物理代写|宇宙学代写cosmology代考|PHYC90009

如果你也在 怎样代写宇宙学cosmology这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

宇宙学是天文学的一个分支,涉及宇宙的起源和演变,从大爆炸到今天,再到未来。宇宙学的定义是 “对整个宇宙的大尺度特性进行科学研究”。

statistics-lab™ 为您的留学生涯保驾护航 在代写宇宙学cosmology方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写宇宙学cosmology代写方面经验极为丰富,各种代写宇宙学cosmology相关的作业也就用不着说。

我们提供的宇宙学cosmology及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|宇宙学代写cosmology代考|PHYC90009

物理代写|宇宙学代写cosmology代考|A Thermal History of the Universe and Primordial Nucleosynthesis

In the Friedmann-Lemaitre standard model, the universe is homogeneous and has identical characteristics everywhere. The theory however does not explain the reason for this homogeneity, which is well verified by observations. On closer inspection, it is even surprising that the CMB appears so isotropic. Whatever the direction of observation, the photons emitted by the last scattering surface all show the same temperature of $2.73 \mathrm{~K}$. However, they come from a multitude of regions that, in the strict framework of the theory, were not in causal contact at the time they emitted the CMB. Their number can be estimated at about a thousand.

Alan Guth proposed to solve this problem (Guth 1981) by assuming that the universe should undergo, shortly after the Planck era, a phase of exponential expansion called cosmic inflation, during which the scale factor $a(t)$ is multiplied by a factor $\sim e^{60}$. To generate this phenomenal acceleration, it is necessary to assume that the universe undergoes a phase transition during which its energy density $\rho$ is dominated by the potential energy of a scalar field. At the time, high-energy theoretical physicists were working on a theory for unifying the weak, strong and electromagnetic interactions. The models they arrived at, called grand unification models, naturally present all the qualities required to generate an inflationary period. The grand unified symmetry spontaneously breaks down around a cosmic time of about $10^{-35} \mathrm{~s}$ and the resulting inflation allows a single causally connected domain to become as large as the entire observable universe today. The original scenario has undergone a few modifications (Albrecht et al. 1982; Linde 1983) and now requires a dedicated scalar field called the inflaton. Its quantum fluctuations generate density perturbations that will much later transform into galaxies. Gravitational waves are also radiated during this period. They are a signature that future interferometers, such as LISA (Laser Interferometer Space Antenna), will try to identify. When inflation ends, around a cosmic age of $10^{-33}$ to $10^{-32} \mathrm{~s}$, the inflaton disintegrates and gives birth to the ylem during a reheating phase. The evolution of the universe is then described by the Friedmann-Lemaitre model.

物理代写|宇宙学代写cosmology代考|Quark/hadron phase transition

The elementary particles sensitive to the strong interaction are called hadrons, from the Greek hadros which means strong. They are constructions of quarks bound together by gluons. The hadron family is divided into two categories. Mesons are pairs formed by a quark and an antiquark and include among them the neutral pion $\pi^0$ and the charged pion $\pi^{p m}$. Baryons are assemblies composed of three quarks, such as the proton $p$ and neutron $n$, which are themselves the constituents of atomic nuclei. Gluons carry the strong interaction and are vector bosons of zero mass with two helicity states. Their electromagnetic analogue is the photon. The standard model of high energy physics, in this case quantum chromodynamics, requires the existence of eight gluons, as well as six quarks grouped in three families of doublets. The lightest of them is composed of $u$ quarks (up) and $d$ quarks (down). It enables the proton and the neutron to be built.

In the primordial universe, the temperature is so high that quarks and gluons cease to be bound. Mesons and baryons are completely dissociated into a plasma of free quarks and gluons, called quark gluon plasma (QGP). Heavy ion collisions, achieved at CERN and studied through experimental collaborations such as ALICE, attempt to recreate QGP in the laboratory in order to study it. Yet, QGP exists freely in a natural way during the Big Bang. Nonetheless, around a cosmic age of $10 \mu$ s, a phase transition occurs in which quarks and gluons condense into hadrons. Protons, neutrons and pions then appear.

Neutrinos are very light, neutral elementary particles that experience only the weak force. They interact with each other as well as with electrons, muons and tauons ${ }^3$, with which they are associated in the family of leptons, a term derived from the Greek leptos and meaning weak. Leptons are grouped into three doublets, each consisting of a neutrino and its charged partner. In the primordial universe, neutrinos frequently interact with their environment. They are thermally coupled to the primordial plasma and share its temperature. But under the combined influence of dilution and cooling of the ylem, both resulting from the overall expansion, neutrinos have fewer and fewer collisions with other particles. Their thermodynamic coupling fades around a cosmic age of $1 \mathrm{~s}$. They then undergo a thermal freeze-out, also called kinetic decoupling, which makes them a fossilized population of particles that no longer interact with each other or with the rest of the plasma. Thermal decoupling of neutrinos will be the subject of section 1.4.

物理代写|宇宙学代写cosmology代考|PHYC90009

宇宙学代考

物理代写|宇宙学代写cosmology代考|A Thermal History of the Universe and Primordial Nucleosynthesis

在弗里德曼-勒梅特标准模型中,宇宙是同质的,处处具有相同的特征。然而,该理论并没有解释这种同 质性的原因,这一点已通过观察得到了很好的验证。仔细观察,CMB 显得如此各向同性甚至令人惊讶。 无论从哪个方向观察,最后一个散射面发射的光子都表现出相同的温度 $2.73 \mathrm{~K}$. 然而,它们来自多个区 域,在理论的严格框架内,在它们发射 CMB 时并没有因果联系。他们的人数估计在一千人左右。

Alan Guth 提出解决这个问题 (Guth 1981) 的方法是假设宇宙在普朗克时代之后不久会经历一个称为宇宙 憉胀的指数膨胀阶段,在此期间比例因子 $a(t)$ 乘以一个因数 $\sim e^{60}$. 为了产生这种惊人的加速度,有必要 假设宇宙经历了一个相变,在此期间它的能量密度 $\rho$ 由标量场的势能支配。当时,高能理论物理学家正在 研究统一弱相互作用、强相互作用和电磁相互作用的理论。他们得出的模型被称为大统一模型,自然而然 地呈现了产生通货膨胀时期所需的所有品质。大统一对称性在大约 10 秒的宇宙时间附近自发地破缺 $10^{-35}$ s由此产生的膨胀使得一个因果联系的领域变得和今天整个可观察的宇宙一样大。最初的场景经过 了一些修改(Albrecht 等人 1982 年;Linde 1983 年),现在需要一个称为暴胀子的专用标量场。它的 量子涨落会产生密度扰动,这些扰动会在很久以后转变为星系。引力波也在此期间辐射。它们是末来干涉 仪 (例如 LISA (激光干涉仪空间天线) ) 将尝试识别的特征。当暴胀结束时,大约是一个宇宙时代 $10^{-33}$ 到 $10^{-32} \mathrm{~s}$ ,暴胀子在再加热阶段分解并产生 ylem。然后,弗里德曼-勒梅特模型描述了宇宙的演 化。

物理代写|宇宙学代写cosmology代考|Quark/hadron phase transition

对强相互作用敏感的基本粒子称为强子,来自莃腊语 hadros,意为强。它们是由胶子结合在一起的夸克 结构。强子家族分为两类。介子是由夸克和反夸克形成的对,其中包括中性介子 $\pi^0$ 和带电的介子 $\pi^{p n}$. 重 子是由三个夸克组成的集合体,例如质子 $p$ 和中子 $n$ ,它们本身就是原子核的成分。胶子具有强相互作用, 是具有两个螺旋态的零质量矢量玻色子。他们的电磁类似物是光子。高能物理学的标准模型,在这种情况 下是量子色动力学,需要存在八个胶子,以及分为三个双峰族的六个夸克。其中最轻的是由 $u$ 夸克(上) 和 $d$ 夸克(下)。它使质子和中子得以建造。
在原始宇宙中,温度如此之高以至于夸克和胶子不再受束缚。介子和重子完全分解成自由夸克和胶子的等 离子体,称为夽克胶子等离子体 (QGP)。在 CERN 实现并通过 ALICE 等实验合作进行研究的重离子碰撞 试图在实验室中重建 QGP 以对其进行研究。然而,QGP 在大爆炸期间以自然的方式自由存在。尽管如 此,大约在一个宇宙时代 $10 \mu \mathrm{s}$ ,发生相变,夸克和胶子凝聚成强子。然后出现质子、中子和 $\Pi$ 介子。
中微子是非常轻的中性基本粒子,只受到弱力。它们彼此相互作用,也与电子、介子和陶子相互作用 ${ }^3$ , 它们与轻子家族有关,轻子家族是一个源自希腊语 leptos 的术语,意思是弱。轻子分为三个双峰,每个 双峰由一个中微子及其带电伙伴组成。在原始宇宙中,中微子经常与其环境相互作用。它们与原始等离子 体热耦合并共享其温度。但是在由整体膨胀引起的 ylem 稀释和冷却的综合影响下,中微子与其他粒子的 碰撞越来越少。它们的热力学耦合在一个宇宙年龄附近逐渐消失 $1 \mathrm{~s}$. 然后它们会经历热冻结,也称为动力 学解耦,这使它们成为化石化的粒子群,不再相互作用或与其余等离子体相互作用。中微子的热解耦将是 第 $1.4$ 节的主题。

物理代写|宇宙学代写cosmology代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注