物理代写|高能物理代写High Energy Physics代考|PHYS557
如果你也在 怎样代写高能物理High Energy Physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
高能物理学(也被称为粒子物理学)的目标是确定物质的最基本构成部分,并了解这些粒子之间的相互作用。
statistics-lab™ 为您的留学生涯保驾护航 在代写高能物理High Energy Physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写高能物理High Energy Physics代写方面经验极为丰富,各种代写高能物理High Energy Physics相关的作业也就用不着说。
我们提供的高能物理High Energy Physics及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础

物理代写|高能物理代写High Energy Physics代考|Gravitation as a Fundamental Interaction
Many textbooks begin with a discussion of the classical gravitational force between two macroscopic masses $m_1$ and $m_2$
$$
F_{\mathrm{G}}=-G_{\mathrm{N}} \frac{m_1 m_2}{r^2}
$$
where $G_{\mathrm{N}}$ is Newton’s gravitational constant and $r$ the distance between the masses. With a view to formulating the description of gravitation as an elementary interaction, where the particles exchange a “graviton” (Table 1.1) and from which the law of Newtonian gravitation should result, dimensional analysis of Newton’s equation shows that $G_{\mathrm{N}}$ is not dimensionless, a fundamental requirement for the construction of an elementary theory. That is why a “gravitational fine structure constant” is commonly defined by $\alpha_{\mathrm{G}}=G_{\mathrm{N}} m_{\mathrm{p}}^2 / \hbar c$ on an energy scale equal to the mass of the proton (the quantity that appears in Table 1.1). But by the tiny numerical value of $\alpha_{\mathrm{G}} \sim 10^{-38}$, gravitation can almost always be ignored compared to the other forces of Nature, at least as long as we talk about elementary processes. The question that arises is: why is it then that gravitation dominates the structure of the observable Universe, stars, and galaxies? The simplest answer is to be found in the unique nature of the “charge” of the gravitational field, which is just mass: if macroscopic sets of particles are considered, gravitation “accumulates” until the structure itself is dominated by it, while the other forces cancel each other out as we consider more and more particles. Let us consider quantitatively $N$ particles of equal mass. The radius of a sphere formed by this set of particles depends on $N^{1 / 3}$, while the energy of the gravitational bond is proportional to $N^{2 / 3}$. To compensate for the smallness of the factor of $10^{-38}$ of the constant $\alpha_{\mathrm{G}}$, the number of particles required must be $N=10^{38 \times(3 / 2)}=10^{57}$. This is approximately the number of particles (protons) in a star like our own, with mass denoted by $M_{\odot}$, and results in the “natural” scale where gravitation becomes more important than the other forces at a macroscopic scale (in fact we know that the Sun, for example, does not have a large contribution to its binding energy from strong, weak, and electromagnetic interactions) [7].
This discussion leads to the conclusion that we can neglect gravitation in microscopic systems, unless the energy scale grows as much as to make $\alpha_{\mathrm{G}} \approx 1$. Under these conditions, microscopic gravitation would be as important as the other fundamental interactions. The mass where this equivalence occurs is
$$
m_{\mathrm{Pl}}=\left(\frac{\hbar c}{G_{\mathrm{N}}}\right)^{1 / 2}
$$ the so-called Planck mass, with associated energy $E_{\mathrm{Pl}}=m_{\mathrm{PI}} \times c^2=10^{19} \mathrm{GeV}$. As the most energetic phenomena in the laboratory, and even in the extreme cosmic rays of ultra-high energy discussed in Chap. 12, are still many orders of magnitude below this value, we will never have to worry about gravitation as an elementary theory, i.e., its quantum version. This is fortunate, since we do not yet have a consistent theory of quantum gravitation. Although the basic contribution should be the exchange diagram of an intermediate particle (or graviton) between any two massive particles, no quantum calculation is fully consistent. On the other hand, the classical versions of Newtonian gravitation and General Relativity have had spectacular success. Although we would like to have a quantum theory of gravitation, it has never been possible to build an acceptable version. When proceeding in the same way as in the quantization of other field theories, there is a divergence of the quantum theory of gravitation above a certain order in standard perturbation theory. Many physicists believe that there is a strong analogy here with the history of weak interactions, since Fermi’s quantized theory also leads to divergent results beyond a certain order in perturbation theory. It may be that Einstein’s theory of gravitation is not a fundamental theory, but only an “effective” theory, akin to the Fermi case. Thus, physicists still live in a dual world where they know that, on the one hand, the microscopic world is described by the laws of Quantum Mechanics, and on the other, gravitation behaves in a classical way as far as we can measure and observe, and these two descriptions are incompatible. The solution of this antagonism is what motivates the search for unified theories.
物理代写|高能物理代写High Energy Physics代考|Role of Weak Interactions
In the 19th century, thanks to contributions from Maxwell, Faraday, and others, Electromagnetism was established as a theoretical paradigm for the study of phenomena involving electric charges in the laboratory. The discovery of the electron by J.J. Thompson in 1897 (the quantum of electric charge par excellence) provided a way to “penetrate” the atom by throwing electrons at it, and later to discover the atomic nucleus using helium nuclei (also electrically charged) as projectiles. The observation of the behavior and composition of atomic nuclei then opened an important window in the study of elementary particles.
By the 1920s, the proton had been identified as a component of the Rutherford nucleus. A series of experiments showed that, under certain circumstances, a nucleus could change its state of charge, with the expulsion of an electron from the nucleus. Thus, there were two possibilities: either the atomic nucleus contained electrons, or they were emitted by a particle decaying into a proton and an electron. This last hypothesis received definitive confirmation when Chadwick discovered the neutron in 1931. It was found that neutrons could spontaneously convert into protons, either when free or within the nucleus, whence Nature could change the type of nucleon that constituted the nucleus under certain conditions.
It also became clear that the observed conversion was not of electromagnetic origin (although the electric charge was conserved). Physicists thus sought the origin and nature of the force responsible. In the first place, it had to be a short-range force because the reaction takes place mainly on scales of the order of the atomic nucleus. The characterization of the strength of this force also emerged from the data, and turned out to be several orders of magnitude weaker than the electromagnetic force (see Table 1.1). Thus, the discovery of weak forces associated neutron decay with a new fundamental interaction:
$$
\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\overline{\mathrm{v}}_{\mathrm{e}}
$$
where the neutron and proton were still part of the nucleus, and the electron escaped from the nuclear region. The last protagonist here, in fact an anti-neutrino, was not observed at first, but was postulated by W. Pauli to solve two serious problems with this decay: the conservation of energy and the conservation of angular momentum in the reaction. In fact, in spontaneous decay, such as was observed for neutrons within nuclei, the total angular momentum did not seem to be conserved, since the neutron spin $(1 / 2)$ was equal to half the spin of the particles observed in the reaction products, a proton of spin $1 / 2$ and an electron of spin 1/2. Moreover, the sum of the energies of the particles taking part in the reaction was not constant. Nobody liked to abandon the conservation of energy and the angular momentum in Physics, and this is what inspired Pauli’s creative solution to this problem.

高能物理代考
物理代写|高能物理代写高能物理学代考|引力作为一种基本相互作用
许多教科书开始讨论两个宏观质量$m_1$和$m_2$
$$
F_{\mathrm{G}}=-G_{\mathrm{N}} \frac{m_1 m_2}{r^2}
$$
之间的经典引力,其中$G_{\mathrm{N}}$是牛顿引力常数,$r$是质量之间的距离。为了将引力描述为基本相互作用,其中粒子交换一个“引力子”(表1.1),并由此得出牛顿引力定律,对牛顿方程的量纲分析表明$G_{\mathrm{N}}$不是无量纲的,这是构建基本理论的基本要求。这就是为什么“引力精细结构常数”通常被定义为$\alpha_{\mathrm{G}}=G_{\mathrm{N}} m_{\mathrm{p}}^2 / \hbar c$,其能量尺度等于质子的质量(见表1.1)。但通过$\alpha_{\mathrm{G}} \sim 10^{-38}$这个微小的数值,与自然界的其他力相比,万有引力几乎总是可以被忽略,至少在我们讨论基本过程时是这样。由此产生的问题是:为什么引力主导着可观测的宇宙、恒星和星系的结构?最简单的答案是在引力场的“电荷”的独特性质中找到,这就是质量:如果考虑宏观粒子集,引力“积累”,直到结构本身被它支配,而当我们考虑越来越多的粒子时,其他力相互抵消。让我们定量地考虑$N$质量相等的粒子。由这组粒子组成的球体的半径取决于$N^{1 / 3}$,而引力键的能量与$N^{2 / 3}$成正比。为了补偿常数$\alpha_{\mathrm{G}}$的因子$10^{-38}$的渺小,所需的粒子数必须是$N=10^{38 \times(3 / 2)}=10^{57}$。这大约是像我们这样的恒星中粒子(质子)的数量,质量用$M_{\odot}$表示,结果在“自然”尺度上,引力在宏观尺度上变得比其他力更重要(事实上,我们知道,例如太阳,强、弱和电磁相互作用对它的结合能没有很大贡献)
这个讨论得出的结论是,我们可以忽略微观系统中的引力,除非能量尺度增长到使$\alpha_{\mathrm{G}} \approx 1$。在这些条件下,微观引力将和其他基本相互作用一样重要。发生这种等效的质量是
$$
m_{\mathrm{Pl}}=\left(\frac{\hbar c}{G_{\mathrm{N}}}\right)^{1 / 2}
$$所谓的普朗克质量,其相关能量是$E_{\mathrm{Pl}}=m_{\mathrm{PI}} \times c^2=10^{19} \mathrm{GeV}$。由于实验室中最有能量的现象,甚至在第十二章讨论的超高能量的极端宇宙射线中,仍然比这个值低许多个数量级,我们永远不必担心万有引力作为一个基本理论,即它的量子版本。这是幸运的,因为我们还没有一个一致的量子引力理论。尽管基本贡献应该是任意两个大质量粒子之间的中间粒子(或引力子)的交换图,但没有任何量子计算是完全一致的。另一方面,牛顿万有引力和广义相对论的经典版本已经取得了巨大的成功。尽管我们希望有一个量子引力理论,但一直不可能建立一个可接受的版本。当按照其他场论的量子化方法进行时,标准摄动理论中引力的量子化理论在某一阶以上存在发散。许多物理学家认为这与弱相互作用的历史有很强的相似之处,因为费米的量子化理论也会导致超出摄动理论某一阶的发散结果。爱因斯坦的引力理论可能不是一个基本理论,而只是一个“有效”理论,类似于费米案例。因此,物理学家仍然生活在一个双重世界中,他们知道,一方面,微观世界是由量子力学定律描述的,另一方面,万有引力在我们可以测量和观察的范围内以经典的方式表现,这两种描述是不兼容的。这种对抗性的解决是对统一理论的探索的动力
物理代写|高能物理代写High Energy Physics代考|弱相互作用的作用
在19世纪,由于麦克斯韦、法拉第和其他人的贡献,电磁学被确立为在实验室中研究电荷现象的理论范式。1897年,J.J.汤普森(J.J. Thompson)发现了电子(极好的电荷量子),提供了一种通过向原子投掷电子来“穿透”原子的方法,后来又用氦核(也是带电的)作为抛射物来发现原子核。原子核的行为和组成的观测为基本粒子的研究打开了一扇重要的窗口
到20世纪20年代,质子被确认为卢瑟福核的组成部分。一系列的实验表明,在一定的情况下,原子核可以随着一个电子从原子核中驱逐而改变它的荷电状态。因此,有两种可能:要么原子核中含有电子,要么它们是由衰变为质子和电子的粒子释放出来的。1931年查德威克发现中子时,最后一个假设得到了确切的证实。人们发现,中子可以在游离时或在原子核内自发地转化为质子,因此,在某些条件下,大自然可以改变构成原子核的核子的类型
也很清楚,观察到的转换不是电磁起源(尽管电荷是守恒的)。物理学家因此寻找起作用的力的起源和性质。首先,它必须是一个短程力,因为反应主要发生在原子核的量级上。这种力的强度也从数据中得到了表征,结果是比电磁力弱几个数量级(见表1.1)。因此,弱力的发现将中子衰变与一种新的基本相互作用联系起来:
$$
\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\overline{\mathrm{v}}_{\mathrm{e}}
$$
,其中中子和质子仍然是原子核的一部分,电子从核区域逃逸。这里的最后一个主角,实际上是一个反中微子,一开始并没有被观察到,但W.泡利假设它解决了这个衰变的两个严重问题:反应中的能量守恒和角动量守恒。事实上,在自发衰变中,例如在原子核中观察到的中子,总角动量似乎并不是守恒的,因为中子自旋$(1 / 2)$等于在反应产物中观察到的粒子自旋的一半,一个自旋为$1 / 2$的质子和一个自旋为1/2的电子。此外,参与反应的粒子的能量之和不是恒定的。没有人愿意放弃物理学中的能量守恒和角动量,这就是激发泡利创造性地解决这一问题的原因
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。