分类: R语言代写

统计代写|抽样调查作业代写sampling theory of survey代考|STAT506

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|抽样调查作业代写sampling theory of survey代考|STAT506

统计代写|抽样调查作业代写sampling theory of survey代考|EXAMPLES OF REPRESENTATIVE STRATEGIES

The ratio estimator
$$
t_{1}=X \frac{\sum_{i \in s} Y_{i}}{\sum_{i \in s} X_{i}}
$$
is of special importance because of its traditional use in practice. Here, $\left(p, t_{1}\right)$ is obviously representative with respect to a size measure $x$, more precisely to $\left(X_{1}, \ldots, X_{N}\right)$, whatever the sampling design $p$.

Note, however, that $t_{1}$ is usually combined with SRSWOR or SRSWR. The sampling scheme of LAHIRI-MIDZUNO-SEN (LAHIRI, 1951; MIDZUNO, 1952; SEN, 1953) (LMS) yields a design of interest to be employed in conjunction with $t_{1}$ by rendering it design unbiased.
The Hansen-Hurwitz (HH, 1943) estimator (HHE)
$$
t_{2}=\frac{1}{n} \sum_{i=1}^{N} f_{s i} \frac{Y_{i}}{P_{i}}
$$ with $f_{s i}$ as the frequency of $i$ in $s, i \in \mathcal{U}$, combined with any design $p$, gives rise to a strategy representative with respect to $\left(P_{1}, \ldots, P_{N}\right)^{\prime}$. For the sake of design unbiasedness, $t_{2}$ is usually based on probability proportional to size (PPS) with replacement (PPSWR) sampling, that is, a scheme that consists of $n$ independent draws, each draw selecting unit $i$ with probability $P_{i}$.

Another representative strategy is due to RAO, HARTLEY and COCHRAN (RHC, 1962). We first describe the sampling scheme as follows: On choosing a sample size $n$, the population $\mathcal{U}$ is split at random into $n$ mutually exclusive groups of sizes suitably chosen $N_{i}\left(i=1, \ldots, n ; \sum_{1}^{n} N_{i}=N\right)$ coextensive with $\mathcal{U}$, the units bearing values $P_{i}$, the normed sizes $\left(0<P_{i}<1, \sum P_{i}=1\right)$. From each of the $n$ groups so formed independently one unit is selected with a probability proportional to its size given the units falling in the respective groups.

统计代写|抽样调查作业代写sampling theory of survey代考|Raj’s Estimator t5

Another popular strategy is due to RAJ $(1956,1968)$. The sampling scheme is called probability proportional to size without replacement (PPSWOR) with $P_{i}$ ‘s $\left(02)$ draw a unit $i_{n}\left(\neq i_{1}, \ldots, i_{n-1}\right)$ is chosen with probability
$$
\frac{P_{i_{n}}}{1-P_{i_{1}}-P_{i_{2}}-\ldots,-P_{i_{n-1}}}
$$ out of the units of $U$ minus $i_{1}, i_{2}, \ldots, i_{n-1}$. Then,
$$
\begin{aligned}
e_{1} &=\frac{Y_{i_{1}}}{P_{i_{1}}} \
e_{2} &=Y_{i_{1}}+\frac{Y_{i_{2}}}{P_{i_{2}}}\left(1-P_{i_{1}}\right) \
e_{j} &=Y_{i_{1}}+\ldots+Y_{i_{j-1}}+\frac{Y_{i_{j}}}{P_{i_{j}}}\left(1-P_{i_{1}}-\ldots-P_{i_{j-1}}\right)
\end{aligned}
$$
$j=3, \ldots, n$ are all unbiased for $Y$ because the conditional expectation
$$
\begin{aligned}
E_{c} & {\left[e_{j} \mid\left(i_{1}, Y_{i_{1}}\right), \ldots,\left(i_{j-1}, Y_{i_{j-1}}\right)\right] } \
&=\left(Y_{i_{1}}+\ldots,+Y_{i_{j-1}}\right)+\sum_{\substack{k=1 \
\left(\neq i_{1}, \ldots, i_{j-1}\right)}}^{N} Y_{k}=Y .
\end{aligned}
$$
So, unconditionally, $E_{p}\left(e_{j}\right)=Y$ for every $j=1, \ldots, n$, and
$$
t_{5}=\frac{1}{n} \sum_{j=1}^{n} e_{j},
$$
called Raj’s (1956) estimator, is unbiased for $Y$.

统计代写|抽样调查作业代写sampling theory of survey代考|STAT506

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|EXAMPLES OF REPRESENTATIVE STRATEGIES

比率估计器
$$
t_{1}=X \frac{\sum_{i \in s} Y_{i}}{\sum_{i \in s} X_{i}}
$$
由于其在实践中的传统用途,因此具有特别重要的意义。这里, $\left(p, t_{1}\right)$ 在尺寸测量方面显然具有代表性 $x$ ,更准确 地说 $\left(X_{1}, \ldots, X_{N}\right)$, 无论抽样设计如何 $p$.
但是请注意, $t_{1}$ 通常与 SRSWOR 或 SRSWR 结合使用。LAHIRI-MIDZUNO-SEN (LAHIRI, 1951; MIDZUNO,1952; $\mathrm{SEN}, 1953)(\mathrm{LMS})$ 的抽样方案产生了一个感兴趣的设计,可与 $t_{1}$ 通过使其设计公正。 Hansen-Hurwitz (HH, 1943) 估计器 (HHE)
$$
t_{2}=\frac{1}{n} \sum_{i=1}^{N} f_{s i} \frac{Y_{i}}{P_{i}}
$$
和 $f_{s i}$ 作为频率 $i$ 在 $s, i \in \mathcal{U}$ ,结合任何设计 $p$ ,产生一个战略代表关于 $\left(P_{1}, \ldots, P_{N}\right)^{\prime}$. 为了设计不偏不倚, $t_{2}$ 通常基 于与大小成比例的概率 (PPS) 和替换 (PPSWR) 抽样,即由以下组成的方案 $n$ 独立抽奖,每个抽奖选择单元 $i$ 有概率 $P_{i}$
另一个具有代表性的策略是由 RAO、Hartley 和 COCHRAN $(\mathrm{RHC}, 1962)$ 提出的。我们首先将抽样方案描述如下: 关于选择样本量 $n$ ,人口 $\mathcal{U}$ 被随机分成 $n$ 相互排斥的尺寸适合选择的群体 $N_{i}\left(i=1, \ldots, n ; \sum_{1}^{n} N_{i}=N\right)$ 与 $\mathcal{U}$, 单 位轴承值 $P_{i}$ ,标准尺寸 $\left(0<P_{i}<1, \sum P_{i}=1\right)$. 从每一个 $n$ 如此独立形成的组考虑到属于各个组的单元,选择 一个单元的概率与其大小成正比。

统计代写|抽样调查作业代写sampling theory of survey代考|Raj’s Estimator t5

另一个流行的策略是由于 RAJ(1956, 1968). 抽样方案称为与大小成比例的无放回概率 (PPSWOR) $P_{i}$ 的 \左 (02) 画一个单位 $i_{n}\left(\neq i_{1}, \ldots, i_{n-1}\right)$ 被概率选中
$$
\frac{P_{i_{n}}}{1-P_{i_{1}}-P_{i_{2}}-\ldots,-P_{i_{n-1}}}
$$
出单位 $U$ 减 $i_{1}, i_{2}, \ldots, i_{n-1}$. 然后,
$$
e_{1}=\frac{Y_{i_{1}}}{P_{i_{1}}} e_{2}=Y_{i_{1}}+\frac{Y_{i_{2}}}{P_{i_{2}}}\left(1-P_{i_{1}}\right) e_{j}=Y_{i_{1}}+\ldots+Y_{i_{j-1}}+\frac{Y_{i_{j}}}{P_{i_{j}}}\left(1-P_{i_{1}}-\ldots-P_{i_{j-1}}\right)
$$
$j=3, \ldots, n$ 都是公正的 $Y$ 因为条件期望
$$
E_{c}\left[e_{j} \mid\left(i_{1}, Y_{i_{1}}\right), \ldots,\left(i_{j-1}, Y_{i_{j-1}}\right)\right]=\left(Y_{i_{1}}+\ldots,+Y_{i_{j-1}}\right)+\sum_{k=1} \sum_{\left(\neq i_{1}, \ldots, i_{j-1}\right)}^{N} Y_{k}=Y .
$$
所以,无条件地, $E_{p}\left(e_{j}\right)=Y$ 对于每个 $j=1, \ldots, n$ ,和
$$
t_{5}=\frac{1}{n} \sum_{j=1}^{n} e_{j}
$$
称为 Raj (1956) 的估计器,对于 $Y$.

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|抽样调查作业代写sampling theory of survey代考|STAT7124

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|抽样调查作业代写sampling theory of survey代考|STAT7124

统计代写|抽样调查作业代写sampling theory of survey代考|SAMPLING SCHEMES

A unified theory is developed by noting that it is enough to establish results concerning $(p, t)$ without heeding how one may actually succeed in choosing samples with preassigned probabilities. A method of choosing a sample draw by draw, assigning selection probabilities with each draw, is called a sampling scheme. Following HANURAV (1966), we show below that starting with an arbitrary design we may construct a sampling scheme.

Suppose for each possible sample $s$ from $U$ the selection probability $p(s)$ is fixed. Let
$$
\begin{array}{lll}
\beta_{i 1}=p\left(i_{1}\right), & \beta_{i_{1}, i_{2}}=p\left(i_{1}, i_{2}\right), \ldots, & \beta_{i_{1}, \ldots, i_{n}}=p\left(i_{1}, \ldots, i_{n}\right) \
\alpha_{i 1}=\Sigma_{1} p(s), & \alpha_{i_{1}, i_{2}}=\Sigma_{2} p(s), \ldots, & \alpha_{i_{1}, \ldots, i_{n}}=\Sigma_{n} p(s)
\end{array}
$$
where $\Sigma_{1}$ is the sum over all samples $s$ with $i_{1}$ as the first entry; $\Sigma_{2}$ is the sum over all samples with $i_{1}, i_{2}$, respectively, as the first and second entries in $s, \ldots$, and $\Sigma_{n}$ is the sum over all samples of which the first, second, $\ldots, n$th entries are, respectively, $i_{1}, i_{2}, \ldots, i_{n}$.

Then, let us consider the scheme of selection such that on the first draw from $U, i_{1}$ is chosen with probability $\alpha_{i 1}$, a second draw from $U$ is made with probability
$$
\left(1-\frac{\beta_{i 1}}{\alpha_{i 1}}\right) \text {. }
$$
On the second draw from $U$ the unit $i_{2}$ is chosen with probability
$$
\begin{gathered}
\alpha_{i_{1}, i_{2}} \
\alpha_{i 1}-\beta_{i 1}
\end{gathered}
$$
A third draw is made from $U$ with probability
$$
\left(1-\frac{\beta_{i_{1}, i_{2}}}{\alpha_{i_{1}, i_{2}}}\right)
$$

统计代写|抽样调查作业代写sampling theory of survey代考|CONTROLLED SAMPLING

Now, consider an arbitrary design $p$ of fixed size $n$ and a linear estimator $t$; suppose a subset $S_{0}$ of all samples is less desirable from practical considerations like geographical location, inaccessibility, or, more generally, costliness. Then, it is advantageous to replace design $p$ by a modified one, for example, $q$, which attaches minimal values $q(s)$ to the samples $s$ in $S_{0}$ keeping
$$
\begin{gathered}
E_{p}(t)=E_{q}(t) \
E_{p}(t-Y)^{2}-E_{q}(t-Y)^{2}
\end{gathered}
$$
and even maintaining other desirable properties of $p$, if any. A resulting $q$ is called a controlled design and a corresponding scheme of selection is called a controlled sampling scheme. Quite a sizeable literature has grown around this problem of finding appropriate controlled designs. The methods of implementing such a scheme utilize theories of incomplete block designs and predominantly involve ingeneous devices of reducing the size of support of possible samples demanding trials and errors. But RAO and NIGAM (1990) have recently presented a simple solution by posing it as a linear programming problem and applying the well-known simplex algorithm to demonstrate their ability to work out suitable controlled schemes.
Taking $t$ as the HOR VIT7-THOMPSON estimator $\bar{t}=\sum_{i \in S}$ $Y_{i} / \pi_{i}$, they minimize the objective function $F=\sum_{s \in S_{0}} q(s)$ subject to the linear constraints
$$
\begin{aligned}
\sum_{s \ni i, j} q(s) &=\sum_{s \ni i, j} p(s)=\pi_{i j} \
q(s) & \geq 0 \text { for all } s
\end{aligned}
$$
where $\pi_{i j}{ }^{\prime} s$ are known quantities in terms of the original uncontrolled design $p$.

统计代写|抽样调查作业代写sampling theory of survey代考|STAT7124

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|SAMPLING SCHEMES

一个统一的理论是通过注意到它足以建立关于 $(p, t)$ 没有注意人们实际上如何成功地选择具有预先分配既率的样 本。一种逐次抽取样本并为每次抽取分配选择概率的方法称为抽样方案。在 HANURAV (1966) 之后,我们在下面 展示了从任意设计开始,我们可以构建一个抽样方案。
假设每个可能的样本 $s$ 从 $U$ 选择概率 $p(s)$ 是固定的。让
$$
\beta_{i 1}=p\left(i_{1}\right), \quad \beta_{i_{1}, i_{2}}=p\left(i_{1}, i_{2}\right), \ldots, \quad \beta_{i_{1}, \ldots, i_{n}}=p\left(i_{1}, \ldots, i_{n}\right) \alpha_{i 1}=\Sigma_{1} p(s), \quad \alpha_{i_{1}, i_{2}}=\Sigma_{2} p(s), \ldots,
$$
在哪里 $\Sigma_{1}$ 是所有样本的总和 $s$ 和 $i_{1}$ 作为第一个条目; $\Sigma_{2}$ 是所有样本的总和 $i_{1}, i_{2}$ ,分别作为第一个和第二个条目 $s, \ldots$, 和 $\Sigma_{n}$ 是所有样本的总和,其中第一个,第二个, $\ldots, n$ 条目分别是, $i_{1}, i_{2}, \ldots, i_{n}$.
然后,让我们考虑选择方案,使得在第一次抽签时 $U, i_{1}$ 被概率选中 $\alpha_{i 1}$ ,第二次从 $U$ 是用概率制成的
$$
\left(1-\frac{\beta_{i 1}}{\alpha_{i 1}}\right) .
$$
在第二次抽奖时 $U$ 那个单位 $i_{2}$ 被概率选中
$$
\alpha_{i_{1}, i_{2}} \alpha_{i 1}-\beta_{i 1}
$$
第三次抽奖是由 $U$ 有概率
$$
\left(1-\frac{\beta_{i_{1}, i_{2}}}{\alpha_{i_{1}, i_{2}}}\right)
$$

统计代写|抽样调查作业代写sampling theory of survey代考|CONTROLLED SAMPLING

现在,考虑一个任意设计 $p$ 固定大小的 $n$ 和一个线性估计器 $t$; 假设一个子集 $S_{0}$ 从地理位置、不可接近性或更一般地 说,成本等实际考虑因素来看,所有样本中的大多数都不太理想。那么,更换设计是有利的 $p$ 通过修改过的,例 如, $q$ ,它附加最小值 $q(s)$ 对样品 $s$ 在 $S_{0}$ 保持
$$
E_{p}(t)=E_{q}(t) E_{p}(t-Y)^{2}-E_{q}(t-Y)^{2}
$$
甚至保持其他理想的属性 $p$ ,如果有的话。结果 $q$ 称为受控设计,相应的选择方案称为受控抽样方案。围绕寻找合适 的受控设计的问题,已经有相当多的文献出现。实施伩种方案的方法利用了不完全块设计的理论,并且主要涉及减 少可能需要试验和错误的样本的支持大小的巧妙装置。但是 RAO 和 NIGAM (1990) 最近提出了一个简单的解决方 案,将其视为线性规划问题并应用众所周知的单纯形算法来证明他们制定合适的受控方案的能力。 服用 $t$ 作为 HOR VIT7-THOMPSON 估计器 $\bar{t}=\sum_{i \in S} Y_{i} / \pi_{i}$ ,他们最小化目标函数 $F=\sum_{s \in S_{0}} q(s)$ 受线性约束
$$
\sum_{s \ni i, j} q(s)=\sum_{s \ni i, j} p(s)=\pi_{i j} q(s) \quad \geq 0 \text { for all } s
$$
在哪里 $\pi_{i j}{ }^{\prime} s$ 是根据原始不受控设计的已知量 $p$.

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|抽样调查作业代写sampling theory of survey代考|MATH525

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|抽样调查作业代写sampling theory of survey代考|MATH525

统计代写|抽样调查作业代写sampling theory of survey代考|ELEMENTARY DEFINITIONS

Let $N$ be a known number of units, e.g., godowns, hospitals, or income earners, each assignable identifying labels $1,2, \ldots, N$ and bearing values, respectively, $Y_{1}, Y_{2}, \ldots, Y_{N}$ of a realvalued variable $y$, which are initially unknown to an investigator who intends to estimate the total
$$
Y=\sum_{1}^{N} Y_{i}
$$
or the mean $\bar{Y}=Y / N$.
We call the sequence $U=(1, \ldots, N)$ of labels a population. Selecting units leads to a sequence $s=\left(i_{1}, \ldots, i_{n}\right)$, which is called a sample. Here $i_{1}, \ldots, i_{n}$ are elements of $U$, not necessarily distinct from one another but the order of its appearance is maintained. We refer to $n=n(s)$ as the size of $s$, while the effective sample size $v(s)=|s|$ is the cardinality of $s$, i.e., the number of distinct units in $s$. Once a specific sample $s$ is chosen we suppose it is possible to ascertain the values $Y_{i_{1}}, \ldots, Y_{i_{n}}$ of $y$ associated with the respective units of $s$. Then $d=\left[\left(i_{1}, Y_{i_{1}}\right), \ldots,\left(i_{n}, Y_{i_{n}}\right)\right] \quad$ or briefly $d=\left[\left(i, Y_{i}\right) \mid i \in s\right]$
constitutes the survey data.
An estimator $t$ is a real-valued function $t(d)$, which is free of $Y_{i}$ for $i \notin s$ but may involve $Y_{i}$ for $i \in s$. Sometimes we will express $t(d)$ alternatively by $t(s, Y)$, where $Y=\left(Y_{1}, \ldots\right.$, $\left.Y_{N}\right)^{\prime} .$

统计代写|抽样调查作业代写sampling theory of survey代考|DESIGN-BASED INFERENCE

Let $\Sigma_{1}$ be the sum over samples for which $|t(s, Y)-Y| \geq k>0$ and let $\Sigma_{2}$ be the sum over samples for which $|t(s, Y)-Y|<k$ for a fixed $Y$. Then from
$$
\begin{aligned}
M_{p}(t) &=\Sigma_{1} p(s)(t-Y)^{2}+\Sigma_{2} p(s)(t-Y)^{2} \
& \geq k^{2} \operatorname{Prob}[|t(s, Y)-Y| \geq k]
\end{aligned}
$$
one derives the Chebyshev inequality:
$$
\operatorname{Prob}[|t(s, Y)-Y| \geq k] \leq \frac{M_{p}(t)}{k^{2}} .
$$
Hence
$\operatorname{Prob}[t-k \leq Y \leq t+k] \geq 1-\frac{M_{p}(t)}{k^{2}}=1-\frac{1}{k^{2}}\left[V_{p}(t)+B_{p}^{2}(t)\right]$ where $B_{p}(t)=E_{p}(t)-Y$ is the bias of $t$. Writing $\sigma_{p}(t)=$ $\sqrt{V_{p}(t)}$ for the standard error of $t$ and taking $k=3 \sigma_{p}(t)$, it follows that, whatever $Y$ may be, the random interval $t \pm 3 \sigma_{p}(t)$ covers the unknown $Y$ with a probability not less than
$$
\frac{8}{9}-\frac{1}{9} \frac{B_{p}^{2}(t)}{V_{p}(t)} .
$$
So, to keep this probability high and the length of this covering interval small it is desirable that both $\left|B_{p}(t)\right|$ and $\sigma_{p}(t)$ be small, leading to a small $M_{p}(t)$ as well.

统计代写|抽样调查作业代写sampling theory of survey代考|MATH525

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|ELEMENTARY DEFINITIONS

让 $N$ 是已知数量的单位,例如仓库、医院或收入者,每个可分配的识别标签 $1,2, \ldots, N$ 和轴承值,分别, $Y_{1}, Y_{2}, \ldots, Y_{N}$ 实值变量 $y$ ,最初对于打算估计总数的调查员来说是末知的
$$
Y=\sum_{1}^{N} Y_{i}
$$
或平均值 $\bar{Y}=Y / N$.
我们称序列 $U=(1, \ldots, N)$ 的标签人口。选择单位导致序列 $s=\left(i_{1}, \ldots, i_{n}\right)$ ,称为样本。这里 $i_{1}, \ldots, i_{n}$ 是元 素 $U$ ,不一定彼此不同,但保持其出现的顺序。我们指 $n=n(s)$ 作为大小 $s$ ,而有效样本量 $v(s)=|s|$ 是基数 $s$ , 即不同单位的数量 $s$. 一旦一个特定的样本 $s$ 被选中,我们假设可以确定这些值 $Y_{i_{1}}, \ldots, Y_{i_{n}}$ 的 $y$ 与各自的单位相关联 $s .$ 然后 $d=\left[\left(i_{1}, Y_{i_{1}}\right), \ldots,\left(i_{n}, Y_{i_{n}}\right)\right]$ 或简要 $d=\left[\left(i, Y_{i}\right) \mid i \in s\right]$ 构成调查数据。
估算器 $t$ 是一个实值函数 $t(d)$ ,它是免费的 $Y_{i}$ 为了 $i \notin s$ 但可能涉及 $Y_{i}$ 为了 $i \in s$. 有时我们会表达 $t(d)$ 或者通过 $\$ t(\mathrm{~s}, Y)$, where $Y=| \operatorname{left}\left(\mathrm{Y}{-}{1}\right.$, Vdots\right., Veft.Y ${\mathrm{N}} \backslash$ right $) \wedge{$ prime $} . \$$

统计代写|抽样调查作业代写sampling theory of survey代考|DESIGN-BASED INFERENCE

让 $\Sigma_{1}$ 是 $\$|\mathrm{t}(\mathrm{s}, Y)-\mathrm{Y}|$ 的样本的总和 Igeq $\mathrm{k}>0$ andlet $\backslash$ Sigma_{2}bethesumover samplesforwhich $|\mathrm{t}(\mathrm{s}, \mathrm{Y})-\mathrm{Y}|$
$<\mathrm{k}$ forafixed 是. Then from $\$$
Ibegin{aligned}
$\mathrm{M}{-}{\mathrm{p}}(\mathrm{t}) \&=\mid$ sigma ${1} \mathrm{p}(\mathrm{s})(\mathrm{t} \mathbf{\mathrm { Y }}) \wedge{2}+\backslash \operatorname{sigma}{2} \mathrm{p}(\mathrm{s})(\mathrm{tY}) \wedge{2} \backslash$
\& Igeq $k \wedge{2}$ loperatorname{概率 $}[|t(s, Y)-Y| \backslash g e q ~ k]$
lend{对齐 $}$
onederivestheChebyshevinequality:
loperatorname{概率 $}[|\mathrm{t}(\mathrm{s}, Y)-\mathrm{Y}| \operatorname{lgeq} \mathrm{k}] \backslash \operatorname{leq} \backslash f$ frac $\left{\mathrm{M}{-}{\mathrm{p}}(\mathrm{t})\right}{\mathrm{k} \wedge{2}}$ $\$ \$$ 因此 $\operatorname{Prob}[t-k \leq Y \leq t+k] \geq 1-\frac{M{p}(t)}{k^{2}}=1-\frac{1}{k^{2}}\left[V_{p}(t)+B_{p}^{2}(t)\right]$ 在哪里 $B_{p}(t)=E_{p}(t)-Y$ 是偏差 $t$.
写作 $\sigma_{p}(t)=\sqrt{V_{p}(t)}$ 对于标准误 $t$ 并采取 $k=3 \sigma_{p}(t)$, 由此可知,无论 \$ צmaybe, therandomintervalt Ipm 3 ปsigma_{p}(t)coverstheunknown 是withaprobabilitynotlessthan $\frac{8}{9}-\frac{1}{9} \frac{B_{p}^{2}(t)}{V_{p}(t)}$.
So, tokeepthisprobabilityhighandthelengthofthiscoveringintervalsmallitisdesirablethatboth Veft $\mid \mathrm{B}{-}{\mathrm{p}}(\mathrm{t}) \backslash$ right $\mid$ and $\backslash$ sigma{p}(t)besmall, leadingtoasmall $\mathrm{M}_{-}{\mathrm{p}}(\mathrm{t}) \$$ 也是如此。

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|NTRES6100

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|NTRES6100

统计代写|R语言代写R language代考|Reproducible data analysis

Reproducible data analysis is much more than a fashionable buzzword. Under any situation where accountability is important, from scientific research to decision making in commercial enterprises, industrial quality control and safety and environmental impact assessments, being able to reproduce a data analysis reaching the same conclusions from the same data is crucial. Most approaches to reproducible data analysis are based on automating report generation and including, as part of the report, all the computer commands used to generate the results presented.

A fundamental requirement for reproducibility is a reliable record of what commands have been run on which data. Such a record is especially difficult to keep when issuing commands through menus and dialogue boxes in a graphical user interface or interactively at a console. Even working interactively at the $\mathrm{R}$ console using copy and paste to include commands and results in a report is error prone, and laborious.

A further requirement is to be able to match the output of the $R$ commands to the input. If the script saves the output to separate files, then the user will need to take care that the script saved or shared as a record of the data analysis was the one actually used for obtaining the reported results and conclusions. This is another error-prone stage in the reporting of data analysis. To solve this problem an approach was developed, inspired in what is called literate programming (Knuth 1984). The idea is that running the script will produce a document that includes the listing of the R code used, the results of running this code and any explanatory text needed to understand and interpret the analysis.

Although a system capable of producing such reports with R, called ‘Sweave’ (Leisch 2002), has been available for a couple decades, it was rather limited and not supported by an IDE, making its use rather tedious. A more recently developed system called ‘knitr’ (Xie 2013) together with its integration into RStudio has made the use of this type of reports very easy. The most recent development is what has been called R notebooks produced within RStudio. This new feature, can produce the readable report of running the script as an HTML file, displaying the code used interspersed with the results within the viewable file as in earlier approaches. However, this newer approach goes even further: the actual source script used to generate the report is embedded in the HTML file of the report and can be extracted and run very easily and consequently re-used. This means that anyone who gets access to the output of the analysis in human readable form also gets access to the code used to generate the report, in computer executable format.

统计代写|R语言代写R language代考|Finding additional information

When searching for answers, asking for advice or reading books, you will be confronted with different ways of approaching the same tasks. Do not allow this to overwhelm you; in most cases it will not matter as many computations can be done in $\mathrm{R}$, as in any language, in several different ways, still obtaining the same result. The different approaches may differ mainly in two aspects: 1) how readable to humans are the instructions given to the computer as part of a script or program, and 2) how fast the code runs. Unless computation time is an important bottleneck in your work, just concentrate on writing code that is easy to understand to you and to others, and consequently easy to check and reuse. Of course, do always check any code you write for mistakes, preferably using actual numerical test cases for any complex calculation or even relatively simple scripts. Testing and validation are extremely important steps in data analysis, so get into this habit while reading this book. Testing how every function works, as I will challenge you to do in this book, is at the core of any robust data analysis or computing programming.

统计代写|R语言代写R language代考|NTRES6100

R语言代写

统计代写|R语言代写R language代考|Reproducible data analysis

可重复的数据分析不仅仅是一个流行的流行词。在问责制很重要的任何情况下,从科学研究到商业企业的决策、工业质量控制以及安全和环境影响评估,能够从相同的数据复制得出相同结论的数据分析至关重要。大多数可重复数据分析的方法都基于自动生成报告,并且作为报告的一部分,包括用于生成所呈现结果的所有计算机命令。

可重复性的一个基本要求是可靠记录哪些命令已在哪些数据上运行。当通过图形用户界面中的菜单和对话框或在控制台交互地发出命令时,这样的记录尤其难以保存。甚至在R控制台使用复制和粘贴将命令和结果包含在报告中容易出错且费力。

进一步的要求是能够匹配的输出R命令输入。如果脚本将输出保存到单独的文件中,则用户需要注意作为数据分析记录保存或共享的脚本是实际用于获取报告结果和结论的脚本。这是数据分析报告中另一个容易出错的阶段。为了解决这个问题,开发了一种方法,灵感来自于所谓的文学编程(Knuth 1984)。这个想法是,运行脚本将生成一个文档,其中包括所使用的 R 代码列表、运行此代码的结果以及理解和解释分析所需的任何解释性文本。

尽管能够使用 R 生成此类报告的系统(称为“Sweave”(Leisch 2002))已经问世了几十年,但它相当有限且不受 IDE 支持,因此使用起来相当乏味。最近开发的称为“knitr”(Xie 2013)的系统以及它与 RStudio 的集成使得使用这种类型的报告变得非常容易。最近的开发是在 RStudio 中生成的所谓的 R 笔记本。这个新功能可以生成以 HTML 文件形式运行脚本的可读报告,显示所使用的代码与早期方法中的可查看文件中的结果之间的穿插。然而,这种较新的方法更进一步:用于生成报告的实际源脚本嵌入在报告的 HTML 文件中,可以很容易地提取和运行,从而可以重复使用。这意味着任何可以访问人类可读形式的分析输出的人也可以访问用于生成报告的代码,采用计算机可执行格式。

统计代写|R语言代写R language代考|Finding additional information

在寻找答案、寻求建议或阅读书籍时,您将面临处理相同任务的不同方式。不要让这让你不知所措;在大多数情况下,这无关紧要,因为可以在R,就像在任何语言中一样,以几种不同的方式,仍然获得相同的结果。不同的方法可能主要在两个方面有所不同:1)作为脚本或程序的一部分提供给计算机的指令对人类的可读性如何,以及 2)代码运行的速度有多快。除非计算时间是您工作中的一个重要瓶颈,否则只需专注于编写您和其他人都易于理解的代码,从而易于检查和重用。当然,请务必检查您编写的任何代码是否有错误,最好使用实际的数值测试用例进行任何复杂的计算,甚至是相对简单的脚本。测试和验证是数据分析中极其重要的步骤,所以在阅读本书时要养成这个习惯。测试每个函数的工作原理,就像我将在本书中挑战你所做的那样。

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|SOW-BS086

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|SOW-BS086

统计代写|R语言代写R language代考|Using R interactively

A physical terminal (keyboard plus text-only screen) decades ago was how users communicated with computers, and was frequently called a console. Nowadays, a text-only interface to a computer, in most cases a window or a pane within a graphical user interface, is still called a console. In our case, the R console (Figure 1.1). This is the native user interface of $R$.

Typing commands at the $\mathrm{R}$ console is useful when one is playing around, rather aimlessly exploring things, or trying to understand how an $\mathrm{R}$ function or operator we are not familiar with works. Once we want to keep track of what we are doing, there are better ways of using $\mathrm{R}$, which allow $\mathrm{us}$ to keep a record of how an analysis has been carried out. The different ways of using R are not exclusive of each other, so most users will use the $\mathrm{R}$ console to test individual commands and plot data during the first stages of exploration. As soon as we decide how we want to plot or analyze the data, it is best to start using scripts. This is not enforced in any way by $\mathrm{R}$, but scripts are what really brings to light the most important advantages of using a programming language for data analysis. In Figure $1.1$ we can see how the $\mathrm{R}$ console looks. The text in red has been typed in by the user, except for the prompt $>$, and the text in blue is what $\mathrm{R}$ has displayed in response. It is essentially a dialogue between user and R. The console can look different when displayed within an IDE like RStudio, but the only difference is in the appearance of the text rather than in the text itself (cf. Figures $1.1$ and 1.2).

The two previous figures showed the result of entering a single command. Figure $1.3$ shows how the console looks after the user has entered several commands, each as a separate line of text.

The examples in this book require only the console window for user input. Menu-driven programs are not necessarily bad, they are just unsuitable when there is a need to set very many options and choose from many different actions. They are also difficult to maintain when extensibility is desired, and when independently developed modules of very different characteristics need to be integrated. Textual languages also have the advantage, to be addressed in later chapters, that command sequences can be stored in human- and computer-readable text files. Such files constitute a record of all the steps used, and in most cases, makes it trivial to reproduce the same steps at a later time. Scripts are a very simple and handy way of communicating to other users how to do a given data analysis.

统计代写|R语言代写R language代考|Editors and IDEs

Integrated Development Environments (IDEs) are used when developing computer programs. IDEs provide a centralized user interface from within which the different tools used to create and test a computer program can be accessed and used in coordination. Most IDEs include a dedicated editor capable of syntax highlighting, and even report some mistakes, related to the programming language in use. One could describe such an editor as the equivalent of a word processor with spelling and grammar checking, that can alert about spelling and syntax errors for a computer language like $\mathrm{R}$ instead of for a natural language like English. In the case of RStudio, the main, but not only language supported is R.

The main window of IDEs usually displays more than one pane simultaneously. From within the RStudio IDE, one has access to the R console, a text editor, a file-system browser, a pane for graphical output, and access to several additional tools such as for installing and updating extension packages. Although RStudio supports very well the development of large scripts and packages, it is currently, in my opinion, also the best possible way of using $R$ at the console as it has the $R$ help system very well integrated both in the editor and $\mathrm{R}$ console. Figure $1.6$ shows the main window displayed by RStudio after running the same script as shown above at the $\mathrm{R}$ console (Figure 1.4) and at the operating system command prompt (Figure 1.5). We can see by comparing these three figures how RStudio is really a layer between the user and an unmodified R executable. The script was sourced by pressing the “Source”button at the top of the editor pane. RStudio, in response to this, generated the code needed to source the file and “entered” it at the console, the same console, where we would type any $\mathrm{R}$ commands.

统计代写|R语言代写R language代考|SOW-BS086

R语言代写

统计代写|R语言代写R language代考|Using R interactively

几十年前,物理终端(键盘加上纯文本屏幕)是用户与计算机通信的方式,通常被称为控制台。如今,计算机的纯文本界面,在大多数情况下是图形用户界面中的窗口或窗格,仍称为控制台。在我们的例子中,R 控制台(图 1.1)。这是本机用户界面R.

在输入命令R当一个人在玩耍时,控制台很有用,而不是漫无目的地探索事物,或者试图理解一个R我们不熟悉的函数或运算符的作品。一旦我们想要跟踪我们正在做的事情,就有更好的使用方法R, 这允许在s记录分析是如何进行的。使用 R 的不同方式并不相互排斥,因此大多数用户会使用R控制台在探索的第一阶段测试单个命令和绘制数据。一旦我们决定如何绘制或分析数据,最好开始使用脚本。这不是以任何方式强制执行的R,但是脚本真正揭示了使用编程语言进行数据分析的最重要优势。如图1.1我们可以看到R控制台看起来。红色文字已被用户输入,提示除外>,蓝色的文字是什么R已显示为响应。它本质上是用户和 R 之间的对话。在 RStudio 等 IDE 中显示时,控制台看起来会有所不同,但唯一的区别在于文本的外观而不是文本本身(参见图1.1和 1.2)。

前两个图显示了输入单个命令的结果。数字1.3显示用户输入多个命令后控制台的外观,每个命令都作为单独的文本行。

本书中的示例只需要用户输入的控制台窗口。菜单驱动的程序不一定是坏的,它们只是在需要设置很多选项并从许多不同的操作中进行选择时不合适。当需要可扩展性时,它们也难以维护,并且当需要集成独立开发的具有非常不同特性的模块时。文本语言还有一个优势,将在后面的章节中讨论,即命令序列可以存储在人类和计算机可读的文本文件中。这些文件构成了所有使用的步骤的记录,并且在大多数情况下,使得以后重现相同的步骤变得微不足道。脚本是与其他用户交流如何进行给定数据分析的一种非常简单方便的方式。

统计代写|R语言代写R language代考|Editors and IDEs

开发计算机程序时使用集成开发环境 (IDE)。IDE 提供了一个集中的用户界面,从中可以访问和协调使用用于创建和测试计算机程序的不同工具。大多数 IDE 都包含一个能够突出显示语法的专用编辑器,甚至报告一些与所使用的编程语言相关的错误。人们可以将这样的编辑器描述为具有拼写和语法检查功能的文字处理器,它可以警告计算机语言的拼写和语法错误,例如R而不是像英语这样的自然语言。对于 RStudio,主要但不仅支持的语言是 R。

IDE 的主窗口通常同时显示多个窗格。从 RStudio IDE 中,您可以访问 R 控制台、文本编辑器、文件系统浏览器、图形输出窗格,以及访问其他一些工具,例如安装和更新扩展包。尽管 RStudio 很好地支持大型脚本和包的开发,但在我看来,它目前也是最好的使用方式R在控制台上,因为它有R帮助系统很好地集成在编辑器和R安慰。数字1.6显示 RStudio 在运行如上所示的相同脚本后显示的主窗口R控制台(图 1.4)和操作系统命令提示符(图 1.5)。通过比较这三个图,我们可以看出 RStudio 是如何真正成为用户和未修改的 R 可执行文件之间的一层。该脚本是通过按编辑器窗格顶部的“源”按钮获取的。RStudio 对此作出响应,生成了获取文件所需的代码并在控制台“输入”它,在同一个控制台,我们可以在其中键入任何R命令。

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|STA518

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|STA518

统计代写|R语言代写R language代考|R as a language

$\mathrm{R}$ is a computer language designed for data analysis and data visualization, however, in contrast to some other scripting languages, it is, from the point of view of computer programming, a complete language-it is not missing any important feature. In other words, no fundamental operations or data types are lacking (Chambers 2016). I attribute much of its success to the fact that its design achieves a very good balance between simplicity, clarity and generality. R excels at generality thanks to its extensibility at the cost of only a moderate loss of simplicity, while clarity is ensured by enforced documentation of extensions and support for both object-oriented and functional approaches to programming. The same three principles can be also easily respected by user code written in $\mathrm{R}$.

As mentioned above, $\mathrm{R}$ started as a free and open-source implementation of the S language (Becker and Chambers 1984; Becker et al. 1988). We will describe the features of the R language in later chapters. Here I mention, for those with programming experience, that it does have some features that make it different from other frequently used programming languages. For example, $\mathrm{R}$ does not have the strict type checks of Pascal or $\mathrm{C}++$. It has operators that can take vectors and matrices as operands allowing more concise program statements for such operations than other languages. Writing programs, specially reliable and fast code, requires familiarity with some of these idiosyncracies of the R language. For those using R interactively, or writing short scripts, these idiosyncratic features make life a lot easier by saving typing.

统计代写|R语言代写R language代考|R as a computer program

The R program itself is open-source, and the source code is available for anybody to inspect, modify and use. A small fraction of users will directly contribute improvements to the R program itself, but it is possible, and those contributions are important in making R reliable. The executable, the R program we actually use, can be built for different operating systems and computer hardware. The members of the $\mathrm{R}$ developing team make an important effort to keep the results obtained from calculations done on all the different builds and computer architectures as consistent as possible. The aim is to ensure that computations return consistent results not only across updates to $\mathrm{R}$ but also across different operating systems like Linux, Unix (including OS X), and MS-Windows, and computer hardware.

The R program does not have a graphical user interface (GUI), or menus from which to start different types of analyses. Instead, the user types the commands at the $\mathrm{R}$ console (Figure 1.1). The same textual commands can also be saved into a text file, line by line, and such a file, called a “script” can substitute repeated typing of the same sequence of commands. When we work at the console typing in commands one by one, we say that we use R interactively. When we run script, we may say that we run a “batch job.”

The two approaches described above are part of the R program by itself. However, it is common to use a second program as a front-end or middleman between the user and the R program. Such a program allows more flexibility and has multiple features that make entering commands or writing scripts easier. Computations are still done by exactly the same R program. The simplest option is to use a text editor like Emacs to edit the scripts and then run the scripts in $\mathrm{R}$ from within the editor. With some editors like Emacs, rather good integration is possible. However, nowadays there are also Integrated Development Environments (IDEs) available for R. An IDE both gives access to the R console in one window and provides a text editor for writing scripts in another window. Of the available IDEs for R, RStudio is currently the most popular by a wide margin.

统计代写|R语言代写R language代考|STA518

R语言代写

统计代写|R语言代写R language代考|R as a language

R是一门专为数据分析和数据可视化而设计的计算机语言,然而,与其他一些脚本语言相比,从计算机编程的角度来看,它是一门完整的语言——它不缺任何重要的特性。换句话说,没有缺少基本操作或数据类型(Chambers 2016)。我将它的成功归功于它的设计在简单性、清晰性和通用性之间取得了很好的平衡。R 在通用性方面表现出色,这要归功于它的可扩展性,但其代价是适度损失了简单性,而通过强制扩展文档和对面向对象和函数式编程方法的支持来确保清晰度。同样的三个原则也可以很容易地被编写的用户代码遵守R.

正如刚才提到的,R最初是作为 S 语言的免费和开源实现(Becker and Chambers 1984;Becker et al. 1988)。我们将在后面的章节中描述 R 语言的特性。在这里我提到,对于那些有编程经验的人来说,它确实具有一些使其不同于其他常用编程语言的特性。例如,R没有 Pascal 的严格类型检查或C++. 它具有可以将向量和矩阵作为操作数的运算符,与其他语言相比,此类操作允许更简洁的程序语句。编写程序,特别是可靠和快速的代码,需要熟悉 R 语言的一些特性。对于那些以交互方式使用 R 或编写短脚本的人来说,这些特殊的功能通过节省打字让生活变得更轻松。

统计代写|R语言代写R language代考|R as a computer program

R 程序本身是开源的,任何人都可以查看、修改和使用源代码。一小部分用户将直接为 R 程序本身的改进做出贡献,但这是可能的,而且这些贡献对于使 R 变得可靠很重要。可执行文件,即我们实际使用的 R 程序,可以针对不同的操作系统和计算机硬件构建。的成员R开发团队做出了重要的努力,以使从所有不同构建和计算机体系结构上进行的计算获得的结果尽可能一致。目的是确保计算不仅在更新到R还可以跨越不同的操作系统,如 Linux、Unix(包括 OS X)和 MS-Windows,以及计算机硬件。

R 程序没有图形用户界面 (GUI) 或用于启动不同类型分析的菜单。相反,用户在R控制台(图 1.1)。相同的文本命令也可以逐行保存到文本文件中,这种称为“脚本”的文件可以替代重复键入相同的命令序列。当我们在控制台上一一输入命令时,我们说我们以交互方式使用 R。当我们运行脚本时,我们可能会说我们运行的是“批处理作业”。

上述两种方法本身就是 R 程序的一部分。但是,通常使用第二个程序作为用户和 R 程序之间的前端或中间人。这样的程序具有更大的灵活性,并具有多种功能,可以更轻松地输入命令或编写脚本。计算仍然由完全相同的 R 程序完成。最简单的选择是使用像 Emacs 这样的文本编辑器来编辑脚本,然后在R从编辑器内部。使用像 Emacs 这样的编辑器,可以实现相当好的集成。但是,现在也有可用于 R 的集成开发环境 (IDE)。IDE 既可以在一个窗口中访问 R 控制台,也可以提供文本编辑器以在另一个窗口中编写脚本。在 R 的可用 IDE 中,RStudio 是目前最受欢迎的。

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|抽样调查作业代写sampling theory of survey代考|STAT 7124

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|抽样调查作业代写sampling theory of survey代考|STAT 7124

统计代写|抽样调查作业代写sampling theory of survey代考|Probability Proportional to Size Without Replacement Sampling

In probability proportional to size WOR (PPSWOR) sampling scheme, probability of selection of $i_{1}$ at the first draw is $p_{i_{1}}(1)=p_{i_{1}}$. Probability of selecting $i_{2}$ at the second draw is $p_{i_{2}}(2)=\frac{p_{i_{2}}}{1-p_{i_{1}}}$ if the unit $i_{1}\left(i_{2} \neq i_{1}\right)$ is selected at the first draw and $p_{i_{2}}(2)=0$ when the unit $i_{2}$ is selected at the first draw, i.e., $i_{2}=i_{1}$. In general, the probability of selection of $i_{k}$ at the $k$ th draw is $p_{i_{k}}(k)=p_{1-p_{i_{1}}-p_{i_{2}}-\cdots-p_{i_{k-1}}}$, if the units $i_{1}, i_{2}, \ldots, i_{k-1}$ are selected in any of the first $k-1$ draws and $p_{i_{k}}(k)=0$ if the unit $i_{k}$ is selected in any of the first $k-1$ draws for $k=2, \ldots, n ; i=1, \ldots, N$. So, for a PPSWOR sampling scheme, the probability of selecting $i_{1}$ at the first draw, $i_{2}$ at the second draw, and $i_{n}$ at the $n$th draw is
$$
\begin{aligned}
p\left(i_{1}, \ldots, i_{n}\right)=& p_{i_{1}} \frac{p_{i_{2}}}{1-p_{i_{1}}} \cdots \frac{p_{i_{k}}}{1-p_{i_{1}}-\cdots-p_{i_{k-1}}} \cdots \frac{p_{i_{n}}}{1-p_{i_{1}}-\cdots-p_{i_{n-1}}} \text { for } \
1 \leq i_{1} \neq i_{2} \neq \cdots \neq i_{n} \leq N
\end{aligned}
$$
It should be noted that PPSWOR reduces to SRSWOR sampling scheme if $p_{i}=1 / N$ for $i=1, \ldots, N$.

统计代写|抽样调查作业代写sampling theory of survey代考|HANURAV’S ALGORITHM

Hanurav (1966) established a correspondence between a sampling design and a sampling scheme. He proved that any sampling scheme results in a sampling design. Similarly, for a given sampling design, one can construct at least one sampling scheme, which can implement the sampling design. In fact, Hanurav proposed the most general sampling scheme, known as Hanurav’s algorithm, using which one can derive various types of sampling schemes or sampling designs. Henceforth, we will not differentiate between the terms “sampling design” and “sampling scheme”.

Let $n_{0}$ denote the maximum sample size that might be required from a sampling scheme. Then, Hanurav’s (1966) algorithm is defined as follows:
$$
\mathscr{A}=\mathscr{A}\left{q_{1}(i) ; q_{2}(s) ; q_{3}(s, i)\right}
$$
where
(i) $0 \leq q_{1}(i) \leq 1, \quad \sum_{i=1}^{N} q_{1}(i)=1$ for $i=1, \ldots, N$
(ii) $0 \leq q_{2}(s) \leq 1$ for any sample $s \in \mathscr{S}$, where $\mathscr{\mathcal { S }}$ be the set of all possible samples.
(iii) $q_{3}(s, i)$ is defined when $q_{2}(s)>0$ and subject to $0 \leq q_{3}(s, i) \leq 1$,
$$
\sum_{i=1}^{N} q_{3}(s, i)=1 \text { for } i=1, \ldots, N
$$
Samples are selected using the following steps:
Step 1: At the first draw a unit $i_{1}$ is selected with probability $q_{1}\left(i_{1}\right)$; $i_{1}=1, \ldots, N$

Step 2: In this step, we decide whether the sampling procedure will be terminated or continued. Let $s_{(1)}=i_{1}$ be the unit selected in the first draw. A Bernoulli trial is performed with success probability $q_{2}\left(s_{(1)}\right)$. If the trial results in a failure, the sampling procedure is terminated and the selected sample is $s_{(1)}=i_{1}$. On the other hand, if the trial results in a success, we go to step 3 .

统计代写|抽样调查作业代写sampling theory of survey代考|STAT 7124

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|Probability Proportional to Size Without Replacement Sampling

在与大小成比例的概率 WOR (PPSWOR) 抽样方案中,选择的概率 $i_{1}$ 第一次抽签是 $p_{i_{1}}(1)=p_{i_{1}}$. 选择的概率 $i_{2}$ 在 第二次抽签是 $p_{i_{2}}(2)=\frac{p_{i_{2}}}{1-p_{i_{1}}}$ 如果单位 $i_{1}\left(i_{2} \neq i_{1}\right)$ 在第一次抽签时被选中,并且 $p_{i_{2}}(2)=0$ 当单位 $i_{2}$ 在第一 $i_{1}, i_{2}, \ldots, i_{k-1}$ 在任何第一个被选中 $k-1$ 绘制和 $p_{i_{k}}(k)=0$ 如果单位 $i_{k}$ 在任何第一个被选中 $k-1$ 为 $k=2, \ldots, n ; i=1, \ldots, N$. 因此,对于 PPSWOR 抽样方案,选择的概率 $i_{1}$ 在第一次抽奖时, $i_{2}$ 在第二次抽 签中,并且 $i_{n}$ 在 $n$ 平局是
$$
p\left(i_{1}, \ldots, i_{n}\right)=p_{i_{1}} \frac{p_{i_{2}}}{1-p_{i_{1}}} \cdots \frac{p_{i_{k}}}{1-p_{i_{1}}-\cdots-p_{i_{k-1}}} \cdots \frac{p_{i_{n}}}{1-p_{i_{1}}-\cdots-p_{i_{n-1}}} \text { for } 1 \leq i_{1} \neq i_{2} \neq \cdots
$$
应该注意的是,如果 PPSWOR 简化为 SRSWOR 采样方案 $p_{i}=1 / N$ 为了 $i=1, \ldots, N$.

统计代写|抽样调查作业代写sampling theory of survey代考|HANURAV’S ALGORITHM

Hanurav (1966) 建立了抽样设计和抽样方案之间的对应关系。他证明了任何抽样方案都会导致抽样设计。类似 地,对于给定的抽样设计,可以构建至少一种抽样方案,该方案可以实现抽样设计。事实上,Hanurav 提出了最 通用的抽样方案,称为 Hanurav 算法,利用该算法可以推导出各种类型的抽样方案或抽样设计。此后,我们将 不再区分”抽样设计”和”抽样方案”这两个术语。
让 $n_{0}$ 表示抽样方案可能需要的最大样本量。然后,Hanurav (1966) 算法定义如下:
$\backslash$ mathscr ${\mathrm{A}}=\backslash$ mathscr ${\mathrm{A}} \backslash \operatorname{left}\left{\mathrm{q}{-}{1}(\mathrm{i}) ; \mathrm{q}{-}{2}(\mathrm{s}) ; \mathrm{q}{-}{3}(\mathrm{s}, \mathrm{i}) \backslash\right.$ right $}$ 其中 (i) $0 \leq q{1}(i) \leq 1, \quad \sum_{i=1}^{N} q_{1}(i)=1$ 为了 $i=1, \ldots, N$
(二) $0 \leq q_{2}(s) \leq 1$ 对于任何样品 $s \in \mathscr{S}$ ,在哪里 $\mathcal{S}$ 是所有可能样本的集合。
$\Leftrightarrow q_{3}(s, i)$ 定义为 $q_{2}(s)>0$ 并受 $0 \leq q_{3}(s, i) \leq 1$ ,
$$
\sum_{i=1}^{N} q_{3}(s, i)=1 \text { for } i=1, \ldots, N
$$
使用以下步尷选择样本:
步骤 1: 首先绘制一个单元 $i_{1}$ 被概率选中 $q_{1}\left(i_{1}\right) ; i_{1}=1, \ldots, N$
第 2 步:在此步骤中,我们决定是终止还是继续抽样程序。让 $s_{(1)}=i_{1}$ 成为第一次抽签中选择的单位。以成功 概率执行伯努利试验 $q_{2}\left(s_{(1)}\right)$. 如果试验结果失败,则终止取样程序并选择样品 $s_{(1)}=i_{1}$. 另一方面,如果试验 结果成功,我们转到步骤 3 。

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

英国补考|抽样调查作业代写sampling theory of survey代考|MATH 525

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
英国补考|抽样调查作业代写sampling theory of survey代考|MATH 525

英国补考|抽样调查作业代写sampling theory of survey代考|Sampling and Nonsampling Errors

Obviously, using the complete enumeration method, we get the correct value of the parameter, provided all the $\gamma$-values of the population obtained are correct. This would mean that there is no nonresponse, i.e., a response from each unit is obtained, and there is no measurement error in measuring $\gamma$-values. However, in practice, at least for a large-scale survey, nonresponse is unavoidable, and $\gamma$-values are also subject to error because the respondents report untrue values, especially when $\gamma$-values relate to confidential characteristics such as income and age. The error in a survey, which is originated from nonresponse or incorrect measurement of $y$-values, is termed as the nonsampling error. The nonsampling errors increase with the sample size.
From a sample survey, we cannot get the true value of the parameter because we surveyed only a sample, which is just a part of the population. The error committed by making inference by surveying a part of the population is known as the sampling error. In complete enumeration,sampling error is absent, but it is subjected more to nonsampling error than sample surveys. When the population is large, complete enumeration is not possible as it is very expensive, time-consuming, and requires many trained investigators. The advantages of sample surveys over complete enumeration were advocated by Mahalanobis (1946), Cochran (1977), and Murthy (1977), to name a few.

英国补考|抽样调查作业代写sampling theory of survey代考|Cumulative Total Method

Here we label all possible samples of $\mathcal{S}$ as $s_{1}, \ldots, s_{i}, \ldots, s_{M}$, where $M=$ total number of samples in $\mathscr{e}$. Then we calculate the cumulative total $T_{i}=p\left(s_{1}\right)+\cdots+p\left(s_{i}\right)$ for $i=1, \ldots, M$ and select a random sample $R$ (say) from a uniform population with range $(0,1)$. This can be done by choosing a five-digit random number and placing a decimal preceding it. The sample $s_{k}$ is selected if $T_{k-1}<R \leq T_{k}$, for $k=1, \ldots, M$ with $T_{0}=0$.

Example $1.4 .1$
Let $U=(1,2,3,4) ; s_{1}=(1,1,2), s_{2}=(1,2,2), s_{3}=(3,2), s_{4}=(4)$; $p\left(s_{1}\right)=0.25, p\left(s_{2}\right)=0.30, p\left(s_{3}\right)=0.20$, and $p\left(s_{4}\right)=0.25$.
$\begin{array}{lllll}s & s_{1} & s_{2} & s_{3} & s_{4} \ p(s) & 0.25 & 0.30 & 0.20 & 0.25 \ T_{k} & 0.25 & 0.55 & 0.75 & 1\end{array}$
Let a random sample $R=0.34802$ be selected from a uniform population with range $(0,1)$. The sample $s_{2}$ is selected as $T_{1}=0.25<R=$ $0.34802 \leq T_{2}=0.55$.

The cumulative total method mentioned above, however, cannot be used in practice because here we have to list all the possible samples having positive probabilities. For example, suppose we need to select a sample of size 15 from a population size $R=30$ following a sampling design, where all possible samples of size $n=15$ have positive probabilities, we need to list $M=\left(\begin{array}{l}30 \ 15\end{array}\right)$ possible samples, which is obviously a huge number.

英国补考|抽样调查作业代写sampling theory of survey代考|MATH 525

抽样调查代考

英国补考|抽样调查作业代写sampling theory of survey代考|Sampling and Nonsampling Errors

显然,使用完整的枚举方法,我们可以得到正确的参数值,前提是所有的C- 获得的总体值是正确的。这意味着没有无响应,即得到每个单元的响应,并且测量中没有测量误差C-价值观。然而,在实践中,至少对于大规模调查而言,不答复是不可避免的,并且C- 值也容易出错,因为受访者报告了不真实的值,尤其是当C-值与收入和年龄等机密特征有关。调查中的错误,源于不答复或不正确的测量是-values,称为非抽样误差。非抽样误差随着样本量的增加而增加。
从抽样调查中,我们无法得到参数的真实值,因为我们只调查了一个样本,这只是总体的一部分。通过调查一部分人口进行推断所犯的错误称为抽样误差。完全枚举不存在抽样误差,但比抽样调查更容易受到非抽样误差的影响。当人口众多时,不可能进行完整的枚举,因为它非常昂贵、耗时,并且需要许多训练有素的调查员。Mahalanobis (1946)、Cochran (1977) 和 Murthy (1977) 提出了抽样调查优于完全枚举的优势,仅举几例。

英国补考|抽样调查作业代写sampling theory of survey代考|Cumulative Total Method

在这里,我们标记所有可能的样本 $\mathcal{S}$ 作为 $s_{1}, \ldots, s_{i}, \ldots, s_{M}$ , 在哪里 $M=$ 样本总数e. 然后我们计算男计总数 $T_{i}=p\left(s_{1}\right)+\cdots+p\left(s_{i}\right)$ 为了 $i=1, \ldots, M$ 并选择一个随机样本 $R$ (比方说) 来自具有范围的统一人口 $(0,1)$. 这可以通过选择一个五位数的随机数并在其前面放置一个小数来完成。样本 $s_{k}$ 被选中,如果 $T_{k-1}<R \leq T_{k}$ , 为了 $k=1, \ldots, M$ 和 $T_{0}=0$.
例子 $1.4 .1$
让 $U=(1,2,3,4) ; s_{1}=(1,1,2), s_{2}=(1,2,2), s_{3}=(3,2), s_{4}=(4)$;
$p\left(s_{1}\right)=0.25, p\left(s_{2}\right)=0.30, p\left(s_{3}\right)=0.20$ ,和 $p\left(s_{4}\right)=0.25$.
让一个随机样本 $R=0.34802$ 从具有范围的统一总体中选择 $(0,1)$. 样本 $s_{2}$ 被选为 $T_{1}=0.25<R=$ $0.34802 \leq T_{2}=0.55$.
然而,上面提到的男积总方法不能在实践中使用,因为这里我们必须列出所有可能具有正概率的样本。例如,假 设我们需要从总体大小中选择一个大小为 15 的样本 $R=30$ 遵循抽样设计,其中所有可能的样本大小 $n=15$ 有 正概率,我们需要列出 $M=(3015)$ 可能的样本,这显然是一个巨大的数字。

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|抽样调查作业代写sampling theory of survey代考|STAT 506

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|抽样调查作业代写sampling theory of survey代考|STAT 506

统计代写|抽样调查作业代写sampling theory of survey代考|Preliminaries and Basics of Probability Sampling

Various government organizations, researchers, sociologist, and businesses often conduct surveys to get answers to certain specific questions, which cannot be obtained merely through laboratory experiments or simply using economic, mathematical, or statistical formulation. For example, the knowledge of the proportion of unemployed people, those below poverty line, and the extent of child labor in a certain locality is very important for the formulation of a proper economic planning. To get the answers to such questions, we conduct surveys on sections of people of the locality very often. Surveys should be conducted in such a way that the results of the surveys can be interpreted objectively in terms of probability. Drawing inference about aggregate (population) on the basis of a sample, a part of the populations, is a natural instinct of human beings. Surveys should be conducted in such a way that the inference relating to the population should have some valid statistical background. To achieve valid statistical inferences, one needs to select samples using some suitable sampling procedure. The collected data should be analyzed appropriately. In this book, we have discussed various methods of sample selection procedures, data collection, and methods of data analysis and their applications under various circumstances. The statistical theories behind such procedures have also been studied in great detail.

In this chapter we introduce some of the basic definitions and terminologies in survey sampling such as population, unit, sample, sampling designs, and sampling schemes. Various methods of sample selection as well as Hanurav’s algorithm which gives the correspondence between a sampling design and a sampling scheme have also been discussed.

统计代写|抽样调查作业代写sampling theory of survey代考|Parameter and Parameter Space

For a given population $U$, we may be interested in studying certain characteristics of it. Such characteristics are known as study variables. When considering a population of students in a certain class, we may be interested to know the age, height, racial group, economic condition, marks on different subjects, and so forth. Each of the variables under study is called a study variable, and it will be denoted by $\gamma$. Let $\gamma_{i}$ be the value of a study variable $y$ for the $i$ th unit of the population $U$, which is generally not known before the survey. The $N$-dimension vector $\mathbf{y}=\left(\gamma_{1}, \ldots, \gamma_{i}, \ldots, \gamma_{\mathrm{N}}\right)$ is known as a parameter of the population $U$ with respect to the characteristic $\gamma$. The set of all-possible values of the vector $\mathbf{y}$ is the $N$-dimensional Euclidean space $R^{N}=\left(-\infty<y_{1}<\infty, \ldots,-\infty<\gamma_{i}<\infty, \ldots,-\infty<\gamma_{N}<\infty\right)$ and it is known as a parameter space. In most of the cases we are not interested in knowing the parameter $\mathbf{y}$ but in a certain parametric function of $\mathbf{y}$ such as, $Y=\sum_{i=1}^{N} \gamma_{i}=$ population total, $\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} \gamma_{i}=$ population mean, $S_{Y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)^{2}=$ population variance, $C_{\gamma}=S_{Y} / \bar{Y}$ $=$ population coefficient of variation, and so forth.

统计代写|抽样调查作业代写sampling theory of survey代考|STAT 506

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|Preliminaries and Basics of Probability Sampling

各种政府组织、研究人员、社会学家和企业经常进行调查以获得某些特定问题的答案,这些问题不能仅仅通过实验室实验或简单地使用经济、数学或统计公式来获得。例如,了解某个地区的失业人口、贫困线以下人口的比例以及童工的程度,对于制定适当的经济计划非常重要。为了得到这些问题的答案,我们经常对当地的部分人群进行调查。调查应以这样一种方式进行,即调查的结果可以用概率来客观地解释。根据样本、部分总体得出关于总体(总体)的推断,是人类的本能。调查应该以这样一种方式进行,即与人口有关的推论应该有一些有效的统计背景。为了实现有效的统计推断,需要使用一些合适的抽样程序来选择样本。应适当分析收集到的数据。在本书中,我们讨论了样本选择程序、数据收集和数据分析方法的各种方法及其在各种情况下的应用。这些程序背后的统计理论也得到了非常详细的研究。应适当分析收集到的数据。在本书中,我们讨论了样本选择程序、数据收集和数据分析方法的各种方法及其在各种情况下的应用。这些程序背后的统计理论也得到了非常详细的研究。应适当分析收集到的数据。在本书中,我们讨论了样本选择程序、数据收集和数据分析方法的各种方法及其在各种情况下的应用。这些程序背后的统计理论也得到了非常详细的研究。

在本章中,我们将介绍调查抽样中的一些基本定义和术语,例如总体、单位、样本、抽样设计和抽样方案。还讨论了各种样本选择方法以及给出抽样设计和抽样方案之间对应关系的 Hanurav 算法。

统计代写|抽样调查作业代写sampling theory of survey代考|Parameter and Parameter Space

对于给定的人口 $U$ ,我们可能有兴趣研究它的某些特征。这些特征被称为研究变量。在考虑某个班级的学生群体 时,我们可能有兴趣了解年龄、身高、种族、经济状况、不同科目的分数等等。研究中的每个变量称为研究变 量,表示为 $\gamma$. 让 $\gamma_{i}$ 是研究变量的值 $y$ 为了 $i$ 人口单位 $U$ ,这在调查之前通常是末知的。这 $N$-维向量 $\mathbf{y}=\left(\gamma_{1}, \ldots, \gamma_{i}, \ldots, \gamma_{N}\right)$ 被称为总体参数 $U$ 关于特性 $\gamma$. 向量的所有可能值的集合 $\mathbf{y}$ 是个 $N$ 维欧几里得空间 $R^{N}=\left(-\infty<y_{1}<\infty, \ldots,-\infty<\gamma_{i}<\infty, \ldots,-\infty<\gamma_{N}<\infty\right)$ 它被称为参数空间。在大多数情况 下,我们对知道参数不感兴趣 $\mathbf{y}$ 但在某个参数函数中 $\mathbf{y}$ 如, $Y=\sum_{i=1}^{N} \gamma_{i}=$ 总人口, $\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} \gamma_{i}=$ 人口 平均数, $S_{Y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)^{2}=$ 总体方差, $C_{\gamma}=S_{Y} / \bar{Y}=$ 人口变异系数等。

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|随机过程代写stochastic process代考|The distribution of X

如果你也在 怎样代写随机过程stochastic process这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

随机过程被定义为随机变量X={Xt:t∈T}的集合,定义在一个共同的概率空间上,在一个共同的集合S(状态空间)中取值,并以一个集合T为索引,通常是N或[0,∞],并被认为是时间(分别为离散或连续)。

statistics-lab™ 为您的留学生涯保驾护航 在代写随机过程stochastic process方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机过程stochastic process代写方面经验极为丰富,各种代写随机过程stochastic process相关的作业也就用不着说。

我们提供的随机过程stochastic process及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|随机过程代写stochastic process代考|The distribution of X

统计代写|随机过程代写stochastic process代考|The distribution of X

EXERCISE 7.1. (a) We plug $\lambda_{n}=n \lambda$ and $\mu_{n}=0$ into (7.1), and note that $n$ starts with 1 and not 0 . The Kolmogorov forward equations become $P_{1}^{\prime}(t)=-\lambda P_{1}(t)$ and $P_{n}^{\prime}(t)=(n-1) \lambda P_{n-1}(t)-$ $n \lambda P_{n}(t), n=2,3, \ldots$, with the initial condition $P_{1}(0)=1$.
(b) To show that $P_{n}(t)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}, n=1,2, \ldots$, solve the Kolmogorov equations, we write $P_{1}(t)=e^{-\lambda t}$, so $P_{1}^{\prime}(t)=-\lambda e^{-\lambda t}=-\lambda P_{1}(t)$. Also,
$P_{n}^{\prime}(t)=-\lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}+e^{-\lambda t}(n-1) \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-2}=-\lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}+$ $e^{-\lambda t}(n-1) \lambda\left(e^{-\lambda t}-1+1\right)\left(1-e^{-\lambda t}\right)^{n-2}=-\lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}-(n-1) \lambda e^{-\lambda t}(1-$ $\left.e^{-\lambda t}\right)^{n-1}+(n-1) \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-2}=(n-1) \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-2}-n \lambda e^{-\lambda t}(1-$ $\left.e^{-\lambda t}\right)^{n-1}=(n-1) \lambda P_{n-1}(t)-n \lambda P_{n}(t) .$
(c) The distribution of $X(t)$ is geometric that models the number of trials until the first success where the probability of success is $p=e^{-\lambda t}$. Therefore, $E(X(t))=\frac{1}{p}=e^{\lambda t}$, and $\operatorname{Var}(X(t))=\frac{1-p}{p^{2}}=$ $\frac{1-e^{-\lambda t}}{e^{-2 \lambda t}}=e^{\lambda t}\left(e^{\lambda t}-1\right)$.
(d) If $\lambda=4$, the probability that there will be between 3 and 5 particles at week 1 is $P_{3}(1)+P_{4}(1)+$ $P_{5}(1)=e^{-4}\left(1-e^{-4}\right)^{3-1}+e^{-4}\left(1-e^{-4}\right)^{4-1}+e^{-4}\left(1-e^{-4}\right)^{5-1}=0.051989$. The mean at week 1 is $E(X(1))=e^{4}=54.59815$, and the standard deviation is $\sqrt{\operatorname{Var}(X(1))}=\sqrt{e^{4}\left(e^{4}-1\right)}=$ $54.09584$.
EXERCISE 7.2. (a) We plug $\lambda_{n}=n \lambda$ and $\mu_{n}=0$ into (7.1) and note that $n$ starts with $m$ and not 0 . The Kolmogorov forward equations become $P_{m}^{\prime}(t)=-m \lambda P_{m}(t)$ and $P_{n}^{\prime}(t)=(n-1) \lambda P_{n-1}(t)-$ $n \lambda P_{n}(t), n=2,3, \ldots$, with the initial condition $P_{m}(0)=1$.
(b) To verify that $P_{n}(t)=\left(\begin{array}{c}n-1 \ n-m\end{array}\right) e^{-m \lambda t}\left(1-e^{-\lambda t}\right)^{n-m}, n=m, m+1_{, \ldots}$, solve the Kolmogorov equations, we write $P_{m}(t)=e^{-m \lambda t}$, so $P_{m}^{\prime}(t)=-m \lambda e^{-m \lambda t}=-m \lambda P_{m}(t)$. Further, $P_{n}^{\prime}(t)=$ $-m \lambda\left(\begin{array}{c}n-1 \ n-m\end{array}\right) e^{-m \lambda t}\left(1-e^{-\lambda t}\right)^{n-m}+\left(\begin{array}{c}n-1 \ n-m\end{array}\right) e^{-m \lambda t}(n-m) \lambda e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-m-1}–m \lambda P_{n}(t)+$ $\left(\begin{array}{l}n-1 \ n-m\end{array}\right) e^{-m \lambda t}(n-m) \lambda\left(e^{-\lambda t}-1+1\right)\left(1-e^{-\lambda t}\right)^{n-m-1}=-m \lambda P_{n}(t)-(n-m) \lambda P_{n}(t)+$ $(n-m)\left(\begin{array}{c}n-1 \ n=m\end{array}\right) \lambda e^{-m \lambda t}\left(1-e^{-\lambda t}\right)^{n-m-1}=-n \lambda P_{n}(t)+(n-1) \lambda\left(\begin{array}{c}n-2 \ n=m=1\end{array}\right) e^{-m \lambda t}(1-$ $\left.e^{-\lambda t}\right)^{n-m-1}=(n-1) \lambda P_{n-1}(t)-n \lambda P_{n}(t)$.
(c) The distribution of $X(t)$ is a negative binomial that models the number of trials until the $m$ th success, where the probability of success is $p=e^{-\lambda t}$. Therefore, the mean and the variance are $E(X(t))=\frac{m}{p}=m e^{\lambda t}$, and $\operatorname{Var}(X(t))=\frac{m(1-p)}{p^{2}}=m e^{\lambda t}\left(e^{-\lambda t}-1\right) .$
(d) $P_{12}(2)=\left(\begin{array}{c}12-1 \ 12-5\end{array}\right) e^{-(5)(0.2)(2)}\left(1-e^{-(0.2)(2)}\right)^{12-5}=0.0189$. The mean and standard deviations are $E(X(2))=(5) e^{(0.2)(2)}=7.459123$, and $\sqrt{\operatorname{Var}(X(2))}=\sqrt{(5) e^{0.4}\left(e^{0.4}-1\right)}=1.915354 .$

统计代写|随机过程代写stochastic process代考|In the Kolmogorov forward equations

EXERCISE 7.3. (a) In the Kolmogorov forward equations (7.1), we use $\lambda_{n}=0$, and $\mu_{n}=n \mu$, and the fact that the initial population size is $N$. We write $P_{N}^{\prime}(t)=-N \mu P_{N}(t)$ and $P_{n}^{\prime}(t)=$ $(n+1) \mu P_{n+1}(t)-n \mu P_{n}(t), n=0,1, \ldots, N-1$, with the initial condition $P_{N}(0)=1$.
(b) The probabilities $P_{n}(t)=\left(\begin{array}{l}N \ n\end{array}\right) e^{-n \mu t}\left(1-e^{-\mu t}\right)^{N-n}, n=0, \ldots, N$, solve the Kolmogorov forward equations since $P_{N}(t)=e^{-N \mu t}$ and so, $P_{N}^{\prime}(t)=-N \mu e^{-N \mu t}=-N \mu P_{N}(t)$. Also,
$$
\begin{gathered}
P_{n}^{\prime}(t)=-n \mu\left(\begin{array}{l}
N \
n
\end{array}\right) e^{-n \mu t}\left(1-e^{-\mu t}\right)^{N-n}+\left(\begin{array}{l}
N \
n
\end{array}\right) e^{-n \mu t}(N-n) \mu e^{-\mu t}\left(1-e^{-\mu t}\right)^{N-n-1} \
=-n \mu P_{n}(t)+(n+1) \mu\left(\begin{array}{c}
N \
n+1
\end{array}\right) e^{-(n+1) \mu t}\left(1-e^{-\mu t}\right)^{N-(n+1)}=(n+1) \mu P_{n+1}(t)-n \mu P_{n}(t) .
\end{gathered}
$$
(c) The distribution of $X(t)$ is binomial with parameters $N$ and $p=e^{-\mu t}$. Therefore, $E(X(t))=N p=$ $N e^{-\mu t}$, and $\operatorname{Var}(X(t))=N p(1-p)=N e^{-\mu t}\left(1-e^{-\mu t}\right)$.
(d) $P_{12}(3)=\left(\begin{array}{c}15 \ 12\end{array}\right) e^{-(12)(0.02)(3)}\left(1-e^{-(0.02)(3)}\right)^{15-12}=0.0437$. The mean and standard deviation are $E(X(3))=15 e^{-(0.02)(3)}=14.12647$, and $\sqrt{\operatorname{Var}(X(3))}=\sqrt{15 e^{-(0.02)(3)}\left(1-e^{-(0.02)(3)}\right)}=$ $0.907007 .$
EXERCISE 7.4. (a) We are given that $\lambda=1.3$ and $\mu=0.2$. We need to compute
$$
P_{4}(2)=\left(1-P_{0}\right)\left(1-\frac{\lambda}{\mu} P_{0}\right)\left(\frac{\lambda}{\mu} P_{0}\right)^{n-1}=\left(1-P_{0}\right)\left(1-\frac{1.3}{0.2} P_{0}\right)\left(\frac{1.3}{0.2} P_{0}\right)^{4-1}
$$
where
$$
P_{0}=\frac{\mu e^{(\lambda-\mu) t}-\mu}{\lambda e^{(\lambda-\mu) t}-\mu}=\frac{0.2 e^{(1.3-0.2)(2)}-0.2}{1.3 e^{(1.3-0.2)(2)}-0.2}=0.139172 .
$$
Thus, $P_{4}(2)=0.060783$. The mean and variance are $E(X(2))=e^{(\lambda-\mu) t}=e^{(1.3-0.2)(2)}=9.025013$ and $\operatorname{Var}(X(2))=\frac{\lambda+\mu}{\lambda-\mu} e^{(\lambda-\mu) t}\left(e^{(\lambda-\mu) t}-1\right)=\frac{1.3+0.2}{1.3-0.2} e^{(1.3-0.2)(2)}\left(e^{(1.3-0.2)(2)}-1\right)=98.76253$.
(b) Below we simulate a 50 -step trajectory of the process that starts in state 1 and has parameters $\lambda=$ $1.3$ and $\mu=0.2$.

specifying parameters

lambda<- $1.3$
$m u<-0.2$
njumps<- 50

defining state and time as vectors

$\mathbb{N}<-\mathrm{c}()$

specifying parameters

lambda<- $1.3$
mu<- $0.2$
njumps<- 50

defining state and time as vectors

N<- c()
time<-c()

setting initial values

N[1]<-
time[1]<- 0

specifying seed

set.seed(353332)
time<- col)

setting initial values

$\mathrm{N}[1]<-1$
time $[1]<-0$

specifying seed

set.seed (353332)

统计代写|随机过程代写stochastic process代考|the queue will accumulate faster

EXERCISE 7.5. (a) If $\lambda>\mu$, the queue will accumulate faster than customers go through the server, and so we expect an infinite number of customers in the system in the long run.
(b) For $\lambda=3$ and $\mu=5$, the long-run probability that there will be more than 2 customers in the system is $P(#$ of customers $>2)=1-P_{0}-P_{1}-P_{2}=1-\left(1-\frac{\lambda}{\mu}\right) \mu\left[1+\frac{\lambda}{\mu}+\left(\frac{\lambda}{\mu}\right)^{2}\right]=1-$ $\left(1-\frac{\lambda}{\mu}\right) \frac{1-\left(\frac{\lambda}{\mu}\right)^{3}}{1-\frac{\lambda}{\mu}}=\left(\frac{\lambda}{\mu}\right)^{3}=\left(\frac{3}{5}\right)^{3}=0.216 .$
(c) In the long run, the average number of customers in the system is
$$
\lim _{t \rightarrow \infty} E(X(t))=\frac{\lambda}{\mu-\lambda}=\frac{3}{5-3}=1.5 .
$$
(d) In the long run, the proportion of customers in the system who have to wait more than 1 minute is $P(T>1)=e^{-(\mu-\lambda) t}=e^{-(5-3)(1)}=0.135335$, or roughly $13.5 \%$.

EXERCISE 7.6. (a) Below we simulate a trajectory of a birth-and-death process with immigration and emigration, with parameters $\lambda=1, \mu=0.2, \alpha=0.3$, and $\beta=0.1$. The trajectory starts in state 10 and ends in state $25 .$

specifying parameters

lambda<- 1
$m<-0.2$
alpha<-0.3
beta<- $0.1$

defining state and time as vectors

$\mathrm{N}<-\mathrm{c}$ ()
time<- c()

setting initial values

$\mathrm{N}[1]<-10$
time $[1]<-0$

specifying seed

set.seed ( 93743765$)$

simulating trajectory

$1<-2$
repeat \&
time.birth<- $(-1 /(\mathrm{N}[i-1] * \operatorname{lambda}+\mathrm{l}$ pha) $) * \log (1-\operatorname{runif}(1))$
time deathc- $\left(-1 /\left(\mathbb{N}[1-1]^{\star}\right.\right.$ mutbeta $\left.)\right) \wedge \log (1-\operatorname{run} 1 f(1))$
if (time.birth < time. death | $N[i-1]==0$ ) (
time $[i]<-$ time $[i-1]+$ time.birth – $0.001$
$\mathbb{N}[i]<-\mathbb{N}[i-1]$
if $(N[i]==25)$ break
else।

统计代写|随机过程代写stochastic process代考|The distribution of X

随机过程代写

统计代写|随机过程代写stochastic process代考|The distribution of X

练习 7.1。(a) 我们插入λn=nλ和μn=0进入(7.1),并注意n以 1 而不是 0 开头。Kolmogorov 正向方程变为磷1′(吨)=−λ磷1(吨)和磷n′(吨)=(n−1)λ磷n−1(吨)− nλ磷n(吨),n=2,3,…, 初始条件磷1(0)=1.
(b) 表明磷n(吨)=和−λ吨(1−和−λ吨)n−1,n=1,2,…,求解 Kolmogorov 方程,我们写磷1(吨)=和−λ吨, 所以磷1′(吨)=−λ和−λ吨=−λ磷1(吨). 还,
磷n′(吨)=−λ和−λ吨(1−和−λ吨)n−1+和−λ吨(n−1)λ和−λ吨(1−和−λ吨)n−2=−λ和−λ吨(1−和−λ吨)n−1+ 和−λ吨(n−1)λ(和−λ吨−1+1)(1−和−λ吨)n−2=−λ和−λ吨(1−和−λ吨)n−1−(n−1)λ和−λ吨(1− 和−λ吨)n−1+(n−1)λ和−λ吨(1−和−λ吨)n−2=(n−1)λ和−λ吨(1−和−λ吨)n−2−nλ和−λ吨(1− 和−λ吨)n−1=(n−1)λ磷n−1(吨)−nλ磷n(吨).
(c) 分布X(吨)是几何的,它模拟试验次数,直到第一次成功,其中成功的概率是p=和−λ吨. 所以,和(X(吨))=1p=和λ吨, 和曾是⁡(X(吨))=1−pp2= 1−和−λ吨和−2λ吨=和λ吨(和λ吨−1).
(d) 如果λ=4,第 1 周有 3 到 5 个粒子的概率为磷3(1)+磷4(1)+ 磷5(1)=和−4(1−和−4)3−1+和−4(1−和−4)4−1+和−4(1−和−4)5−1=0.051989. 第 1 周的平均值是和(X(1))=和4=54.59815,标准差为曾是⁡(X(1))=和4(和4−1)= 54.09584.
练习 7.2。(a) 我们插入λn=nλ和μn=0进入(7.1)并注意到n以。。开始米而不是 0 。Kolmogorov 正向方程变为磷米′(吨)=−米λ磷米(吨)和磷n′(吨)=(n−1)λ磷n−1(吨)− nλ磷n(吨),n=2,3,…, 初始条件磷米(0)=1.
(b) 核实磷n(吨)=(n−1 n−米)和−米λ吨(1−和−λ吨)n−米,n=米,米+1,…,求解 Kolmogorov 方程,我们写磷米(吨)=和−米λ吨, 所以磷米′(吨)=−米λ和−米λ吨=−米λ磷米(吨). 更远,磷n′(吨)= −米λ(n−1 n−米)和−米λ吨(1−和−λ吨)n−米+(n−1 n−米)和−米λ吨(n−米)λ和−λ吨(1−和−λ吨)n−米−1–米λ磷n(吨)+ (n−1 n−米)和−米λ吨(n−米)λ(和−λ吨−1+1)(1−和−λ吨)n−米−1=−米λ磷n(吨)−(n−米)λ磷n(吨)+ (n−米)(n−1 n=米)λ和−米λ吨(1−和−λ吨)n−米−1=−nλ磷n(吨)+(n−1)λ(n−2 n=米=1)和−米λ吨(1− 和−λ吨)n−米−1=(n−1)λ磷n−1(吨)−nλ磷n(吨).
(c) 分布X(吨)是一个负二项式,它对试验次数进行建模,直到米th 成功,其中成功的概率为p=和−λ吨. 因此,均值和方差为和(X(吨))=米p=米和λ吨, 和曾是⁡(X(吨))=米(1−p)p2=米和λ吨(和−λ吨−1).
(d)磷12(2)=(12−1 12−5)和−(5)(0.2)(2)(1−和−(0.2)(2))12−5=0.0189. 均值和标准差为和(X(2))=(5)和(0.2)(2)=7.459123, 和曾是⁡(X(2))=(5)和0.4(和0.4−1)=1.915354.

统计代写|随机过程代写stochastic process代考|In the Kolmogorov forward equations

练习 7.3。(a) 在 Kolmogorov 前向方程 (7.1) 中,我们使用λn=0, 和μn=nμ,并且初始人口规模为ñ. 我们写磷ñ′(吨)=−ñμ磷ñ(吨)和磷n′(吨)= (n+1)μ磷n+1(吨)−nμ磷n(吨),n=0,1,…,ñ−1, 初始条件磷ñ(0)=1.
(b) 概率磷n(吨)=(ñ n)和−nμ吨(1−和−μ吨)ñ−n,n=0,…,ñ,求解 Kolmogorov 正向方程,因为磷ñ(吨)=和−ñμ吨所以,磷ñ′(吨)=−ñμ和−ñμ吨=−ñμ磷ñ(吨). 还,
磷n′(吨)=−nμ(ñ n)和−nμ吨(1−和−μ吨)ñ−n+(ñ n)和−nμ吨(ñ−n)μ和−μ吨(1−和−μ吨)ñ−n−1 =−nμ磷n(吨)+(n+1)μ(ñ n+1)和−(n+1)μ吨(1−和−μ吨)ñ−(n+1)=(n+1)μ磷n+1(吨)−nμ磷n(吨).
(c) 分布X(吨)是带参数的二项式ñ和p=和−μ吨. 所以,和(X(吨))=ñp= ñ和−μ吨, 和曾是⁡(X(吨))=ñp(1−p)=ñ和−μ吨(1−和−μ吨).
(d)磷12(3)=(15 12)和−(12)(0.02)(3)(1−和−(0.02)(3))15−12=0.0437. 均值和标准差是和(X(3))=15和−(0.02)(3)=14.12647, 和曾是⁡(X(3))=15和−(0.02)(3)(1−和−(0.02)(3))= 0.907007.
练习 7.4。(a) 我们得到λ=1.3和μ=0.2. 我们需要计算
磷4(2)=(1−磷0)(1−λμ磷0)(λμ磷0)n−1=(1−磷0)(1−1.30.2磷0)(1.30.2磷0)4−1
在哪里
磷0=μ和(λ−μ)吨−μλ和(λ−μ)吨−μ=0.2和(1.3−0.2)(2)−0.21.3和(1.3−0.2)(2)−0.2=0.139172.
因此,磷4(2)=0.060783. 均值和方差是和(X(2))=和(λ−μ)吨=和(1.3−0.2)(2)=9.025013和曾是⁡(X(2))=λ+μλ−μ和(λ−μ)吨(和(λ−μ)吨−1)=1.3+0.21.3−0.2和(1.3−0.2)(2)(和(1.3−0.2)(2)−1)=98.76253.
(b) 下面我们模拟从状态 1 开始并有参数的过程的 50 步轨迹λ= 1.3和μ=0.2.

指定参数

λ<-1.3
米在<−0.2
跳跃次数<- 50

将状态和时间定义为向量

ñ<−C()

指定参数

λ<-1.3
亩<-0.2
跳跃次数<- 50

将状态和时间定义为向量

N<- c()
时间<-c()

设置初始值

N[1]<-
时间[1]<- 0

指定种子

set.seed(353332)
时间<- col)

设置初始值

ñ[1]<−1
时间[1]<−0

指定种子

set.seed (353332)

统计代写|随机过程代写stochastic process代考|the queue will accumulate faster

练习 7.5。(a) 如果λ>μ,队列的积累速度将比客户通过服务器的速度更快,因此我们预计系统中的客户数量从长远来看是无限的。
(b) 为λ=3和μ=5,系统中存在超过 2 个客户的长期概率为P(#P(#客户的>2)=1−磷0−磷1−磷2=1−(1−λμ)μ[1+λμ+(λμ)2]=1− (1−λμ)1−(λμ)31−λμ=(λμ)3=(35)3=0.216.
(c) 从长远来看,系统中的平均客户数为
林吨→∞和(X(吨))=λμ−λ=35−3=1.5.
(d) 从长远来看,系统中等待超过 1 分钟的客户比例为磷(吨>1)=和−(μ−λ)吨=和−(5−3)(1)=0.135335,或大致13.5%.

练习 7.6。(a) 下面我们用移民和移民模拟一个生死过程的轨迹,带有参数λ=1,μ=0.2,一种=0.3, 和b=0.1. 轨迹开始于状态 10 并结束于状态25.

指定参数

λ<- 1
米<−0.2
阿尔法<-0.3
贝塔<-0.1

将状态和时间定义为向量

ñ<−C()
时间<- c()

设置初始值

ñ[1]<−10
时间[1]<−0

指定种子

set.seed ( 93743765)

模拟轨迹

1<−2
重复 \&
time.birth<-(−1/(ñ[一世−1]∗拉姆达+l阶段))∗日志⁡(1−鲁尼夫⁡(1))
时间死亡c-(−1/(ñ[1−1]⋆变贝塔))∧日志⁡(1−跑⁡1F(1))
如果 (时间. 出生 < 时间. 死亡 |ñ[一世−1]==0) (
时间[一世]<−时间[一世−1]+time.birth –0.001
ñ[一世]<−ñ[一世−1]
如果(ñ[一世]==25)打破
其他।

统计代写|随机过程代写stochastic process代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写