分类: 贝叶斯分析代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

统计代写|贝叶斯分析代写Bayesian Analysis代考| Do Not Forget the Importance of the Variance in the TNormal Distribution

The variance captures our uncertainty about the weighted function. Because the TNormal for ranked nodes is always in the range $[0,1]$ any variance above $0.5$ would be considered very high (you should try it out on a simple weighted mean example). You may need to experiment with the variance to get it just right.

In each of the previous examples the variance was a constant, but in many situations the variance will be dependent on the parents. For example, consider the $\mathrm{BN}$ in Figure $9.40$ that is clearly based on a definitional idiom.

In this case system quality is defined in terms of the quality of two subsystems $S 1$ and $S 2$. It seems reasonable to assume all nodes are ranked and that the NPT for System quality should be a TNormal whose mean is a weighted mean of the parents. Assuming that the weights of $S 1$ and $S 2$ are equal we therefore define the mean of the TNormal as wmean $(S 1, S 2)$.

However, it also seems reasonable to assume that the variance depends on the difference between the two subsystem qualities. Consider, for example these two scenarios for subsystems $S 1$ and $S 2$ :

  1. Both $S 1$ and $S 2$ have “medium” quality.
  2. $S 1$ quality is “very high,” while $S 2$ quality is “very low.”
    If the variance in the TNormal expression is fixed at, say $0.1$, then the System Quality in both scenarios 1 and 2 will be the same-as is shown in Figure 9.41(a) and (b). Specifically, the system quality in both cases is medium but with a lot of uncertainty.

However, it seems logical to assume that there should be less uncertainty in scenario 1 (when both subsystems have the same, medium, quality) than in scenario 2 (when both subsystems have very different levels of quality). To achieve the required result we therefore have to ensure that the variance in the TNormal expression is a function of the difference in subsystem qualities. Setting the variance as abs(S1-S2)/5 produces the required result as shown in Figure 9.41(c) and (d).

The use of a variable variance also enables us to easily implement the measurement idiom in the case where all the nodes of the idiom are ranked. This is explained in Box 9.12. The special case of indicator nodes is shown in Box 9.13.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Elicitation Protocols and Cognitive Biases

We are aiming to build a scientific model, so open, factual, and honest discussion of the risks, our beliefs (i.e., theories) about how they interrelate, and what the probabilities are is of the utmost importance. The elicitor (the modeler/risk analyst) and the elicitee (the subject matter expert) must be mutually respectful of each other’s professionalism, skills, and objectives. Attributes of a good elicitation protocol involve elicitors making an effort to understand subject matter sufficiently to probe and challenge discussion in order to allow experts to sharpen and refine thinking. Similarly, more accurate probabilities are elicited when people are asked for reasons for them, but the BN structure supplies some or all of this, thus making this easier than when asking for probabilities alone. Without these prerequisites the elicitation exercise will be futile.

Some practical advice on how to elicit numbers from experts is provided in O’Hagan et al (2006). Box $9.14$ provides some examples of what has been used, based primarily on Spetzler and von Holstein 1975 (also known as the Stanford Elicitation Prototcol).

There is plenty of advice on how not to perform elicitation from the field of cognitive psychology as pioneered by Kahneman and colleagues (1982). A summary (by no means exhaustive) of the well-known biases is listed next and we recommend that these be presented and discussed with experts as part of any pre-elicitation training:

  • Ambiguity effect-Avoiding options for which missing information makes the probability seem unknown.
  • Attentional bias-Neglecting relevant data when making judgments of a correlation or association.
  • Availability heuristic-Estimating what is more likely by what is more available in memory, which is biased toward vivid, unusual, or emotionally charged examples.
  • Base rate neglect-Failing to take account of the prior probability. This was at the heart of the common fallacious reasoning in the Harvard medical study described in Chapter 2 . It is the most common reason for people to feel that the results of Bayesian inference are nonintuitive.
  • Bandwagon effect – Believing things because many other people do (or believe) the same. Related to groupthink and herd behavior.
  • Confirmation bias-Searching for or interpreting information in a way that confirms one’s preconceptions.
  • Déformation professionnelle-Ignoring any broader point of view and seeing the situation through the lens of one’s own professional norms.
统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

贝叶斯分析代考

统计代写|贝叶斯分析代写贝叶斯分析代考|不要忘记方差在t正态分布中的重要性


方差反映了我们对加权函数的不确定性。因为排名节点的TNormal总是在$[0,1]$范围内,$0.5$以上的任何方差都被认为是非常高的(您应该在一个简单的加权平均值示例中尝试它)。您可能需要对方差进行实验以使其正确。


在前面的每个例子中,方差是一个常数,但在许多情况下,方差将依赖于父变量。例如,考虑图$9.40$中的$\mathrm{BN}$,它显然是基于一个定义习惯用法


在本例中,系统质量是根据两个子系统$S 1$和$S 2$的质量定义的。假设所有节点都是排序的,系统质量的NPT应该是一个TNormal,其平均值是父节点的加权平均值,这似乎是合理的。假设$S 1$和$S 2$的权重相等,因此我们将TNormal的平均值定义为wmean $(S 1, S 2)$


然而,假设方差取决于两个子系统质量之间的差异似乎也是合理的。例如,考虑以下两个子系统$S 1$和$S 2$的场景:

  1. $S 1$和$S 2$都是中等质量。
  2. $S 1$质量“非常高”,而$S 2$质量“非常低”。如果TNormal表达式中的方差固定在,比如$0.1$,那么在场景1和场景2中的系统质量将是相同的,如图9.41(a)和(b)所示。具体地说,在这两种情况下,系统质量是中等的,但有很大的不确定性然而,假设场景1(当两个子系统具有相同的中等质量时)的不确定性应该比场景2(当两个子系统具有非常不同的质量水平时)的不确定性更低似乎是合乎逻辑的。因此,为了达到所需的结果,我们必须确保TNormal表达式中的方差是子系统质量差异的函数。将方差设为abs(S1-S2)/5会产生如图9.41(c)和(d)所示的结果变量方差的使用还使我们能够轻松地实现度量习惯用法,在这种情况下,习惯用法的所有节点都是排序的。这将在框9.12中解释。指示节点的特殊情况在框9.13中显示
    统计代写|贝叶斯分析代写贝叶斯分析代考|启发式协议和认知偏差
    我们的目标是建立一个科学的模型,所以公开、实事求是和诚实地讨论风险,我们的信念(即理论)是如何相互联系的,以及概率是什么是最重要的。激发者(建模师/风险分析师)和被激发者(主题专家)必须相互尊重对方的专业知识、技能和目标。一个好的诱导协议的属性包括诱导者努力充分理解主题,以探索和挑战讨论,以便让专家们提高和精炼思维。类似地,当人们被问及其原因时,会引出更准确的概率,但BN结构提供了部分或全部这些,因此比单独询问概率更容易。没有这些先决条件,启发练习将是徒劳的O’Hagan等人(2006)就如何从专家那里引出数字提供了一些实用的建议。Box $9.14$提供了一些已经使用的例子,主要基于Spetzler和von Holstein 1975(也称为斯坦福启发协议)。Kahneman和他的同事(1982)在认知心理学领域率先提出了很多关于如何不进行诱导的建议。下面是对众所周知的偏见的总结(并非详尽无遗),我们建议将这些偏见作为任何预诱导培训的一部分与专家讨论:
    • 歧义效应—避免信息缺失使概率看起来未知的选项。注意偏差-在对相关或关联做出判断时忽略相关数据。
    • 可用性启发式-通过记忆中更多的可用性来估计什么更有可能发生,这偏向于生动的、不寻常的或情绪化的例子。
    • 基准率忽略-未考虑先验概率。这就是第二章中描述的哈佛医学研究中常见谬误推理的核心。人们觉得贝叶斯推断的结果是非直观的,这是最常见的原因。
    • 从众效应-相信一些事情,因为许多其他人也这么做(或相信)。与群体思维和从众行为有关。
    • 确认偏误——以一种证实某人先入为主的方式搜索或解释信息。
    • Déformation professionnelle-忽略任何更广泛的观点,通过自己的专业规范来看待情况
统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

统计代写|贝叶斯分析代写Bayesian Analysis代考|Hints and Tips When Working with Ranked Nodes and NPTs

We have found that the set of weighted functions (i.e., WMEAN, WMIN, WMAX, and MIXMINMAX) is sufficient to generate almost any ranked node NPT in practice where the ranked node’s parents are all ranked.

In cases where the weighted function does not exactly capture the requirements for the node’s $\mathrm{NPL}^{\prime}$ it is usually possible to get to what you want by manually tweaking the NPT that is generated by a weighted function. For example, Figure $9.37$ shows a part of the table that is automatically generated for the node $Y$ as specified in Figure 9.31.

You will note that the probability of $Y$ being “very high” when both parents are “very low” is very close to 0 but not equal to 0 . If you really want this probability to be 0 then you can simply enter 0 manually into that cell.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Exploit the Fact That a Ranked Node Parent Has an Underlying Numerical Scale

In many real-world models you will find that nodes that are not ranked nodes will have one or more parents that are ranked. In such situations you can exploit the underlying numerical property of the ranked node parent to define the NPT of the child node. For example, it makes sense to extend the model of Figure $9.35$ by adding a Boolean node called Release Product? which is true when the product has been sufficiently well tested to be released and false otherwise. The extended model is shown in Figure 9.38.

We could as usual define the NPT for the new Boolean node manually (it has 10 entries). But it makes much more sense and is far simpler to exploit the fact that the node $Y$ has an underlying numerical value between 0 and 1. Since we have a 5-point scale we know that if $Y$ is above $0.5$ then the quality is at least “medium.” If the value is $0.7$ then the quality is in the middle of the “high” range. So, suppose that previous experience suggests that testing effectiveness needs to be “high” in order for the product to be released without too many problems. Then we can simply define the NPT of the node Release product? by the expression:
if $(\mathrm{Y}>0.7$, “True”, “False”).
The effect of running the resulting model with some observations is shown in Figure 9.39.

统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

贝叶斯分析代考

统计代写|贝叶斯分析代写贝叶斯分析代考|处理分级节点和NPTs时的提示和技巧

.


我们发现加权函数集(即WMEAN, WMIN, WMAX,和MIXMINMAX)在实践中足以生成几乎所有排名节点的NPT,其中排名节点的父节点都是排名的


在加权函数不能准确地捕获节点$\mathrm{NPL}^{\prime}$的需求的情况下,通常可以通过手动调整加权函数生成的NPT来达到您想要的效果。例如,图$9.37$显示了为节点$Y$自动生成的表的一部分,如图9.31所示


你会注意到,当父母双方都是“非常低”时,$Y$是“非常高”的概率非常接近于0,但不等于0。如果你真的想要这个概率为0,那么你可以在单元格中手动输入0。

统计代写|贝叶斯分析代写贝叶斯分析代考|利用分级节点父节点具有底层数值尺度的事实


在许多现实世界的模型中,您会发现没有排序的节点将有一个或多个排序的父节点。在这种情况下,您可以利用分级父节点的底层数值属性来定义子节点的NPT。例如,通过添加名为Release Product?的布尔节点来扩展图$9.35$的模型是有意义的。当产品已经经过充分的测试,可以发布时,这是正确的,否则是错误的。扩展的模型如图9.38所示


我们可以像往常一样手动为新布尔节点定义NPT(它有10个条目)。但是,利用节点$Y$具有0到1之间的底层数值这一事实更有意义,也更简单。因为我们采用了5分制,所以我们知道如果$Y$高于$0.5$,那么质量至少是“中等”。如果值为$0.7$,则质量处于“高”范围的中间。因此,假设以前的经验表明,为了使产品在没有太多问题的情况下发布,测试的有效性需要“高”。然后我们可以简单地定义节点发布产品的NPT ?
if $(\mathrm{Y}>0.7$, “True”, “False”)。运行结果模型和一些观察结果的效果如图9.39所示

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

统计代写|贝叶斯分析代写Bayesian Analysis代考|Weighted Averages

A common simple approach to quantitative risk assessment is to use a weighted average score to combine risks and produce an overall “risk score” as shown in Table 9.7. This is purely arithmetical and is easily implemented in a spreadsheet, such as Excel. Here we have identified three risks to a project: Risk $\mathrm{A}$, Risk $\mathrm{B}$ and Risk $\mathrm{C}$ with respective probabilities $10 \%, 20 \%$ and $80 \%$ and “weights” 3,2 , and 1 . This produces an overall weighted average risk score of $25 \%$.

As we saw in Chapter 3, this is the “risk register” approach that can be viewed as the extension of the simple approach to risk-assessment in which we define risk as probability times impact. Specifically, the impacts are viewed as relative “weights.”

For all of the reasons discussed in Chapter 3 we do not recommend this approach to risk assessment, but there may be many reasons why we would want to incorporate weighted averages into a BN. For example, we might wish to use a weighted average as a score to determine which new car to buy based on criteria such as price, quality, and delivery time. Although the weighted average is deterministic (and therefore can be computed in Excel) the values for the criteria could be based on a range of uncertain factors and relationships that require a BN model in which the weighted average is just a component.

Fortunately, it is possible to replicate weighted averages (using the same example probabilities and weights as Table 9.7) in a BN as shown in Figure 9.23.

Each of the risk factors is represented by a Boolean node whose “probability” is simply specified as the “True” value in the NPTso, for example, since Risk A has probability $10 \%$ we set its NPT as “True” $=10 \%$. The Risk Score node is also Boolean but it makes sense to replace the labels “False” and “True” with “Low” and “High,” respectively. The key to ensure we can replicate the weighted average calculation is to introduce the labelled node Weights whose states correspond to the three risk node weights. The normalised weights are used in the NPT for this node.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Alternative Weighted Functions

The weighted mean is not the only natural function that could be used as the mean of the TNormal ranked node NPTs. Suppose, for example, that in Figure $9.26$ we replace the node Quality of Testing Process with the node Testing Effort as shown in Figure 9.35.
In this case we elicit the following information:

  • When $X_1$ and $X_2$ are both “very high” the distribution of $Y$ is heavily skewed toward “very high.”
  • When $X_1$ and $X_2$ are both “very low” the distribution of $Y$ is heavily skewed toward “very low.”
  • When $X_1$ is very low and $X_2$ is “very high” the distribution of $Y$ is centered toward “very low.”
  • When $X_1$ is very high and $X_2$ is “very low” the distribution of $Y$ is centered toward “low.”

Intuitively, the expert is saying here that, for testing to be effective, you need not just to have good people but also to put in the effort. If either the people or the effort is insufficient, then the result will be poor. However, really good people can compensate to a small extent for lack of effort.
A simple weighted mean for $Y$ will not produce an NPT to satisfy these elicited requirements (you can try it out by putting in different weights; you will never be able to satisfy both of the last two elicited constraints). Informally, $Y$ ‘s mean is something like the minimum of the parent values, but with a small weighting in favor of $X_1$. The necessary function, which we call the weighted min function (WMIN), is what is needed in this case. The general form of this function (together with analogous WMAX and the mixture function MIXMINMAX) is shown in Box 9.11. You need not know the details because the function is built into AgenaRisk, so it is sufficient to know what the effect of the function is with different values.

统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

贝叶斯分析代考

统计代写|贝叶斯分析代写贝叶斯分析代考|加权平均值


量化风险评估的一种常见的简单方法是使用加权平均分来组合风险,并产生如表9.7所示的总体“风险评分”。这是纯粹的算术,很容易在电子表格中实现,如Excel。在这里,我们已经确定了一个项目的三个风险:风险$\mathrm{A}$,风险$\mathrm{B}$和风险$\mathrm{C}$,它们各自的概率是$10 \%, 20 \%$和$80 \%$,“权重”是3、2和1。这产生了整体加权平均风险得分$25 \%$ .


正如我们在第三章中看到的,这是“风险登记册”方法,可以被视为风险评估的简单方法的扩展,在该方法中,我们将风险定义为概率乘以影响。具体来说,这些影响被视为相对的“权重”。


由于第3章中讨论的所有原因,我们不推荐使用这种方法进行风险评估,但是可能有很多原因让我们想要在BN中加入加权平均值。例如,我们可能希望使用一个加权平均数作为评分,根据价格、质量和交货时间等标准来决定购买哪辆新车。虽然加权平均值是确定的(因此可以在Excel中计算),但准则的值可以基于一系列不确定因素和关系,这需要一个BN模型,其中加权平均值只是一个组件


幸运的是,可以在BN中复制加权平均值(使用与表9.7相同的示例概率和权重),如图9.23所示


每个风险因素都由一个布尔节点表示,其“概率”在NPTso中简单指定为“True”值,例如,由于风险a的概率为$10 \%$,我们将其NPT设置为“True”$=10 \%$。Risk Score节点也是布尔值,但将标签“False”和“True”分别替换为“Low”和“High”是有意义的。确保我们能够复制加权平均计算的关键是引入标记的节点权重,其状态对应于三个风险节点权重。该节点的NPT中使用归一化权值

统计代写|贝叶斯分析代写贝叶斯分析代考|备选加权函数


加权平均值并不是唯一可以用作TNormal排序节点NPTs平均值的自然函数。例如,假设在图$9.26$中,我们用图9.35所示的节点Testing Effort替换测试过程的质量节点。在这种情况下,我们得到以下信息:

  • 当$X_1$和$X_2$都是“非常高”时,$Y$的分布严重偏向于“非常高”。当$X_1$和$X_2$都是“非常低”时,$Y$的分布严重偏向于“非常低”。
  • 当$X_1$非常低,$X_2$非常高时,$Y$的分布以“非常低”为中心。
  • 当$X_1$非常高,$X_2$是“非常低”时,$Y$的分布以“低”为中心。


直观地说,专家在这里说的是,为了使测试有效,您不仅需要有优秀的人员,还需要投入努力。如果不是人不够,就是努力不够,那么结果就会很差。然而,真正优秀的人可以在一定程度上弥补努力的不足。$Y$的简单加权平均值不会产生一个NPT来满足这些要求(你可以通过放入不同的权重来尝试它;您将永远无法同时满足后两个引发的约束)。非正式地说,$Y$的平均值类似于父值的最小值,但有一个有利于$X_1$的小权重。必要的函数,我们称之为加权最小函数(WMIN),在这种情况下是需要的。该函数的一般形式(以及类似的WMAX和混合函数MIXMINMAX)见框9.11。你不需要知道细节,因为函数内置在AgenaRisk中,所以知道函数对不同值的影响就足够了

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

统计代写|贝叶斯分析代写Bayesian Analysis代考|The Crucial Independence Assumptions

Take a look again at the BN model of Figure $7.3$ and the subsequent calculations we used. Using the terminology of Chapter 5 what we have actually done is use some crucial simplifying assumptions in order to avoid having to work out the full joint probability distribution of:
(Norman late, Martin late, Martin oversleeps, Train strike) We will write this simply as $(N, M, O, T)$
For example, in calculating the marginal probability of $\operatorname{Martin}$ late $(M)$ we assumed that $M$ was dependent only on Martin oversleeps $(O)$ and Train strike $(T)$. The variable Norman late $(N)$ simply did not appear in the equation because we assume that none of these variables are directly dependent on $N$. Similarly, although $M$ depends on both $O$ and $T$, the variables $O$ and $T$ are independent of each other.

These kind of assumptions are called conditional independence assumptions (we will provide a more formal definition of this later). If we were unable to make any such assumptions then the full joint probability distribution of $(N, M, O, T)$ is (by the chain rule of Chapter 5)
$$
P(N, M, O, T)=P(N \mid M, O, T) P(M \mid O, T) P(O \mid T) P(T)
$$
However, because $N$ directly depends only on $T$ the expression $P(N \mid M, O, T)$ is equal to $P(N \mid T)$, and because $O$ is independent of $T$ the expression $P(O \mid T)$ is equal to $P(O)$.
Hence, the full joint probability distribution can be simplified as:
$$
P(N, M, O, T)=P(N \mid T) P(M \mid O, T) P(O) P(T)
$$
and this is exactly what we used in the computations.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Structural Properties of BNs

In $\mathrm{BNs}$ the process of determining what evidence will update which node is determined by the conditional dependency structure. The main formal area of guidance for building sensible BN structures therefore requires some understanding of different types of relationships between variables and the different ways these relationships are structured.

Generally we are interested in the following problem. Suppose that variable $A$ is linked to both variables $B$ and $C$. There are three different ways the links can be directed as shown in Figure 7.8. Although $B$ and $C$ are not directly linked, under what conditions in each case are $B$ and $C$ independent of $A$ ?

Knowing the answer to this question enables us to determine how to construct appropriate links, and it also enables us to formalize the different notions of conditional independence that we introduced informally in Chapter $6 .$

The three cases in Figure $7.8$ are called, respectively, serial, diverging, and converging connections. We next discuss each in turn.

Consider the example of a serial connection as shown in Figure 7.9. Suppose we have some evidence that a signal failure has occurred $(B)$. Then clearly this knowledge increases our belief that the train is delayed $(A)$, which in turn increases our belief that Norman is late $(C)$. Thus, evidence about $B$ is transmitted through $A$ to $C$ as is shown in Figure 7.10.

However, now suppose that we know the true status of $A$; for example, suppose we know that the train is delayed. Then this means we have hard evidence for A (see Box $7.5$ for an explanation of what hard and uncertain evidence are and how they differ).

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|The Crucial Independence Assumptions

再看一下图的BN模型7.3以及我们使用的后续计算。使用第 5 章的术语,我们实际上所做的是使用一些关键的简 化假设,以避免必须计算出以下的完整联合概率分布:(
诺曼迟到,马丁迟到,马丁睡过头,火车罢工) 我们将简单地写这个作为 $(N, M, O, T)$
例如,在计算边际概率时 $\operatorname{Martin}$ 晩的 $(M)$ 我们假设 $M$ 只依赖马丁睡过头 $(O)$ 和火车罢工 $(T)$. 变数诺曼晩 $(N)$ 根 本没有出现在方程中,因为我们假设这些变量都不是直接依赖于 $N$. 同样,虽然 $M$ 取决于两者 $O$ 和 $T$ ,变量 $O$ 和 $T$ 彼此独立。
这类假设称为条件独立性假设 (稍后我们将提供更正式的定义) 。如果我们不能做出任何这样的假设,那么完整 的联合概率分布 $(N, M, O, T)$ 是 (根据第 5 章的链式法则)
$$
P(N, M, O, T)=P(N \mid M, O, T) P(M \mid O, T) P(O \mid T) P(T)
$$
然而,由于 $N$ 直接依赖于 $T$ 表达方式 $P(N \mid M, O, T)$ 等于 $P(N \mid T)$ ,并且因为 $O$ 独立于 $T$ 表达方式 $P(O \mid T)$ 等于 $P(O)$.
因此,完整的联合概率分布可以简化为:
$$
P(N, M, O, T)=P(N \mid T) P(M \mid O, T) P(O) P(T)
$$
这正是我们在计算中使用的。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Structural Properties of BNs

在乙ñs确定哪些证据将更新哪个节点的过程由条件依赖结构确定。因此,构建合理的 BN 结构的主要正式指导领域需要对变量之间不同类型的关系以及这些关系的不同构建方式有所了解。

通常我们对以下问题感兴趣。假设那个变量一个与两个变量相关联乙和C. 如图 7.8 所示,可以通过三种不同的方式来引导链接。虽然乙和C没有直接联系,在每种情况下的条件是乙和C独立于一个 ?

知道这个问题的答案使我们能够确定如何构建适当的链接,也使我们能够形式化我们在第 1 章中非正式介绍的条件独立性的不同概念。6.

图中的三种情况7.8分别称为串行连接、发散连接和收敛连接。我们接下来依次讨论每一个。

考虑如图 7.9 所示的串行连接示例。假设我们有一些证据表明发生了信号故障(乙). 然后很明显,这些知识增加了我们对火车晚点的信念(一个),这反过来又增加了我们对诺曼迟到的信念(C). 因此,有关证据乙是通过一个至C如图 7.10 所示。

但是,现在假设我们知道一个; 例如,假设我们知道火车晚点。那么这意味着我们对 A 有确凿的证据(见方框7.5解释什么是确凿和不确定的证据以及它们有何不同)。

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

统计代写|贝叶斯分析代写Bayesian Analysis代考|Accounting for Multiple Causes

Norman is not the only person whose chances of being late increase when there is a train strike. Martin is also more likely to be late, but Martin depends less on trains than Norman and he is often late simply as a result of oversleeping. These additional factors can be modeled as shown in Figure 7.3.

You should add the new nodes and edges using AgenaRisk. We also need the probability tables for each of the nodes Martin oversleeps (Table 7.3) and Martin late (Table 7.4).

The table for node Martin late is more complicated than the table for Norman late because Martin late is conditioned on two nodes rather than one. Since each of the parent nodes has two states, true and false (we are still keeping the example as simple as possible), the number of combinations of parent states is four rather than two.

If you now run the model and display the probability graphs you should get the marginal probability values shown Figure 7.4(a). In particular, note that the marginal probability that Martin is late is equal to $0.446$ (i.e. $44.6 \%$ ). Box $7.1$ explains the underlying calculations involved in this.

But if we know that Norman is late, then the probability that Martin is late increases from the prior $0.446$ to $0.542$ as shown in Figure 7.4(b). Box $7.1$ explains the underlying calculations involved.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Using Propagation to Make Special

When we enter evidence and use it to update the probabilities in the way we have seen so far we call it propagation. In principle we can enter any number of observations anywhere in the BN model and use propagation to update the marginal probabilities of all the unobserved variables.
This can yield some exceptionally powerful types of analysis. For example, without showing the computational steps involved, if we first enter the observation that Martin is late we get the revised probabilities shown in Figure 7.5(a).

What the model is telling us here is that the most likely explanation for Martin’s lateness is Martin oversleeping; the revised probability of a train strike is still low. However, if we now discover that Norman is also late (Figure 7.5(b)) then Train strike (rather than Martin oversleeps) becomes the most likely explanation for Martin being late. This particular type of (backward) inference is called explaining away (or sometimes called nonmonotonic reasoning). Classical statistical tools alone do not enable this type of reasoning and what-if analysis.

In fact, as even the earlier simple example shows, BNs offer the following benefits:

  • Explicitly model causal factors – It is important to understand that this key benefit is in stark contrast to classical statistics whereby prediction models are normally developed by purely data-driven approaches. For example, the regression models introduced in Chapter 2 use historical data alone to produce equations relating dependent and independent variables. Such approaches not only fail to incorporate expert judgment in scenarios where there is insufficient data, but also fail to accommodate causal explanations. We will explore this further in Chapter $9 .$
  • Reason from effect to cause and vice versa-A BN will update the probability distributions for every unknown variable whenever an observation is entered into any node. So entering an observation in an “effect” node will result in back propagation, that is, revised probability distributions for the “cause” nodes and vice versa. Such backward reasoning of uncertainty is not possible in other approaches.
  • Reduce the burden of parameter acquisition-A BN will require fewer probability values and parameters than a full joint probability model. This modularity and compactness means that elicitation of probabilities is easier and explaining model results is made simpler.
统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Accounting for Multiple Causes

诺曼并不是唯一一个在火车罢工时迟到的机会增加的人。马丁也更有可能迟到,但马丁比诺曼更少依赖火车,而且他经常因为睡过头而迟到。这些附加因素可以建模,如图 7.3 所示。

您应该使用 AgenaRisk 添加新节点和边。我们还需要每个节点 Martin oversleeps(表 7.3)和 Martin Late(表 7.4)的概率表。

节点 Martin Late 的表比 Norman Late 的表更复杂,因为 Martin Late 的条件是两个节点而不是一个节点。由于每个父节点都有两个状态,真和假(我们仍然使示例尽可能简单),父状态的组合数量是四个而不是两个。

如果你现在运行模型并显示概率图,你应该得到如图 7.4(a) 所示的边际概率值。特别注意,马丁迟到的边际概率等于0.446(IE44.6%)。盒子7.1解释了其中涉及的基础计算。

但是如果我们知道 Norman 迟到了,那么 Martin 迟到的概率会比之前的增加0.446至0.542如图 7.4(b) 所示。盒子7.1解释所涉及的基础计算。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Using Propagation to Make Special

当我们输入证据并使用它以我们目前看到的方式更新概率时,我们称之为传播。原则上,我们可以在 BN 模型的任何位置输入任意数量的观测值,并使用传播来更新所有未观测变量的边际概率。
这可以产生一些异常强大的分析类型。例如,在不显示所涉及的计算步骤的情况下,如果我们首先输入 Martin 迟到的观察结果,我们会得到图 7.5(a) 所示的修正概率。

模型在这里告诉我们的是,马丁迟到最可能的解释是马丁睡过头了。修正后的火车罢工概率仍然很低。然而,如果我们现在发现 Norman 也迟到了(图 7.5(b)),那么火车罢工(而不是 Martin 睡过头)成为 Martin 迟到的最可能的解释。这种特殊类型的(反向)推理称为解释(或有时称为非单调推理)。单独的经典统计工具无法实现这种类型的推理和假设分析。

事实上,正如前面的简单示例所示,BN 提供了以下好处:

  • 显式建模因果因素——重要的是要了解,这一关键优势与经典统计形成鲜明对比,经典统计通常通过纯粹的数据驱动方法开发预测模型。例如,第 2 章介绍的回归模型仅使用历史数据来生成与因变量和自变量相关的方程。这种方法不仅无法在数据不足的情况下纳入专家判断,而且无法适应因果解释。我们将在本章中进一步探讨9.
  • 从结果到原因的原因,反之亦然 – 每当将观察输入任何节点时,BN 都会更新每个未知变量的概率分布。因此,在“影响”节点中输入观察结果将导致反向传播,即修改“原因”节点的概率分布,反之亦然。这种对不确定性的反向推理在其他方法中是不可能的。
  • 减少参数获取的负担——与完整的联合概率模型相比,BN 将需要更少的概率值和参数。这种模块化和紧凑性意味着概率的引出更容易,模型结果的解释也变得更简单。
统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

统计代写|贝叶斯分析代写Bayesian Analysis代考|Second-Order Probability

Recall the Honest Joe’s and Shady Sam’s example we encountered in Chapter 4 (Box 4.7). In that example we expressed a belief in the chance of the die being fair or not, as a probability, while being aware that the fairness is also expressed as a probability. At first glance this looks very odd indeed since it suggests we are measuring a “probability about a probability.” We call this a second-order probability. If we think of the fairness of the die, and its chance of landing face up on a 6 , as a property of the die and how it is thrown, then we are expressing a degree of belief in the chance of the die having a given value. This is no different from expressing a degree of belief in a child reaching a given height when they mature in the sense that height and chance are both unknown properties of a thing that is of interest to us.
Example $6.10$ shows how we might model such second-order probabilities in practice.

Let us assume someone has smuggled a die out of either Shady Sam’s or Honest Joe’s, but we do not know which casino it has come from. We wish to determine the source of the die from (a) a prior belief about where the die is from and (b) data gained from rolling the die a number of times.

We have two alternative hypotheses we wish to test: Joe (“die comes from Honest Joe’s”) and Sam (“die comes from Shady Sam’s”). The respective prior probabilities for these hypotheses are:
$$
P(\text { Joe })=0.7 \quad P(\text { Sam })=0.3
$$
This is justified by the suspicion that our smuggler may be deterred by the extra personal risk in smuggling a die from Shady Sam’s compared with Honest Joe’s.

The data consists of 20 rolls of the die, observing there was one “6” and nineteen “not 6 ” results. So, we need to compute the likelihoods $\mathrm{P}($ Joe I data) and $\mathrm{P}($ Sam I data) and combine these (by Bayes theorem) with our prior beliefs about the hypotheses to get our posterior beliefs. To compute the likelihoods, recall that we believed that a die from Honest Joe’s was fair, with a chance of a 6, $p=1 / 6$, and from Shady Sam’s it was unfair, say, $p=1 / 12$. We can use these assumptions with the Binomial distribution to generate the likelihoods we need for the data, $X$ successes in 20 trials, given each of our hypotheses:
$$
P(X=x \mid p, 20)=\left(\begin{array}{l}
20 \
x
\end{array}\right) p^x(1-p)^{20-x}
$$
The results are shown in Table 6.4. Notice that we are expressing beliefs in hypotheses that are equivalent to beliefs about probabilities, in this case
$$
P(\text { Joe })=P(p=1 / 6)
$$
and
$$
P(\text { Sam })=P(p=1 / 12)
$$
From Table $6.4$ we can see that we now should favor the hypothesis that the die was sourced from Shady Sam’s rather than Honest Joe’s. This conclusion reverses our prior assumption (which had favored Honest Joe’s).

统计代写|贝叶斯分析代写Bayesian Analysis代考|A Very Simple Risk Assessment Problem

Since it is important for Norman to arrive on time for work, a number of people (including Norman himself) are interested in the probability that he will be late. Since Norman usually travels to work by train, one of the possible causes for Norman being late is a train strike. Because it is quite natural to reason from cause to effect we examine the relationship between a possible train strike and Norman being late. This relationship is represented by the causal model shown in Figure $7.1$ where the edge connects two nodes representing the variables “Train strike” $(T)$ to “Norman late” $(N)$.

It is obviously important that there is an edge between these variables since $T$ and $N$ are not independent (using the language of Chapter 5); common sense dictates that if there is a train strike then, assuming we know Norman travels by train, this will affect his ability to arrive on time. Common sense also determines the direction of the link since train strike causes Norman’s lateness rather than vice versa.

To ensure the example is as simple as possible we assume that both variables are discrete, having just two possible states: true and false.
Let us assume the following prior probability information:

  1. The probability of a train strike is $0.1$ (and therefore the probability of no train strike is 0.9). This information might be based on some subjective judgment given the most recent news or it might be based on the recent frequency of train strikes (i.e. one occurring about every 10 days). So the prior probability distribution for the variable “Train strike” is as shown in Table 7.1.
  2. The probability Norman is late given that there is a train strike is $0.8$ (and therefore the probability Norman is not late given that there is a train strike is $0.2$ ). The probability Norman is late given that there is not a train strike is $0.1$ (and therefore the probability Norman is not late given that there is not a train strike is 0.9). So, the (conditional) probability distribution for “Norman late” given “Train strike” is as shown in Table $7.2$.
统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Second-Order Probability

回想一下我们在第 4 章中遇到的 Honest Joe 和 Shady Sam 的例子(方框 4.7) 。在该示例中,我们将相信骰子 是否公平的可能性表示为概率,同时意识到公平性也表示为概率。乍一看,这确实看起来很奇怪,因为它表明我 们正在测量“概率的概率”。我们称之为二阶概率。如果我们将骰子的公平性,以及它正面朝上落在 6 的机会视为 骰子的属性以及它是如何抛出的,那么我们就表达了对骰子具有给定概率的信念的程度。价值。这与在孩子成熟 时表达某种程度的信念没有什么不同,因为身高和机会都是我们感兴趣的事物的末知属性。 例子6.10展示了我们如何在实践中模拟这种二阶概率。
让我们假设有人从 Shady Sam’s 或 Honest Joe’s 走私了一个骰子,但我们不知道它来自哪个赌场。我们希望从 (a) 关于骰子来自哪里的先验信念和(b)通过多次滚动骰子获得的数据来确定骰子的来源。
我们有两个我们希望测试的替代假设: Joe (“死来自 Honest Joe’s”) 和 Sam (“死来自 Shady Sam’s”) 。这些假 设各自的先验概率是:
$$
P(\text { Joe })=0.7 \quad P(\text { Sam })=0.3
$$
这是有道理的,因为我们的走私者可能会因为从 Shady Sam’s 走私模具与 Honest Joe’s 相比额外的个人风险而被吓倒。
数据由 20 卷模具组成,观察到有 1 个“ 6 “和 19 个“非 $6^{\prime \prime}$ 结果。所以,我们需要计算可能性 $\mathrm{P}$ (乔一世数据) 和 $\mathrm{P}($ Sam I 数据) 并将这些 (通过贝叶斯定理) 与我们对假设的先前信念相结合,以获得我们的后验信念。要计算可 能性,请回想一下,我们认为 Honest Joe 的骰子是公平的,有 6 的机会, $p=1 / 6$ ,从 Shady Sam 那里说,这 是不公平的, $p=1 / 12$. 我们可以将这些假设与二项分布一起使用来生成数据所需的可能性, $X$ 根据我们的每个 假设,在 20 次试验中取得了成功:
$$
P(X=x \mid p, 20)=(20 x) p^x(1-p)^{20-x}
$$
结果如表 $6.4$ 所示。请注意,在这种情况下,我们表达的假设信念等同于概率信念
$$
P(\text { Joe })=P(p=1 / 6)
$$

$$
P(\mathrm{Sam})=P(p=1 / 12)
$$
从表6.4我们可以看到,我们现在应该支持骰子来自 Shady Sam 而不是 Honest Joe 的假设。这个结论推翻了我 们之前的假设(这有利于诚实乔的假设)。

统计代写|贝叶斯分析代写Bayesian Analysis代考|A Very Simple Risk Assessment Problem

由于 Norman 准时上班很重要,因此许多人(包括 Norman 本人)对他迟到的概率感兴趣。由于诺曼通常乘火车上班,因此诺曼迟到的可能原因之一是火车罢工。因为从因果推理是很自然的,所以我们研究了可能的火车罢工与诺曼迟到之间的关系。这种关系由图 1 所示的因果模型表示7.1其中边连接代表变量“火车罢工”的两个节点(吨)到“诺曼迟到”(ñ).

这些变量之间存在优势显然很重要,因为吨和ñ不是独立的(使用第 5 章的语言);常识表明,如果发生火车罢工,假设我们知道诺曼乘火车旅行,这将影响他准时到达的能力。常识也决定了链接的方向,因为火车撞击导致诺曼迟到,而不是相反。

为了确保示例尽可能简单,我们假设两个变量都是离散的,只有两种可能的状态:真和假。
让我们假设以下先验概率信息:

  1. 火车撞车的概率是0.1(因此没有火车撞击的概率是 0.9)。该信息可能基于给定最新消息的一些主观判断,也可能基于最近的火车罢工频率(即大约每 10 天发生一次)。因此,变量“火车罢工”的先验概率分布如表 7.1 所示。
  2. 鉴于火车罢工,诺曼迟到的概率是0.8(因此,鉴于火车罢工,诺曼不迟到的概率是0.2)。鉴于没有火车罢工,诺曼迟到的概率是0.1(因此,鉴于没有火车罢工,诺曼不迟到的概率是 0.9)。因此,给定“火车罢工”的“诺曼晚点”的(条件)概率分布如表所示7.2.
统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

统计代写|贝叶斯分析代写Bayesian Analysis代考|Probability Notation Where There Are Different

Consider the experiment of rolling two fair dice. There are many different outcomes of interest for this experiment including the following:

  • The sum of the two dice rolled (let’s call this outcome $X$ ).
    The highest number die rolled (let’s call this outcome $Y$ ).
    These two different outcomes of interest have different sets of elementary events.
    Outcome $X$ has eleven elementary events: 2,3,4,5,6,7,8,9,10, 11, 12 .
  • Outcome $Y$ has six elementary events: 1, 2, 3, 4, 5, 6 .
    If we are not careful about specifying the particular outcome of interest for the experiment, then there is the potential to introduce genuine ambiguity when calculating probabilities.

For example, consider the elementary event ” 2 .” What is the probability of observing this event for this experiment? In other words what is $P(2)$ ? The answer depends on whether we are considering outcome $X$ or outcome $Y$ :

  • For outcome $X$, the probability $P(2)$ is $1 / 36$ because there are 36 different ways to roll two dice and only one of these, the roll $(1,1)$, results in the sum of the dice being 2 .
  • For outcome $Y$, the probability $P(2)$ is $1 / 12$ because of the 36 different ways to roll two dice there are three ways, the rolls $(1,2),(2,1)$ and $(2,2)$, that result in the highest number rolled being 2 .
    Because of this ambiguity it is common practice, when there are different outcomes of interest for the same experiment to include some notation that identifies the particular outcome of interest when writing down probabilities. Typically, we would write $P(X=2)$ or $P(Y=2)$ instead of just $P(2)$.

The notation extends to events that comprise more than one elementary event. For example, consider the event $E$ defined as “greater than 3”:

  • For outcome $X$, the event is $E$ is equal to ${4,5,6,7,8,9,10,11,12}$.
  • For outcome $Y$, the event is $E$ is equal to ${4,5,6}$.
    We calculate the probabilities as
  • For event $X, P(E)=11 / 12$.
  • For event $Y, P(E)=3 / 4$.
    Typically we would write $P(X=E)$ or $P(X \geq 3)$ for the former and $P(Y=E)$ or $P(Y \geq 3)$ for the latter.
    In this example the outcomes $X$ and $Y$ can be considered as variables whose possible values are their respective set of elementary events. In general, if there is not an obviously unique outcome of interest for an experiment, then we need to specify each outcome of interest as a named variable and include this name in any relevant probability statement.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Probability Distributions

Consider the experiment of selecting a contractor to complete a piece of work for you. We are interested in the outcome “quality of the contractor.” Since, as discussed in Box 5.5, this is just one of many possible outcomes of interest for this experiment (others might be price of contractor, experience of contractor, etc.) it is safest to associate a variable name, say $Q$, with the outcome “quality of the contractor.” Let us assume that the set of elementary events for $Q$ is {very poôr, poōr, averāge, good, very good}.

On the basis of our previous experience with contractors, or purely based on subjective judgment, we might assign the probabilities to these elementary events for $Q$ as shown in the table of Figure 5.2(a). Since the numbers are all between 0 and 1 , and since they sum to 1 , this assignment is a valid probability measure for $Q$ (i.e., for the experiment with outcome $Q$ ) because it satisfies the axioms.

A table like the one in Figure 5.2(a), or equivalent graphical representations like the ones in Figure 5.2(b) and Figure 5.2(c), is called a probability distribution. In general, for experiments with a discrete set of elementary events:There is a very common but somewhat unfortunate notation for probability distributions. The probability distribution for an outcome such as $Q$ of an experiment is often written in shorthand as simply: $P(Q)$. If there was an event referred to as $Q$ then the expression $P(Q)$ is ambiguous since it refers to two very different concepts. Generally it will be clear from the context whether $P(Q)$ refers to the probability distribution of an outcome $Q$ or whether it refers to the probability of an event $Q$.

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Probability Notation Where There Are Different

考虑掷两个公平骰子的实验。这个实验有许多不同的感兴趣的结果,包括:

  • 掷出的两个骰子的总和(我们称这个结果为X)。
    掷出的最高点数(我们称这个结果为是的)。
    这两种不同的兴趣结果具有不同的基本事件集。
    结果X有十一个基本事件:2,3,4,5,6,7,8,9,10,11,12。
  • 结果是的有六个基本事件:1、2、3、4、5、6。
    如果我们在指定实验感兴趣的特定结果时不小心,那么在计算概率时就有可能引入真正的歧义。

例如,考虑基本事件“2”。对于这个实验,观察到这个事件的概率是多少?换句话说,什么是磷(2)? 答案取决于我们是否考虑结果X或结果是的 :

  • 对于结果X, 概率磷(2)是1/36因为掷两个骰子有 36 种不同的方法,而其中只有一种,掷骰子(1,1),结果骰子的总和为 2 。
  • 对于结果是的, 概率磷(2)是1/12因为掷两个骰子有 36 种不同的方式,所以有三种方式,掷骰子(1,2),(2,1)和(2,2),这导致滚动的最高数字为 2 。
    由于这种模糊性,通常的做法是,当同一实验有不同的感兴趣结果时,在写下概率时包含一些标识感兴趣的特定结果的符号。通常,我们会写磷(X=2)或者磷(是的=2)而不仅仅是磷(2).

该符号扩展到包含多个基本事件的事件。例如,考虑事件和定义为“大于 3”:

  • 对于结果X, 事件是和等于4,5,6,7,8,9,10,11,12.
  • 对于结果是的, 事件是和等于4,5,6.
    我们计算概率为
  • 活动X,磷(和)=11/12.
  • 活动是的,磷(和)=3/4.
    通常我们会写磷(X=和)或者磷(X≥3)对于前者和磷(是的=和)或者磷(是的≥3)对于后者。
    在这个例子中,结果X和是的可以被认为是变量,其可能值是它们各自的基本事件集。一般来说,如果一个实验没有明显独特的感兴趣的结果,那么我们需要将每个感兴趣的结果指定为一个命名变量,并将这个名称包含在任何相关的概率陈述中。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Probability Distributions

考虑选择承包商为您完成一项工作的实验。我们对结果“承包商的质量”感兴趣。因为,正如方框 5.5 中所讨论的,这只是该实验的许多可能感兴趣的结果之一(其他可能是承包商的价格、承包商的经验等)。关联变量名称是最安全的,比如问,结果是“承包商的质量”。让我们假设一组基本事件问是 {非常差,差,平均,好,非常好}。

根据我们以前与承包商的经验,或纯粹基于主观判断,我们可能会为这些基本事件分配概率问如图 5.2(a) 的表格所示。由于这些数字都在 0 和 1 之间,并且它们的总和为 1 ,因此该分配是有效的概率度量问(即,对于有结果的实验问) 因为它满足公理。

类似于图 5.2(a) 中的表格,或类似图 5.2(b) 和图 5.2(c) 中的等效图形表示,称为概率分布。一般来说,对于一组离散的基本事件的实验:概率分布有一个非常常见但有点不幸的符号。结果的概率分布,例如问of an Experiment 通常简写为:磷(问). 如果有一个事件被称为问然后表达式磷(问)是模棱两可的,因为它指的是两个非常不同的概念。一般来说,从上下文中可以清楚地看出是否磷(问)指结果的概率分布问还是指事件发生的概率问.

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

统计代写|贝叶斯分析代写Bayesian Analysis代考|When Frequentist and Subjective Approaches Merge

Consider the following two statements:

  1. There is a $50.9 \%$ chance that a new born baby in the United Kingdom is a girl.
  2. There is a $5 \%$ chance of the Spurs winning the FA Cup next year.
    On the surface there seems to be no doubt that statement 1 is explained by a frequentist argument: Over the last 100 years $50.9 \%$ of all births recorded in the United Kingdom have been girls.

There is also no doubt that statement 2 has no such frequentist explanation (and hence must be subjective) since there is only one FA Cup next year, and we cannot somehow play the tournament many times in the same year and count the number of occasions on which the Spurs win.

But if we dig a little deeper here, things get rather murky. The $50.9 \%$ figure in statement 1 is actually based on many years of data that may disguise crucial trend information.

Suppose we discover that the percentage of girls born is increasing; say a hundred years ago $48.5 \%$ of babies were girls compared with $51.2 \%$ last year. Then surely the probability of a randomly selected newborn being a girl now is higher than $50.9 \%$ (and higher than $51.2 \%$ if the figures have been steadily increasing). And what exactly do we mean by a “randomly” selected baby. Surely, what we are interested in are specific babies such as “the next baby born to Mrs. Roberts of 213 White Hart Lane, London N17.” In that case the frequency data may need to be adjusted to take account of specific factors relevant to Mrs. Roberts. Both the general trend adjustments and the case specific adjustments here clearly require the subjective judgment of relevant experts. But that means, according to the frequentists, that their own approach is no longer valid since, as we saw earlier:

  • The measure cannot be validated
  • Different experts will give different subjective measures

统计代写|贝叶斯分析代写Bayesian Analysis代考|The Basics of Probability

In discussing the difference between the frequentist and subjective approaches to measuring uncertainty, we were careful in Chapter 4 not to mention the word probability. That is because we want to define probability in such a way that it makes sense for whatever reasonable approach to measuring uncertainty we choose, be it frequentist, subjective, or even an approach that nobody has yet thought of. To do this in Section $5.2$ we describe some properties (called axioms) that any reasonable measure of uncertainty should satisfy; then we define probability as any measure that satisfies those properties. The nice thing about this way of defining probability is that not only does it avoid the problem of vagueness, but it also means that we can have more than one measure of probability. In particular, we will see that both the frequentist and subjective approaches satisfy the axioms, and hence both are valid ways of defining probability.

In Section $5.3$ we introduce the crucial notion of probability distributions. In Section $5.4$ we use the axioms to define the crucial issue of independence of events. An especially important probability distribution-the Binomial distribution-which is based on the idea of independent events, is described in Section 5.5. Finally in Section $5.6$ we will apply the lessons learned in the chapter to solve some of the problems we set in Chapter 2 and debunk a number of other probability fallacies.

统计代写|贝叶斯分析代写Bayesian Analysis代考|STATS3023

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|When Frequentist and Subjective Approaches Merge

考虑以下两个陈述:

  1. 有一个50.9%在英国刚出生的婴儿是女孩的可能性。
  2. 有一个5%马刺明年有机会赢得足总杯。
    从表面上看,似乎毫无疑问,陈述 1 可以通过一个常客论点来解释:过去 100 年50.9%在英国记录的所有新生儿中都是女孩。

毫无疑问,陈述 2 没有这样的常客解释(因此必须是主观的),因为明年只有一个足总杯,我们不能以某种方式在同一年多次参加锦标赛并计算场次的次数马刺队获胜。

但是,如果我们在这里再深入一点,事情就会变得相当模糊。这50.9%声明 1 中的数字实际上是基于多年的数据,这些数据可能会掩盖关键的趋势信息。

假设我们发现出生女孩的百分比正在增加;说一百年前48.5%的婴儿是女孩51.2%去年。那么现在随机选择的新生儿成为女孩的概率肯定高于50.9%(并且高于51.2%如果数字一直在稳步增长)。我们所说的“随机”选择的婴儿究竟是什么意思。当然,我们感兴趣的是特定的婴儿,例如“伦敦 N17 白鹿巷 213 号罗伯茨夫人所生的下一个婴儿”。在这种情况下,可能需要调整频率数据以考虑与罗伯茨夫人相关的特定因素。无论是大势调整还是个案调整,显然都需要相关专家的主观判断。但这意味着,根据常客的说法,他们自己的方法不再有效,因为正如我们之前看到的:

  • 无法验证该措施
  • 不同的专家会给出不同的主观衡量标准

统计代写|贝叶斯分析代写Bayesian Analysis代考|The Basics of Probability

在讨论测量不确定性的常客方法和主观方法之间的区别时,我们在第 4 章很小心,更不用说概率这个词了。这是因为我们希望以这样一种方式来定义概率,即无论我们选择何种合理的测量不确定性的方法,无论是常客的、主观的,甚至是尚未想到的方法,它都是有意义的。在部分中执行此操作5.2我们描述了任何合理的不确定性度量都应该满足的一些属性(称为公理);然后我们将概率定义为满足这些属性的任何度量。这种定义概率的方式的好处在于,它不仅避免了模糊性问题,而且还意味着我们可以对概率进行不止一种测量。特别是,我们将看到频率论方法和主观方法都满足公理,因此两者都是定义概率的有效方法。

在部分5.3我们介绍了概率分布的关键概念。在部分5.4我们使用公理来定义事件独立性这一关键问题。5.5 节描述了一个特别重要的概率分布——二项分布——它基于独立事件的思想。最后在部分5.6我们将运用本章中学到的经验来解决我们在第 2 章中提出的一些问题,并揭穿其他一些概率谬误。

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

统计代写|贝叶斯分析代写Bayesian Analysis代考|Frequentist versus Subjective View of Uncertainty

When we consider statements about uncertain events like
The next toss on a coin will be a head.

  • A hurricane will destroy the White House within the next 5 years.
    what we really want to do is measure the uncertainty of such events. In other words we want to be able to make statements like
  • There is a 1 in 2 (or equivalently $50 \%$ ) chance that the next toss on a coin will be a head.
  • There is a 1 in 10 million (or equivalently $0.000001 \%$ ) chance that a hurricane will destroy the White House within the next 5 years.
    Although these statements are superficially similar, there are fundamental differences between them, which come down to the nature of the experiments that give rise to these outcomes. Specifically, whether the following assumptions are reasonable:
  • Assumption 1 (repeatability of experiment)-The experiment is repeatable many times under identical conditions.
  • Assumption 2 (independence of experiments)-Assuming the experiment is repeatable then the outcome of one experiment does not influence the result of any subsequent experiment.

统计代写|贝叶斯分析代写Bayesian Analysis代考|What If You Toss 100 Consecutive Heads

Your job (as a risk expert) is not to calculate the chance of tossing a head. Rather, your job is to calculate the chance that the next toss of the coin is a head (just look back at the original problems posed at the start of this chapter). So, if you observe what is known to be a fair coin being tossed 100 times and each time the result is heads, what do you believe are the chances of the next coin being heads?

A frequentist, given the fair coin assumption, would insist the answer is still $50 \%$. This is because the frequentist, with these assumptions, does not actually require any coin tosses to take place in practice. To the frequentist, the fair coin assumption means that the chance is always $50 \%$ on each throw. In other words, in making a prediction the frequentist must ignore the actual data that has been seen. The 100 consecutive heads would simply be considered a freak coincidence, that is, no more or less likely than any other random sequence of heads and tails. But then, the frequentist must ignore, for example,

  1. The possibility that a fair coin can be tossed in such a way that makes heads more likely
  2. That the coin tossed was not actually the fair coin assumed
    In fact, we will see that such assumptions are irrational given the type of actual data observed. Only the subjective approach coupled with Bayesian reasoning will work effectively in such cases.
统计代写|贝叶斯分析代写Bayesian Analysis代考|MAST90125

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Frequentist versus Subjective View of Uncertainty

当我们考虑有关不确定事件的陈述时,例如
下一次抛硬币将是正面。

  • 飓风将在未来 5 年内摧毁白宫。
    我们真正想做的是衡量此类事件的不确定性。换句话说,我们希望能够做出如下陈述
  • 有 2 个中的 1 个(或等效的50%) 下一次掷硬币的机会是正面。
  • 1000 万分之一(或同等0.000001%) 飓风将在未来 5 年内摧毁白宫的可能性。
    尽管这些陈述表面上相似,但它们之间存在根本差异,这归结为产生这些结果的实验​​的性质。具体来说,以下假设是否合理:
  • 假设 1(实验的可重复性)——实验在相同条件下可重复多次。
  • 假设 2(实验的独立性)——假设实验是可重复的,那么一个实验的结果不会影响任何后续实验的结果。

统计代写|贝叶斯分析代写Bayesian Analysis代考|What If You Toss 100 Consecutive Heads

您(作为风险专家)的工作不是计算抛头露面的机会。相反,你的工作是计算下一次抛硬币正面朝上的概率(只需回顾本章开头提出的原始问题)。所以,如果你观察到已知的硬币被抛 100 次,每次结果都是正面,你认为下一枚硬币正面朝上的机会是多少?

考虑到公平硬币假设,常客会坚持答案仍然是50%. 这是因为根据这些假设,常客实际上并不需要在实践中进行任何抛硬币。对于常客来说,公平硬币假设意味着机会总是50%每次投掷。换句话说,在做出预测时,常客必须忽略已经看到的实际数据。100 个连续的正面将被简单地认为是一个奇怪的巧合,也就是说,与任何其他正面和反面的随机序列一样,可能性不大或小。但是,常客必须忽略,例如,

  1. 可以以更容易出现正面的方式投掷公平硬币的可能性
  2. 投掷的硬币实际上并不是假设的公平硬币
    事实上,我们将看到,鉴于观察到的实际数据类型,这种假设是不合理的。在这种情况下,只有结合贝叶斯推理的主观方法才能有效地发挥作用。
统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

如果你也在 怎样代写贝叶斯分析Bayesian Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

我们提供的贝叶斯分析Bayesian Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

统计代写|贝叶斯分析代写Bayesian Analysis代考|Correlation Coefficient and p-Values

The correlation coefficient is a number between $-1$ and 1 that determines whether two paired sets of data (such as those for height and intelligence of a group of people) are related. The closer to 1 the more “confident” we are of a positive linear correlation and the closer to-1 the more confident we are of a negative linear correlation (which happens when, for example, one set of numbers tends to decrease when the other set increases as you might expect if you plotted a person’s age against the number of toys they possess). When the correlation coefficient is close to zero there is little evidence of any relationship.

Confidence in a relationship is formally determined not just by the correlation coefficient but also by the number of pairs in your data. If there are very few pairs then the coefficient needs to be very close to 1 or $-1$ for it to be deemed “statistically significant,” but if there are many pairs then a coefficient closer to 0 can still be considered “highly significant.”

The standard method that statisticians use to measure the “significance” of their empirical analyses is the $p$-value. Suppose we are trying to determine if the relationship between height and intelligence of people is significant and have data consisting of various pairs of values (height, intelligence) for a set of people; then we start with the “null hypothesis,” which, in this case is the statement “height and intelligence of people are unrelated.” The $p$-value is a number between 0 and 1 representing the probability that the data we have arisen if the null hypothesis were true. In medical trials the null hypothesis is typically of the form that “the use of drug X to treat disease $\mathrm{Y}$ is no better than not using the drug.”

The calculation of the $p$-value is based on a number of assumptions that are beyond the scope of this discussion, but people who need $p$-values can simply look them up in standard statistical tables (they are also computed automatically in Excel when you run Excel’s regression tool). The tables (or Excel) will tell you, for example, that if there are 100 pairs of data whose correlation coefficient is $0.254$, then the $p$-value is $0.01$. This means that there is a 1 in 100 chance that we would have seen these observations if the variables were unrelated.
A low $p$-value (such as $0.01$ ) is taken as evidence that the null hypothesis can be “rejected.” Statisticians say that a $p$-value of $0.01$ is “highly significant” or say that “the data is significant at the $0.01$ level.”

A competent researcher investigating a hypothesized relationship will set a $p$-value in advance of the empirical study. Typically, values of either $0.01$ or $0.05$ are used. If the data from the study results in a $p$-value of less than that specified in advance, the researchers will claim that their study is significant and it enables them to reject the null hypothesis and conclude that a relationship really exists.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Spurious Correlations

Although the preceding examples illustrate the danger of reading too much into dubious correlations between variables, the relationships we saw there did not arise purely by chance. In each case some additional common factors helped explain the relationship.

But many studies, including unfortunately many taken seriously, result in claims of causal relationships that are almost certainly due to nothing other than pure chance.

Although nobody would seriously take measures to stop Americans drinking beer in order to reduce Japanese child mortality, barely a day goes by when some decision maker or another somewhere in the world takes just as irrational a decision based on correlations that turn out to be just as spurious.

For example, on the day we first happened to be drafting this section (16 March 2009) the media was buzzing with the story that working night shifts resulted in an increased risk of breast cancer. This followed a World Health Organization study and it triggered the Danish government to make compensation awards to breast cancer sufferers who had worked night shifts. It is impossible to state categorically whether this result really is an example of a purely spurious correlation. But it is actually very simple to demonstrate why and how you will inevitably find a completely spurious correlation in such a study-which you might then wrongly claim is a causal relationship-if you measure enough things.

统计代写|贝叶斯分析代写Bayesian Analysis代考|STAT4102

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Correlation Coefficient and p-Values

相关系数是一个介于−1和 1 确定两组数据(例如一组人的身高和智力)是否相关。越接近 1,我们对正线性相关越“自信”,越接近 -1,我们对负线性相关越有信心(例如,当一组数字趋于减少而另一组数字趋于减少时,就会发生这种情况)如果您将一个人的年龄与他们拥有的玩具数量进行对比,那么您可能会期望设置增加)。当相关系数接近零时,几乎没有任何关系的证据。

关系的置信度不仅取决于相关系数,还取决于数据中的对数。如果对很少,则系数需要非常接近 1 或−1因为它被认为是“统计显着的”,但如果有很多对,那么接近 0 的系数仍然可以被认为是“高度显着的”。

统计学家用来衡量其实证分析的“重要性”的标准方法是p-价值。假设我们正在尝试确定人的身高和智力之间的关系是否显着,并且拥有由一组人的各种值对(身高、智力)组成的数据;然后我们从“零假设”开始,在这种情况下,它是“人的身高和智力无关”的陈述。这p-value 是一个介于 0 和 1 之间的数字,表示如果原假设为真,我们出现的数据的概率。在医学试验中,零假设的典型形式是“使用药物 X 治疗疾病是还不如不吃药。”

的计算p-value 是基于一些超出本讨论范围的假设,但需要的人p-values 可以简单地在标准统计表中查找它们(当您运行 Excel 的回归工具时,它们也会在 Excel 中自动计算)。例如,表格(或 Excel)会告诉您,如果有 100 对数据的相关系数为0.254,那么p-值是0.01. 这意味着如果变量不相关,我们有 100 分之一的机会看到这些观察结果。
一个低p-值(例如0.01) 被视为可以“拒绝”原假设的证据。统计学家说,p-的价值0.01是“非常重要的”或说“数据在0.01等级。”

调查假设关系的称职研究人员将设置一个p-在实证研究之前的价值。通常,任一值0.01或者0.05被使用。如果研究的数据导致p-值小于预先指定的值,研究人员将声称他们的研究是显着的,这使他们能够拒绝零假设并得出关系确实存在的结论。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Spurious Correlations

尽管前面的例子说明了过度解读变量之间可疑的相关性的危险,但我们在那里看到的关系并不是纯粹偶然出现的。在每种情况下,一些额外的共同因素有助于解释这种关系。

但是许多研究,包括不幸的是,许多被认真对待的研究,都导致了因果关系的主张,几乎可以肯定,这完全是由于纯粹的偶然性。

尽管没有人会认真采取措施阻止美国人喝啤酒以降低日本儿童死亡率,但几乎没有一天,世界上某个地方的某些决策者或其他人会根据相关性做出同样不合理的决定,结果证明是虚假的。

例如,在我们第一次碰巧起草本节的那天(2009 年 3 月 16 日),媒体都在议论夜班工作会增加患乳腺癌的风险的故事。此前,世界卫生组织的一项研究触发了丹麦政府对上夜班的乳腺癌患者进行赔偿。不可能明确说明这个结果是否真的是纯粹虚假相关的一个例子。但实际上很简单,如果你测量了足够多的东西,就可以证明为什么以及如何在这样的研​​究中不可避免地发现完全虚假的相关性——然后你可能会错误地声称这是一种因果关系。

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写