### 计算机代写|计算机视觉代写Computer Vision代考|CMSC426

statistics-lab™ 为您的留学生涯保驾护航 在代写计算机视觉Computer Vision方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计算机视觉Computer Vision方面经验极为丰富，各种代写计算机视觉Computer Vision相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|计算机视觉代写Computer Vision代考|Histogram of Movement Area Types

The motion region type histogram (MRTH) is another compact way of representing motion. When the object is moving, the object can be segmented according to the local motion vector field, and each motion region with different affine parameter models can be obtained. These affine parameters can be regarded as a group of motion characteristics representing the motion region, so that the information of various motions in the motion vector field can be represented by means of the representation of the region parameter model. Specifically, it classifies motion models and counts the number of pixels in each motion region that meets different motion models. An example of MRTH is shown in Fig. 4.5. Using an affine parameter model for each motion region can not only conform to the local motion that people understand subjectively but also reduce the amount of data required to describe motion information.

The classification of the motion model is to divide the motion models into various types according to the motion vector describing the motion affine parameter model. For example, an affine motion model has six parameters, and its classification is a division of the 6-D parameter space. This division can use a vector quantization method. Specifically, according to the parameter model of each motion region, the vector quantizer is used to find the corresponding motion model type, and then the area value of the motion region that meets the motion model type is counted. The statistical histogram obtained in this way indicates the coverage area of each motion type. Different local motion types can represent not only different translational motions but also different rotational motions, different motion amplitudes, etc. Therefore, compared with the motion vector direction histogram, the motion region type histogram has a stronger description ability.

## 计算机代写|计算机视觉代写Computer Vision代考|Motion Track Description

The trajectory of the object gives the position information of the object during the motion. The trajectory of a moving object can be used when performing high-level explanations of actions and behaviors under certain circumstances or conditions. The international standard MPEG-7 recommends a special descriptor to describe the trajectory of the moving object. This kind of motion trajectory descriptor consists of a series of key points and a set of functions that interpolate between these key points. According to requirements, key points can be represented by coordinate values in 2-D or 3-D coordinate space, and the interpolation function corresponds to each coordinate axis, $x(t)$ corresponds to the horizontal trajectory, $y(t)$ corresponds to the vertical trajectory, and $z(t)$ corresponds to the trajectory in the depth direction. Figure $4.6$ shows a schematic diagram of $x(t)$. In the figure, there are four key points $t_0, t_1, t_2$, and $t_3$. In addition, there are three different interpolation functions between these pairs of key points.
The general form of the interpolation function is a second-order polynomial:
$$f(t)=f_p(t)+v_p\left(t-t_p\right)+a_p\left(t-t_p\right)^2 / 2$$
In Eq. (4.11), $p$ represents a point on the time axis; $v_p$ represents motion speed; $a_p$ represents motion acceleration. The interpolation functions corresponding to the three segments of the trajectory in Fig. $4.6$ are zero-order function, first-order function, and double-order function, respectively. Segment $A$ is $x(t)=x\left(t_0\right)$, segment $B$ is $x(t)=x\left(t_1\right)+v\left(t_1\right)\left(t-t_1\right)$, and segment $C$ is $x(t)=x\left(t_2\right)+v\left(t_2\right)(t-$ $\left.t_2\right)+0.5 \times a\left(t_2\right)\left(t-t_2\right)^2$.

According to the coordinates of the key points in the trajectory and the forms of the interpolation functions, the motion of the object along a specific direction can be determined. Summing up the motion trajectories in three directions, it can determine the motion of the object in space over time. Note that interpolation functions between the two key points in the horizontal trajectory, vertical trajectory, and depth trajectory can be functions of different orders. This kind of descriptor is compact and extensible, and according to the number of key points, the granularity of the descriptor can be determined. It can both describe delicate motions with close time intervals and roughly describe motions in a large time range. In the most extreme case, one can keep only the key points without the interpolation function, because only the key point sequence can already provide a basic description of the trajectory.

# 计算机视觉代考

## 计算机代写|计算机视觉代写Computer Vision代考|Motion Track Description

$$f(t)=f_p(t)+v_p\left(t-t_p\right)+a_p\left(t-t_p\right)^2 / 2$$

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。