used to prove their existence. The following inductive proof, however, is simpler and illuminates nicely how normal trees capture the structure of their host graphs. ## 最后的总结： 通过对图论Graph Theory各方面的介绍，想必您对这门课有了初步的认识。如果你仍然不确定或对这方面感到困难，你仍然可以依靠我们的代写和辅导服务。我们拥有各个领域、具有丰富经验的专家。他们将保证你的 essay、assignment或者作业都完全符合要求、100%原创、无抄袭、并一定能获得高分。需要如何学术帮助的话，随时联系我们的客服。 ## 信息论代写Information Theory代考2023 如果你也在信息论Information Theory这个学科遇到相关的难题，请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！ statistics-lab™ 为您的留学生涯保驾护航 在代写代考信息论Information Theory方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考信息论Information Theory相关的作业也就用不着说。 ## 信息论代写Information Theory代考 信息论是对信息和通信的数学研究。 它是应用数学的一个分支，主要研究数据的量化问题，目的是在媒介中存储尽可能多的数据或通过通信信道发送数据。 一种被称为信息熵的数据测量方法是用存储或通信数据所需的平均比特数来表示的。 例如，如果每天的天气用 3 比特的熵来表示，我们就可以说，经过足够天数的观察，”平均 “每天需要大约 3 比特（每个比特的值为 0 或 1）来表示每天的天气。 信息论的基本应用包括 ZIP 格式（无损压缩）、MP3（无损压缩）和 DSL（传输线编码）。 该领域也是一个跨学科领域，与数学、统计学、计算机科学、物理学、神经科学和电子学相互交叉。 它的影响体现在各种事件中，如旅行者号深空探测任务的成功、CD 的发明、移动电话的实现、互联网的发展、语言学和人类感知的研究以及对黑洞的理解。 信息论包含几个不同的主题，列举如下： #### 概率论Probability theory代写代考 概率论（英语：probability theory，法语：théorie des probabilités，德语：Wahrscheinlichkeitstheorie）是数学的一个分支，提供并分析偶然现象的数学模型。 它最初起源于对赌博（如掷骰子）的研究。 现在，它仍被用作保险和投资等领域的基础理论。 虽然 “概率论 “一词有时也用来指概率计算领域，但本文并不涉及。 #### 计算机科学Computer science代写代考 计算机科学或计算机科学或 CS 是研究信息和计算的理论基础及其在计算机上的实现和应用的领域。 计算机科学也被翻译为 “信息科学 “或 “信息工程”。 计算机科学有许多不同的领域。 一些领域以应用为导向，如计算机制图，而另一些领域则更具数学性质，如被称为理论计算机科学的领域。 计算科学是一个响应科学和技术计算的 “计算需求 “的领域，研究实现这一需求的手段就是高性能计算。 另一种看似简单的分类是 “硬件”（如计算机工程）和 “软件”（如程序设计），但有些领域可同时被描述为 “硬件 “和 “软件”，如可重构计算，因此这并不是一种简单的分类。 其他相关科目课程代写： • 统计推断Statistical inference • 统计力学Statistical mechanics • 量子计算Quantum computing ## 信息论Information Theory历史 1948 年 7 月和 10 月，克劳德-香农（Claude Shannon）在《贝尔系统技术杂志》（Bell System Technical Journal）上发表了《通信的数学理论》（A Mathematical Theory of Communication）一文，这是决定信息论诞生并立即引起世界关注的决定性事件。 在这篇文章发表之前，贝尔实验室几乎没有发展出什么信息理论概念，处理等价事件的假设也一直是隐含的。哈里-奈奎斯特（Harry Nyquist）在 1924 年发表的文章《影响电报速度的某些因素》（Certain Factors Affecting Telegraph Speed）中包含了一些理论部分，量化了 “情报 “及其在通信系统中传输的 “速度”，给出了 W=K \log m 的关系式，其中 W 是情报传输的速度，m 是每一步可选择的不同电压水平的数量，而 K 是一个常数。1928 年拉尔夫-哈特利（Ralph Hartley）发表的文章《信息的传输》（Transmission of Information）用信息一词来表示一个可测量的量，反映了接收者将一个符号序列与另一个符号序列区分开来的能力；文中对信息的定义是：H=\log S^n=n \log S，其中 S 是可能的符号数，n 是传输的符号数。因此，信息的自然计量单位是十进制数位，后来为了纪念他，改称为哈特里。阿兰-图灵在 1940 年对第二次世界大战中德军使用的英格玛密码的破译进行统计分析时使用了类似的想法。 In July and October 1948, Claude Shannon published A Mathematical Theory of Communication in the Bell System Technical Journal, which was the decisive event that determined the birth of information theory and immediately brought it to the attention of the world. This was the decisive event that determined the birth of information theory and brought it to the world’s attention immediately. Prior to this article, Bell Labs had developed few information-theoretic concepts, and the assumption of dealing with equivalent events had been implicit. Harry Nyquist’s 1924 article Certain Factors Affecting Telegraph Speed contained some theoretical parts that quantified “intelligence” and its “speed” of transmission through a communication system, giving W=K \log m  where W is the speed at which the intelligence is transmitted, m is the number of different voltage levels that can be selected at each step, and K is a constant.The 1928 article Transmission of Information by Ralph Hartley used the term information to denote a measurable quantity that It reflects the ability of a receiver to distinguish one sequence of symbols from another; information is defined in the article as H=\log S^n=n \log S, where S is the number of possible symbols and n is the number of symbols transmitted. Thus, the natural unit of measurement for information is the decimal digit, later renamed Hartree in his honour. Alan Turing used a similar idea in 1940 when he statistically analysed the breaking of the Enigma code used by the Germans in World War II. 统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。 ## 信息论Information Theory的重难点 什么是概率质量函数Probability mass function？ 概率质量函数（PMF）是概率论和统计学中的一种函数，它将离散随机变量映射为取该值的概率（有时简称为概率函数）。 给定离散随机变量 X：S \rightarrow \mathbb{R}，概率函数为$$
p_X(x)=P(X=x)=P(\s \in S: X(s)=x))
$$该函数将随机变量 X 取的每个值 x 与变量 X 取该值的概率联系起来。此外，必须满足以下等式：\Sigma_{i=1}^{\infty} p_X\left(x_i\right)=1 为了将此定义扩展到整个实数直线，我们假设对于 X 不能取的每个值 x（即不包含在 X 的支持中），其值为 0，即$$
p_X： \³mathbb{R} \longrightarrow[0,1], p_X(x)= \begin{cases}P(X=x), & x \in S, \ 0, & x \in \mathbb{R}. \backslash S .\end{cases}
$$由于 S，即 X 的支持，是一个可数集，p_X(x) 几乎到处都是空函数。 在离散多元变量（即支持是 \mathbb{R}^n 的离散子集）X=\left(X_1, X_2, \ldots, X_n\right) 的情况下，联合概率函数定义如下：$$
p_X\left(x_1, x_2, \ldots, x_n\right)=P\left(\left(X_1=x_1\right) \cap \left(X_2=x_2\right) \cap \ldots \cap\left(X_n=x_n\right)\right)
$$为了记号的方便，第二个成员通常被写成更简单的 P\left(X_1=x_1, X_2=x_2, \ldots, X_n=x_n\right) 什么是定向信息Directed information？ 有向信息是一种信息论度量，它量化了从随机字符串 X^n=\left(X_1, X_2, \ldots, X_n\right) 到随机字符串 Y^n=\left(Y_1, Y_2, \ldots, Y_n\right) 的信息流。有向信息一词由詹姆斯-梅西（James Massey）提出，其定义为$$
I\left(X^n \rightarrow Y^n\right) \triangleq \sum_{i=1}^n I\left(X^i ; Y_i \mid Y^{i-1}\right)
$$其中 I\left(X^i ; Y_i \mid Y^{i-1}\right) 是条件互信息 I\left(X_1, X_2, \ldots, X_i ; Y_i \mid Y_1, Y_2, \ldots, Y_{i-1}\right) 。 有向信息可应用于因果关系起重要作用的问题，如具有反馈能力的离散无记忆网络的信道容量、具有块内记忆的网络容量、具有因果侧信息的赌博、具有因果侧信息的压缩、实时控制通信设置和统计物理学等。 什么是概率分布Probability distribution 更正式地说，给定一个概率空间 (\Omega, \mathcal{F}, \nu ) （其中 \Omega 是一个称为样本空间或事件集的集合、 \mathcal{F}是\Omega上的西格玛代数，\nu是概率度量），给定一个可测空间(E, \mathcal{E})，一个(E, \mathcal{E})变量随机是一个可测函数X： \Omega \rightarrow E 从样本空间到 E。 在这个定义中，我们可以理解，如果对于每个 A \ in \mathcal{E} 我们都有 X^{-1}(A) \ in \mathcal{F} ，那么函数 X 就是可测的。这个可测性定义是 Lindgren（1976）所定义的定义的一般化：当且仅当事件 \omega \in \Omega: X(\omega) \leq \lambda} 对于每个 \lambda 都属于 \mathcal{B} 时，定义在样本空间 \Omega 上的函数 X 才被称为相对于 Borel 场 \mathcal{B} 是可测的。 如果 E 是拓扑空间，并且 mathcal{E} 是波尔的西格玛代数，那么 X 也被称为 E 随机变量。此外，如果 E=\mathbb{R}^n，那么 X 就被简单地称为随机变量。 换句话说，随机变量 X 是由定义在事件集 \Omega 上的概率度量诱导目标可测空间 E 上的概率度量的一种方法。 • 一维随机变量（即值在 \mathbb{R} 中）被称为简单或单变量。 • 多维随机变量被称为多变量或多元变量（双变量、三变量、k-uple）。 取决于参数 t（其中 t 通常代表时间）的随机变量被视为随机过程。 ## 信息论Information Theory的相关课后作业范例 这是一篇关于信息论Information Theory的作业 问题 1. For nonnegative numbers, a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n,$$
\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \geq\left(\sum_{i=1}^n a_i\right) \log \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}
$$with equality if and only if \frac{a_i}{b_i}= const. Proof: Assume without loss of generality that a_i>0 and b_i>0. The function f(t)=t \log t is strictly convex, since f^{\prime \prime}(t)=\frac{1}{t} \log e>0 for all positive t. Hence by Jensen’s inequality, we have$$
\sum \alpha_i f\left(t_i\right) \geq f\left(\sum \alpha_i t_i\right)
$$for \alpha_i \geq 0, \sum_i \alpha_i=1. Setting \alpha_i=\frac{b_i}{\sum_{j=1}^n b_j} and t_i=\frac{a_i}{b_i}, we obtain$$
\sum \frac{a_i}{\sum b_j} \log \frac{a_i}{b_i} \geq \sum \frac{a_i}{\sum b_j} \log \sum \frac{a_i}{\sum b_j},
$$which is the log sum inequality. We now use the \log sum inequality to prove various convexity results. We begin by reproving Theorem 2.6.3, which states that D(p | q) \geq 0 with equality if and only if p(x)=q(x). By the log sum inequality,$$
\begin{aligned}
D(p | q) & =\sum p(x) \log \frac{p(x)}{q(x)} \
& \geq\left(\sum p(x)\right) \log \sum p(x) / \sum q(x) \
& =1 \log \frac{1}{1}=0
\end{aligned}
$$with equality if and only if \frac{p(x)}{q(x)}=c. Since both p and q are probability mass functions, c=1, and hence we have D(p | q)=0 if and only if p(x)=q(x) for all x. ## 最后的总结： 通过对信息论Information Theory各方面的介绍，想必您对这门课有了初步的认识。如果你仍然不确定或对这方面感到困难，你仍然可以依靠我们的代写和辅导服务。我们拥有各个领域、具有丰富经验的专家。他们将保证你的 essay、assignment或者作业都完全符合要求、100%原创、无抄袭、并一定能获得高分。需要如何学术帮助的话，随时联系我们的客服。 ## 有限元方法代写Finite Element Method代考2023 如果你也在有限元方法Finite Element Method这个学科遇到相关的难题，请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！ statistics-lab™ 为您的留学生涯保驾护航 在代写代考有限元方法Finite Element Method方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考有限元方法Finite Element Method代写方面经验极为丰富，各种代写有限元方法Finite Element Method相关的作业也就用不着说。 ## 有限元方法代写Finite Element Method代考 有限元法（FEM）是一种数值分析方法。 它是一种通过数值方法获得难以解析求解的微分方程近似解的方法，由 Turner-Clough-Martin-Topp 提出。 将定义方程的区域划分为小区域（元素），每个小区域中的方程由相对简单且通用的插值函数来近似。 该方法是在结构力学领域发展起来的，并广泛应用于其他领域。 其背后的理论在数学上组织良好，再加上泛函分析（Riess表示定理、Lax-Milgram定理等）。 使用 FEM 研究和分析现象有时称为“有限元分析 (FEA)”。 特征 如果我们在每个子区域内用线性函数进行插值（如果近似空间成为原始解空间的子空间，我们将寻求某种投影），那么在整个区域中它是适当范数的最佳近似。表明 它可以处理线性问题、非线性问题、动态分析等多种问题。 这是由于如何创建近似方程和区域形状的自由度很高。 在 FEM 中，通过使用变分微分法最小化误差函数来近似解。 有限元方法包含几个不同的主题，列举如下： #### 偏微分方程Partial differential equation代写代考 微分方程通常有很多解，常常添加边界条件来限制解集。 在常微分方程的情况下，每个解都有一系列由某些参数的值表征的解，但在偏微分方程的情况下，将参数视为取函数值更有用。 除非方程组是超定的，否则这通常是正确的。 偏微分方程作为描述与流体、引力场和电磁场等场相关的自然现象的模型出现在自然科学领域。 这些领域是在飞行模拟、计算机图形学或天气预报等处理中发挥重要作用的工具。 广义相对论和量子力学的基本方程也是偏微分方程。 它也是经济学尤其是金融工程中的一个重要概念。 #### 初值问题Initial value problem代写代考 初值问题是一个微分方程 y^{\prime}(t)=f(t, y(t)) 与 f: \Omega \subset \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R} ^n 其中\Omega 是\mathbb{R} \times \mathbb{R}^n 的开集， 与 f 分布域中的点一起，也称为 Schwartz$$
\left(t_0, y_0\right) \in \Omega \text {, }
$$分布或广义函数是概括数学中称为初始条件的经典函数概念的对象。 分析。 分布使得有可能 初值问题的解是函数 y，它是微分方程的解并且满足$$
y\left(t_0\right)=y_0\text {. }
$$不存在于古典意义上。 在更高维度中，微分方程被方程组 y_i^{\prime}(t)=f_i\left(t, y_1(t), y_2(t), \ldots\right) 和  取代 y(t) 被视为向量 \left(y_1(t), \ldots, y_n(t)\right)，最常与空间位置相关。 更一般地，未知函数 y 可以在无限维空间上取值，例如巴纳赫空间或分布空间。 通过以与独立函数相同的方式处理导数，将初始值问题扩展到更高阶，例如 y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right)。 其他相关科目课程代写： • 常微分方程Ordinary differential equation • 数值线性代数Numerical linear algebra • 变分微积分Calculus of variations ## 有限元方法Finite Element Method历史 虽然很难引用有限元方法的发明日期，但该方法起源于解决土木和航空工程中复杂的弹性和结构分析问题的需要。它的发展可以追溯到 A. Hrennikoff 和 R 的工作 库朗在20世纪40年代初。 另一位先驱是扬尼斯·阿吉里斯 (Ioannis Argyris)。 在苏联，该方法的实际应用介绍通常与Leonard Oganesyan的名字联系在一起。在中国，冯康也于20世纪50年代末和1960年代初根据大坝建设的计算独立地重新发现了该方法，其中 它被称为基于变分原理的有限差分法。 尽管这些先驱者使用的方法不同，但他们都有一个基本特征：将连续域网格离散化为一组离散子域（通常称为元素）。 Hrennikoff 的工作通过使用晶格类比来离散化域，而 Courant 的方法将域划分为有限的三角形子区域，以求解由圆柱体扭转问题引起的二阶椭圆偏微分方程。 库朗的贡献是进化性的，借鉴了瑞利、里兹和伽辽金开发的大量早期偏微分方程结果。 统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。 ## 有限元方法Finite Element Method的重难点 什么是比例边界有限元法 (SBFEM)Scaled boundary finite element method (SBFEM)？ 缩放边界有限元法 (SBFEM) 的引入来自 Song 和 Wolf (1997)。SBFEM 一直是断裂力学问题数值分析领域最有价值的贡献之一。 它是一种半解析的基本无解方法，结合了有限元公式和程序以及边界元离散化的优点。 然而，与边界元法不同，不需要基本的微分解。 什么是广义有限元法Generalized finite element method？ 广义有限元方法 (GFEM) 使用由函数（不一定是多项式）组成的局部空间，这些函数反映了未知解的可用信息，从而确保良好的局部逼近。 然后使用单位划分将这些空间“粘合”在一起以形成近似子空间。 当应用于具有复杂边界的域问题、微尺度问题和边界层问题时，GFEM 的有效性已得到证明。 什么是混合有限元法Mixed finite element method 混合有限元法是一种在偏微分方程问题离散化过程中引入额外的自变量作为节点变量的有限元方法。 ## 有限元方法Finite Element Method的相关课后作业范例 这是一篇关于有限元方法Finite Element Method的作业 问题 1. a. Demonstrate the effects of the time step on the solution for a case where \alpha=0, \beta=1 / 2, \gamma=1 / 4, Solution of part (a): In case the numerical integration parameters are chosen as \alpha=0, \beta=1 / 2, \gamma=\frac{1}{4}, the \alpha-method presents an unconditionally stable and implicit solution algorithm. The transient solutions presented in are obtained by using \Delta t=10^{-1}, 10^{-2}, 10^{-3}, and 10^{-4} second-time steps. This figure compares the numerically calculated solution to the analytically predicted solution given in ; vibration response of the mid-point of the beam (top) and the vibration snapshots (bottom) of the whole beam are plotted as a function of time. We see that the solution remains stable for all four time step sizes, but the coarsest time step, \Delta t=10^{-1}, has significant period and amplitude errors. By using smaller time steps, the error is diminished significantly. For the case of \Delta t=10^{-4}, the numerical and analytical solutions become virtually identical. ## 最后的总结： 通过对有限元方法Finite Element Method各方面的介绍，想必您对这门课有了初步的认识。如果你仍然不确定或对这方面感到困难，你仍然可以依靠我们的代写和辅导服务。我们拥有各个领域、具有丰富经验的专家。他们将保证你的 essay、assignment或者作业都完全符合要求、100%原创、无抄袭、并一定能获得高分。需要如何学术帮助的话，随时联系我们的客服。 ## 组合学代写Combinatorics代考2023 如果你也在组合学Combinatorics这个学科遇到相关的难题，请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！ statistics-lab™ 为您的留学生涯保驾护航 在代写代考组合学Combinatorics方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考组合学Combinatorics代写方面经验极为丰富，各种代写组合学Combinatorics相关的作业也就用不着说。 ## 组合学代写Combinatorics代考 组合学是数学的一个分支，属于离散数学领域，研究满足某些既定条件的配置属性的枚举、构造和存在性。 此外，它还研究一定数量元素的排列或分组。 组合学的方面包括计算给定类型和大小的结构（枚举组合学），决定何时可以满足某些标准，以及构建和分析满足标准的对象（如组合设计和拟阵理论）以及查找对象。 、“更小”或“最优”（极端组合学和组合优化），研究代数背景中出现的组合结构，或将代数技术应用于组合问题（代数组合学）。 组合问题出现在纯数学的许多领域，特别是在代数、概率论、拓扑和几何中，并且组合学在数学优化、计算机科学、遍历理论和统计物理学中也有许多应用。 许多组合问题历来都是孤立考虑的，为某些数学背景下出现的问题提供了适当的解决方案。 然而，到 20 世纪末，强大而通用的理论方法得到了发展，使组合数学本身成为数学的一个独立分支。 图论是组合学中最古老、最容易理解的部分之一，它与其他领域也有许多天然的联系。 组合数学在计算机科学中经常用于获取算法分析中的公式和估计。 组合学包含几个不同的主题，列举如下： #### 分析组合学Analytic combinatorics代写代考 分析组合学涉及使用复杂分析和概率论工具来枚举组合结构。 与使用显式组合公式和生成函数来描述结果的枚举组合学不同，解析组合学旨在获得渐近公式。 #### 划分理论Partition theory代写代考 划分理论研究与整数划分相关的各种枚举和渐近问题，与q级数、特殊函数和正交多项式密切相关。 它最初是数论和分析的一部分，现在被认为是组合数学的一部分或一个独立领域。 它结合了双射方法和分析和解析数论中的各种工具，并与统计力学有联系。 分区可以使用 Young 图或 Ferrers 图以图形方式可视化。 它们出现在数学和物理学的许多分支中，包括对称多项式和对称群以及一般群表示论的研究。 其他相关科目课程代写： • 图论Graph theory • 有限几何Finite geometry • 拟阵理论Matroid theory ## 组合学Combinatorics历史 组合问题自古以来就被研究，但组合数学作为数学的一个重要领域直到最近五十年才被认识。 第一篇重视组合学的文章出自 Netto。 1915 年珀西·亚历山大·麦克马洪 (Percy Alexander MacMahon) 出版了《组合分析》一文后，组合学获得了一定的自主性。在接下来的几年里，它的重要性逐渐增长：König 关于图论和马歇尔·霍尔 (Marshall Hall) 的文本应该被记住。 它的发展受到了 Gian-Carlo Rota 工作的推动，他从 20 世纪 60 年代开始为范围广泛、形式清晰的统一理论的基础做出了贡献。 另一位有影响力的人物是马塞尔·保罗·舒岑伯格。 一种不同但非常有效的行动归功于保罗·埃尔多斯（Paul Erdős）及其提出和解决问题的能力，他的贡献主要涉及极端问题。 Combinatorial problems have been studied since ancient times, but combinatorics as an important field of mathematics has only been recognized in the last fifty years. The first article focusing on combinatorics was by Netto. Combinatorics gained a certain autonomy after Percy Alexander MacMahon published Combinatorial Analysis in 1915. Over the following years its importance gradually grew: König’s texts on graph theory and Marshall Hall should be remembered. Its development was stimulated by the work of Gian-Carlo Rota, who from the 1960s contributed to the basis of a wide-ranging and clearly formalized unified theory. Another influential figure was Marcel Paul Schuzenberg. A different but very effective action was attributed to Paul Erdős and his ability to raise and solve problems, his contribution mainly concerned extreme problems. 统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。 ## 组合学Combinatorics的重难点 什么是极值组合学Extremal combinatorics？ 大多数极值组合学都涉及集合的类别。 这称为极值集合论。 例如，在一个包含 n 个元素的集合中，可以有两两交集的包含 k 个元素的子集的最大数量是多少？ 不包含另一个子集的最大数量是多少？ 最后一个问题在斯佩纳定理中得到了解答，该定理极大地推动了极值集合论的发展。 另一个例子：你可以邀请多少人参加一个聚会，每组三人中有两个互相认识的人，两个互相不认识的人？ 拉姆齐的理论表明，最多可以有五个人参加这个聚会。 或者，假设我们有一个有限的非零整数集合，并且要求我们标记该集合的最大可能子集，但受到任何一对标记整数之和未被标记的限制。 似乎（无论给定的整数实际上是什么！）人们总是可以标记其中的至少三分之一。 什么是概率组合学Probabilistic combinatorics？ 概率证明或概率方法是通过概率考虑对数学对象的确定存在进行非构造性数学证明的技术。 该方法由 Paul Erdős 提出，应用于组合学、数论、线性代数、分析以及其他应用学科，例如计算机科学或信息论。 一般来说，它利用了这样一个事实：如果集合中的所有对象都不具有特定属性，则集合中随机选择的对象满足该属性的概率为零。 如果概率严格小于一，则集合中至少有一个对象不满足该属性。 相反，考虑随机变量（对享有思想属性的对象进行计数的随机变量）的期望值，如果证明该变量可以取低于期望值的值，那么它也必须取大于期望值的值比它（因此计数变量大于 1 的概率为正）。 什么是代数组合学Algebraic combinatorics 代数组合学已被更广泛地视为数学领域，其中组合和代数方法的相互作用特别强烈和重要。 因此，组合主题本质上可以是枚举的，或者涉及拟阵、多面体、偏序集或有限几何。 在代数方面，除了群论和表示论之外，还常用格论和交换代数。 ## 组合学Combinatorics的相关课后作业范例 这是一篇关于组合学Combinatorics的作业 问题 1. For n and r positive integers with r \leq n,$$
P(n, r)=n \times(n-1) \times \cdots \times(n-r+1) .
$$Proof. In constructing an r-permutation of an n-element set, we can choose the first item in n ways, the second item in n-1 ways, whatever the choice of the first item, . . . , and the r th item in n-(r-1) ways, whatever the choice of the first r-1 items. By the multiplication principle the r items can be chosen in n \times(n-1) \times \cdots \times(n-r+1) ways. For a nonnegative integer n, we define n !( read n factorial ) by$$
n !=n \times(n-1) \times \cdots \times 2 \times 1,
$$with the convention that 0 !=1. We may then write$$
P(n, r)=\frac{n !}{(n-r) !} .
$$For n \geq 0, we define P(n, 0) to be 1 , and this agrees with the formula when r=0. The number of permutations of n elements is$$
P(n, n)=\frac{n !}{0 !}=n !
$$## 最后的总结： 通过对组合学Combinatorics各方面的介绍，想必您对这门课有了初步的认识。如果你仍然不确定或对这方面感到困难，你仍然可以依靠我们的代写和辅导服务。我们拥有各个领域、具有丰富经验的专家。他们将保证你的 essay、assignment或者作业都完全符合要求、100%原创、无抄袭、并一定能获得高分。需要如何学术帮助的话，随时联系我们的客服。 ## 微积分代写Calculus代考2023 如果你也在微积分Calculus这个学科遇到相关的难题，请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！ statistics-lab™ 为您的留学生涯保驾护航 在代写代考微积分Calculus方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考微积分Calculus代写方面经验极为丰富，各种代写微积分Calculus相关的作业也就用不着说。 ## 微积分代写Calculus代考 微积分或微积分学是数学领域之一，是分析研究的基础部分。 微积分由两个支柱组成：微分和积分，前者捕捉局部变化，后者处理局部量的全局聚合，虽然很难确定该领域的范围，但一般包括与多元实值函数的微分和积分有关的事项（包括反函数定理和向量分析）。 微分是考虑函数在某一点的切线或切面的操作。 用其他数学术语来说，它基本上是通过线性近似来捕捉复变函数的思想。 因此，导数是一种线性映射。 然而，将多元函数的导数视为线性映射的想法直到 20 世纪才出现。 微分方程是这一思想的自然延伸。 相比之下，积分在几何上等同于求曲线或曲面与坐标轴之间区域的面积（体积）。 黎曼（Bernhard Riemann）将定积分（单变量）的值直接定义为矩形近似的极限，并证明了连续函数有积分。 根据他的定义，积分被称为黎曼积分。 导数和积分是完全不同的概念，但又密切相关，在单变量的情况下，它们与另一变量的逆运算具有相同的含义（微积分基本定理）。 导数是斜率，积分是面积。 微积分包含几个不同的主题，列举如下： #### 多元微积分Multivariable calculus代写代考 多变量微积分（也称为多元微积分）是一变量微积分到多变量函数微积分的扩展：涉及多个变量（多变量）的函数的微分和积分，而不仅仅是一个变量。 多元微积分可以被认为是高级微积分的基本部分。 对于高级微积分，请参阅欧几里得空间上的微积分。 三维空间中微积分的特殊情况通常称为向量微积分。 #### 偏微分方程Partial Differential Equations代写代考 微分方程通常有很多解，常常添加边界条件来限制解集。 在常微分方程的情况下，每个解都有一系列由某些参数的值表征的解，但在偏微分方程的情况下，将参数视为取函数值更有用。 除非方程组是超定的，否则这通常是正确的。 偏微分方程作为描述与流体、引力场和电磁场等场相关的自然现象的模型出现在自然科学领域。 这些领域是在飞行模拟、计算机图形学或天气预报等处理中发挥重要作用的工具。 广义相对论和量子力学的基本方程也是偏微分方程。 它也是经济学尤其是金融工程中的一个重要概念。 其他相关科目课程代写： • 常微分方程Ordinary Differential Equations • 微分几何学Differential Geometry ## 微积分Calculus近代史 在欧洲，博纳文图拉-卡瓦列里在他的论文中讨论了将面积和体积确定为极精细区域的面积和体积之和的方法，从而奠定了微分学和积分学的基础。 他在微积分表述方面的工作促使卡瓦列里的微积分与大约同时在欧洲出现的有限差分法相结合。 约翰-沃利斯、艾萨克-巴罗和詹姆斯-格里高利进行了这一整合，巴罗和格里高利在 1675 年左右证明了微积分基本定理的第二定理。 艾萨克-牛顿以独特的符号引入了乘积微分定律、链式法则、高阶微分符号、泰勒级数和解析函数等概念，并用它们解决了数学物理中的问题。 在出版时，牛顿用等效的几何科目取代了微分，以适应当时的数学术语并避免受到指责。 牛顿在《自然哲学的数学原理》中用微分和积分的方法讨论了各种问题，包括天体的轨道、旋转流体表面的形状、地球的偏心率和重物在摆线上滑动的运动。 除此之外，牛顿还发展了函数的级数展开，显然他了解泰勒级数的原理。 戈特弗里德-莱布尼兹最初被怀疑剽窃牛顿未发表的论文，但现在被公认为是微积分发展的原始贡献者之一。 正是戈特弗里德-莱布尼茨将这些思想系统化，并将微积分确立为一门严谨的学科。 当时，他被指责剽窃牛顿，但今天，他已被公认为建立和发展微分学和积分学的最初贡献者之一。 莱布尼茨明确定义了微量的操作规则，使二阶和高阶导数的计算成为可能，并定义了莱布尼茨法则和链式法则。 与牛顿不同，莱布尼茨非常注重形式主义，他花了很多天来苦苦思索用什么符号来表示每个概念。 In Europe, Bonaventure Cavalieri laid the foundations of differential and integral calculus by discussing in his dissertation the method of determining the area and volume as the sum of the areas and volumes of very fine regions. His work on the formulation of the calculus led to the combination of Cavalieri’s calculus with the finite difference method, which appeared in Europe at about the same time. This integration was carried out by John Wallis, Isaac Barrow, and James Gregory, with Barrow and Gregory proving the Second Theorem of the Fundamental Theorem of Calculus around 1675. Isaac Newton introduced the concepts of the law of product differentiation, the chain rule, higher-order differential notation, Taylor series, and analytic functions in a unique notation, and used them to solve problems in mathematical physics. At the time of publication, Newton replaced differentiation with equivalent geometric subjects to accommodate the mathematical terminology of the time and to avoid censure. In Mathematical Principles of Natural Philosophy, Newton used differential and integral methods to discuss a variety of problems, including the orbits of celestial bodies, the shapes of the surfaces of rotating fluids, the eccentricity of the earth, and the motion of a heavy object sliding on a pendulum. In addition to this, Newton developed the series expansion of functions, and it is clear that he understood the principles of Taylor’s series. Gottfried Leibniz was initially suspected of plagiarizing Newton’s unpublished papers, but is now recognized as one of the original contributors to the development of calculus. It was Gottfried Leibniz who systematized these ideas and established calculus as a rigorous discipline. At the time, he was accused of plagiarizing Newton, but today he is recognized as one of the original contributors to the establishment and development of differential and integral calculus. Leibniz explicitly defined the rules for the operation of differentials, made possible the computation of second- and higher-order derivatives, and defined Leibniz’s law and the chain rule. Unlike Newton, Leibniz was very much a formalist and spent many days agonizing over what symbols to use for each concept. 统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。 ## 微积分Calculus的重难点 什么是极限和无穷小Limits and infinitesimals？ 微积分通常是通过处理非常小的量而发展起来的。从历史上看，第一种方法就是无穷小。这些对象可以像实数一样处理，但在某种意义上是 “无限小 “的。例如，一个无穷小数可能大于 0，但小于序列 1,1 / 2,1 / 3, \ldots中的任何数，因此小于任何正实数。从这个角度看，微积分就是处理无穷小数的一系列技术。符号 d x 和 d y 被认为是无穷小数，导数 d y / d x 是它们的比值。{ }^{[37]} 什么是差分微积分Differential calculus？ 数学中的微积分（微分；微积分）是微分和积分微积分的一个分支，其研究重点是量的变化。 微积分与积分微积分是一个历史领域，将微积分分为两个分支。 微积分的主要研究方向是函数微分（微分商、微分系数）和相关概念，如无穷小及其应用。 函数在所选输入值中的微分商描述了函数在输入值附近的变化率。 求微分商的过程也称为微分。 从几何学角度看，图形上某一点的微分系数是函数图形切线在该点的斜率（如果存在并定义在该点上）。 对于单变量实值函数，函数在某一点的导数通常定义了函数在该点的最佳线性近似值。 什么是莱布尼兹符号Leibniz’s notation 在微积分中，莱布尼兹符号是为了纪念17世纪德国哲学家和数学家戈特弗里德-威廉-莱布尼兹（Gottfried Wilhelm Leibniz）而命名的，它使用符号d x和d y分别表示x和y_1的无限小（或无穷小）增量，正如\Delta x和\Delta y分别表示x和y的有限增量一样。 将 y 视为变量 x 的函数，即 y=f(x)。如果是这种情况，那么 y 相对于 x 的导数，也就是后来的极限$$
\lim {Delta x \rightarrow 0} \frac{Delta y}{Delta x}=\lim {Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{Delta x}、
$$根据莱布尼茨的说法，是y的无穷小增量与x的无穷小增量之商，或$$
\frac{d y}{d x}=f^{prime}(x)、
$$其中右边是约瑟夫-路易-拉格朗日关于 f 在 x 处导数的符号。无穷小的增量称为微分。与此相关的是将无穷小增量相加的积分（例如，将长度、面积和体积作为微小部分的总和来计算），莱布尼茨也为此提供了一个涉及相同微分的密切相关的符号，这种符号的效率在欧洲大陆数学的发展中被证明是决定性的。 ## 微积分Calculus的相关课后作业范例 这是一篇关于微积分Calculus的作业 问题 1. Let P=(0,1,0), Q=(2,1,3), R=(1,-1,2). Compute \overrightarrow{P Q} \times \overrightarrow{P R} and find the equation of the plane through P, Q, and R, in the form a x+b y+c z=d. \overrightarrow{P Q}=\langle 2,0,3\rangle ; \overrightarrow{P R}=\langle 1,-2,2\rangle ; \overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & k \ 2 & 0 & 3 \ 1 & -2 & 2\end{array}\right|=6 \hat{\imath}-\hat{\jmath}-4 \hat{\boldsymbol{k}} Equation of the plane: 6 x-y-4 z=d. Plane passing through P: 6 \cdot 0-1-4 \cdot 0=d. Equation of the plane: 6 x-y-4 z=-1. ## 最后的总结： 通过对微积分Calculus各方面的介绍，想必您对这门课有了初步的认识。如果你仍然不确定或对这方面感到困难，你仍然可以依靠我们的代写和辅导服务。我们拥有各个领域、具有丰富经验的专家。他们将保证你的 essay、assignment或者作业都完全符合要求、100%原创、无抄袭、并一定能获得高分。需要如何学术帮助的话，随时联系我们的客服。 ## 时间序列分析代写Time Series Analysis代考2023 如果你也在时间序列分析Time Series Analysis这个学科遇到相关的难题，请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！ statistics-lab™ 为您的留学生涯保驾护航 在代写代考时间序列分析Time Series Analysis方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考时间序列分析Time Series Analysis代写方面经验极为丰富，各种代写时间序列分析Time Series Analysis相关的作业也就用不着说。 ## 时间序列分析代写Time Series Analysis代考 时间序列是通过连续（或以固定间隔不连续）观察某一现象随时间的变化而获得的一系列数值。 例如，在统计或信号处理中，它是按照时间测量的数据序列，以一定的时间间隔（通常是恒定的）测量。 如果时间间隔不均匀，则称为点过程。 时间序列分析或时间序列分析是一种解释此类时间序列的方法，目的是找出数据序列背后的理论（为什么时间序列会出现这样的结果？） )或进行预测。 时间序列预测包括根据已知的过去事件建立一个未来模型，并在测量之前预测未来可能出现的数据点。 例如，根据某只股票过去的价格趋势预测其未来的价格。 时间序列包含几个不同的主题，列举如下： #### 线性模型general linear model代写代考 时间序列数据有多种形式的模型。 经典的著名线性模型是自回归移动平均模型（ARMA），它将自回归（autoregressive；AR）模型与移动平均（moving average；MA）模型相结合。 此外，还有自回归求和移动平均模型（ARIMA），它结合了求和模型（综合；I）。 这些模型都线性依赖于过去的数据序列和噪声。 对过去数据的非线性依赖很有意思，因为它可能会产生混乱的时间序列。 #### 状态空间（控制论）State Space代写代考 状态空间模型是按以下方式表示时间序列 y_t 的模型：x_t 为状态（不可观测），y_t 为观测值，v_t 为系统噪声（状态转换噪声），w_t 为观测噪声。$$
\begin{aligned}
x_t & =f_t\left(x_{t-1}, v_t\right) \
y_t & =h_t\left(x_t, w_t\right)
\end{aligned}
$$此模型可与粒子过滤器（蒙特卡罗方法）一起使用，以找到状态 x_t 的概率分布。 对 f_t 和 h_t 函数没有限制，但 h_t 必须能够根据观测值反向计算可能性（概率密度或概率质量）。x_t 和 y_t 不必是实向量，可以是任何数据结构。 如果状态和值都是实数列向量，函数 f_t 和 h_t 是线性的（矩阵相乘），系统噪声 v_t 和观测噪声 w_t 遵循多元正态分布，则可得到以下结果。$$
\begin{aligned}
& x_t=F_t x_{t-1}+G_t v_t \
& y_t=H_t x_t+w_t
\end{aligned}
$$状态 x_t 的概率分布（多元正态分布）可以通过卡尔曼滤波得到精确解；ARMA 和 ARIMA 也可以用这个线性模型来处理。 其他相关科目课程代写： • Exploratory data analysis探索性数据分析 • Curve fitting曲线拟合 ## 时间序列分析Time Series Analysis定义 一般来说，数列指的是将对某一现象的若干观察结果按质量特征进行分类。如果该特征是时间，则该数列称为历史数列或时间数列。 观察到的现象称为变量，可以在给定的时间瞬间观察到（状态变量：公司员工人数、证券交易所股票收盘价、利率水平等），也可以在规定长度的周期结束时观察到（流量变量：公司年销售额、季度国内生产总值等）。 我们用 Y 表示现象，用 Y_t 表示时间 t 的观测值，用 t 表示从 1 到 T 的整数，其中 T 是所考虑的时间间隔或时间段的总数。因此，时间序列表示为 Y_t=left{Y_1，Y_2，Y_3，\ldots，Y_T\right}，在这种情况下，长度为 T。 例如，如果要调查 1981 年第一季度至 2008 年第二季度以百万欧元为单位的环比季度国内生产总值（参考年份：2000 年；原始数据），则有 T=110 的观测值，包括： { }^{[1]} • Y_1：1981 年第一季度末的国内生产总值（193 505）； • Y_{12}：1983 年第 4 季度末的本地生產總值 (215 584)； • Y_{55}：1994 年第三季度末的本地生產總值（263 660）。 统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。 ## 时间序列分析Time Series Analysis的重难点 什么是线性近似linear approximation？ 数学中的线性逼近是指用线性函数（或更准确地说，用仿射映射）逼近一般函数。 例如，根据泰勒定理，两次微分的单项式函数 \mathrm{f} 在 n=1 时的值为$$
f(x)=f(a)+f^{\prime}(a)(x-a)+R_2
$$可表示为 R_2 是均值项。 线性近似丢掉了均值项。$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$即$$f(x)+f^{\prime}(a)(x-a) $$。 如果 x 与 a 足够接近，则该近似值成立。 这个等式的右边只是 f 图形在 (a, f(a)) 处的切线的表格表达式，因此也称为切线近似。$$
f(x) \approx f(a)
$$称为 f 在 a 处的标准线性近似值，\mathrm{x}=\mathrm{a}$$ 称为中心。

## 时间序列分析Time Series Analysis的相关课后作业范例

For an $A R(1)$ process the optimal forecast $k$ periods in the future is:
$$E_t\left[Y_{t+k}\right]=\phi^k Y_t$$

Proof. For an $\mathrm{AR}(1)$ process we have shifting (2.6) $k$ periods in the future that:
$$Y_{t+k}=\phi Y_{t+k-1}+a_{t+k} .$$
Applying $E_t$ to both sides we obtain:
$$E_t\left[Y_{t+k}\right]=\phi E_t\left[Y_{t+k-1}\right]+\underbrace{E_t\left[a_{t+k}\right]}{=0}$$ where: $E_t\left[a{t+k}\right]=0$ since $a_{t+k}$ is $i . i . d$. and hence independent of the information at time $t$. Hence:
$$E_t\left[Y_{t+k}\right]=\phi \underbrace{E_t\left[Y_{t+k-1}\right]}{=\phi E_t\left[Y{t+k-2}\right]} .$$
Continuing this process of substitution we have:
$$E_t\left[Y_{t+k}\right]=\phi^k E_t\left[Y_t\right] .$$
Since $Y_t$ is observed at time $t$ and is thus in the information set, it follows that:
$$E_t\left[Y_t\right]=Y_t$$

## 贝叶斯分析代写Bayesian Analysis代考2023

statistics-lab™ 长期致力于留学生网课服务，涵盖各个网络学科课程：金融学Finance经济学Economics数学Mathematics会计Accounting，文学Literature，艺术Arts等等。除了网课全程托管外，statistics-lab™ 也可接受单独网课任务。无论遇到了什么网课困难，都能帮你完美解决！

statistics-lab™ 为您的留学生涯保驾护航 在代写代考贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质量且原创的统计Statistics数学Math代写服务。我们的专家在代考贝叶斯分析Bayesian Analysis代写方面经验极为丰富，各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

## 贝叶斯分析代写Bayesian Analysis代考

#### 贝叶斯实验设计Bayesian experimental design代写代考

• Notation in probability and statistics概率和统计符号
• Exploratory data analysis探索性数据分析

## 贝叶斯分析Bayesian Analysis相关

$$\mathcal{E}{text {wor }}(P, m)=\sup {p \in P}|\epsilon(p, m)|$$

$$\mathcal{E}_{text {avg }}(\mu, m)=\int|\epsilon(p, m)| d \mu(p)$$

## 贝叶斯分析Bayesian Analysis的重难点

$$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$$