cs代写|复杂网络代写complex network代考|Cooperative Control of Complex Network Systems with Dynamic Topologies

如果你也在 怎样代写复杂网络complex network这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在网络理论的背景下,复杂网络是具有非微观拓扑特征的图(网络)这些特征在格子或随机图等简单网络中不出现,但在代表真实系统的网络中经常出现。

statistics-lab™ 为您的留学生涯保驾护航 在代写复杂网络complex network方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复杂网络complex network代写方面经验极为丰富,各种代写复杂网络complex network相关的作业也就用不着说。

我们提供的复杂网络complex network及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
cs代写|复杂网络代写complex network代考|Cooperative Control of Complex Network Systems with Dynamic Topologies

cs代写|复杂网络代写complex network代考|CNSS WITH STATIC COUPLING AND SWITCHING TOPOLOGIES

This section studies the consensus disturbance rejection problem for CNSs under directed switching topologies. Before moving forward, the definition of consensus disturbance rejection is given.

Definition 4.1 The consensus disturbance rejection of CNSs (4.1) and (4.3) with disturbances generated by (4.2) is said to be achieved if
$$
\
lim {t \rightarrow \infty}\left|x{i}(t)-x_{0}(t)\right|=0, \lim {t \rightarrow \infty}\left|\hat{d}{i}(t)-d_{i}(t)\right|=0,
$$
hold for arbitrary initial values $x_{i}\left(t_{0}\right), x_{0}\left(t_{0}\right), \hat{d}{i}\left(t{0}\right), d_{i}\left(t_{0}\right), i=1, \ldots, N$.
Theorem 4.2 Suppose Assumptions 4.1-4.3 hold. If the ADT $\tau_{a}>\ln \nu$, then the consensus disturbance rejection of CNSs (4.1) and (4.3) with the disturbances generated by (4.2) can be achieved by adopting the consensus error estimator (4.5), the state estimator (4.9), and the disturbance observer (4.10) based controller (4.11) with $K=-B^{T} P^{-1}, Q=\mu R^{-1} D^{T}, \rho \geq 4 \alpha / \lambda_{0}, \mu \geq 4 / \lambda_{0}$, where $\alpha$ is a positive constant, $\lambda_{0}$ is given by (4.4), $P>0$ and $R>0$ are, respectively, obtained by solving the LMIs (4.18) and (4.19),
$$
\begin{gathered}
A P+P A^{T}-\alpha B B^{T}+P<0, \
W^{T} R+R W-D^{T} D+2 R<0 .
\end{gathered}
$$
Proof $4.2$ For any $t \in\left[t_{j}, t_{j+1}\right), j=0,1,2, \ldots$, we construct the following $M L F s$
$$
V_{1}(t)=V_{11}(t)+V_{12}(t)+V_{13}(t)+V_{14}(t),
$$
where
$$
\begin{aligned}
&V_{11}(t)=\zeta^{T}(t)\left(I_{N} \otimes P^{-1}\right) \zeta(t), \
&V_{12}(t)=\frac{\gamma_{1}}{2} \sum_{i=1}^{N} \phi_{i}^{\sigma(t)}\left(2+\varrho_{i}(t)\right) \varrho_{i}(t), \
&V_{13}(t)=\gamma_{1} \gamma_{2} \tilde{d}^{T}(t)\left(\Phi^{\sigma(t)} \otimes R\right) \tilde{d}(t), \
&V_{14}(t)=\gamma_{1} \gamma_{3} \tilde{\delta}^{T}(t)\left(\Phi^{\sigma(t)} \otimes S\right) \tilde{\delta}(t),
\end{aligned}
$$

cs代写|复杂网络代写complex network代考|CNSS WITH DYNAMIC COUPLING AND FIXED TOPOLOGY

We could learn from Theorem $4.2$ that the coupling strength $\rho$ depends on the smallest eigenvalue $\lambda_{0}$ which is a global information associated with all the possible communication graphs. Consequently, the controller (4.11) can not be implemented in a distributed way. Motivated by this observation, we give a new state estimator with dynamic coupling strengths upon which a fully distributed controller can be reconstructed. While, unlike the last subsection, the directed topology of the CNSs considered in this subsection is assumed to be fixed. The state estimator is given as follows.
$$
\begin{aligned}
\dot{\hat{\xi}}{i}(t) &=A \hat{\xi}{i}(t)+\alpha B K \hat{\xi}{i}(t)+\left(\rho{i}+\varrho_{i}\right) B K\left(\hat{\zeta}{i}(t)-\hat{\delta}{i}(t)\right) \
\dot{\rho}{i} &=\left(\hat{\zeta}{i}(t)-\hat{\delta}{i}(t)\right)^{T} \Theta\left(\hat{\zeta}{i}(t)-\hat{\delta}{i}(t)\right) \ \varrho{i} &=\left(\hat{\zeta}{i}(t)-\hat{\delta}{i}(t)\right)^{T} P^{-1}\left(\hat{\zeta}{i}(t)-\hat{\delta}{i}(t)\right)
\end{aligned}
$$
where $\hat{\zeta}{i}(t)=\sum{j=1}^{N} a_{i j}\left(\hat{\xi}{i}(t)-\hat{\xi}{j}(t)\right)+a_{i 0} \hat{\xi}{i}(t), \Theta=P^{-1} B B^{T} P^{-1}, P>0$ will be given later, and the initial value $\rho{i}\left(t_{0}\right)>0$. Based on the estimator (4.34), the disturbance observer and the controller are then given by (4.35) and (4.36), respectively.
$$
\begin{gathered}
\hat{d}{i}(t)=z{i}(t)+Q \hat{\delta}{i}(t) \ \dot{z}{i}(t)=W z_{i}(t)+(W Q-Q A) \hat{\delta}{i}(t)-\alpha Q B K \hat{\zeta}{i}(t) \
u_{i}(t)=\alpha K \hat{\xi}{i}(t)-E \hat{d}{i}(t)
\end{gathered}
$$
By using the same analyses to those presented in Section $4.2$, we get
$$
\begin{aligned}
\dot{\hat{\delta}}(t)=&\left(I_{N} \otimes A\right) \hat{\delta}(t)+\alpha\left(I_{N} \otimes B K\right) \hat{\zeta}(t) \
&-(\overline{\mathcal{L}} \otimes D) \tilde{d}(t)+\left[I_{N} \otimes(G A-F C-A)\right] \tilde{\delta}(t)
\end{aligned}
$$$\dot{\tilde{\delta}}(t)=\left[I_{N} \otimes(G A-F C)\right] \tilde{\delta}(t)$, $\dot{\tilde{d}}(t)=\left(I_{N} \otimes W\right) \tilde{d}(t)-(\overline{\mathcal{L}} \otimes Q D) \tilde{d}(t)+\left[I_{N} \otimes Q(G A-F C-A)\right] \tilde{\delta}(t)$ $\dot{\hat{\zeta}}(t)=\left[I_{N} \otimes(A+\alpha B K)\right] \hat{\zeta}(t)+\overline{\mathcal{L}}(\rho+\varrho) \otimes B K)$ where $\hat{\zeta}(t)=\left[\hat{\zeta}{1}^{T}(t), \ldots, \hat{\zeta}{2}^{T}(t)\right]^{T}, \rho=\operatorname{diag}\left{\rho_{1}, \ldots, \rho_{N}\right}$, and the other symbols are the same as those defined in Section 4.2. the same as those defined in Section 4.2.

cs代写|复杂网络代写complex network代考|NUMERICAL SIMULATIONS

We perform two examples to validate Theorems $4.2$ and $4.3$, respectively. The CNSs under consideration consist of five YF-22 research UAVs [34] whose longitudinal

dynamics satisfy (4.1) with
$$
A=\left[\begin{array}{cccc}
-0.284 & -23.096 & 2.420 & 9.913 \
0 & -4.117 & 0.843 & 0.272 \
0 & -33.884 & -8.263 & -19.543 \
0 & 0 & 1 & 0
\end{array}\right]
$$
$$
B=\left[\begin{array}{c}
20.168 \
0.544 \
-39.085 \
0
\end{array}\right], D=B\left[\begin{array}{ll}
1 & 0
\end{array}\right], C=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \
0 & 0 & 1 & 1
\end{array}\right] \text {, }
$$
where $x_{i}(t)=\left[x_{i 1}(t), x_{i 2}(t), x_{i 3}(t), x_{i 4}(t)\right]^{T}$ and $x_{i 1}(t), x_{i 2}(t), x_{i 3}(t), x_{i 4}(t)$ represent, respectively, the speed, the attack angle, the pitch rate, and the pitch angle, $i=0,1, \ldots, 4$. The harmonic disturbances are generated by (4.2) with $d_{i}(t)=$ $\left[d_{i 1}(t), d_{i 2}(t)\right]^{T}$ and
$$
W=\left[\begin{array}{cc}
0 & 1.5 \
-1.5 & 0
\end{array}\right]
$$
It is not difficult to verify that Assumptions 4.1, 4.2 and the conditions (1) and (2) in Remark $4.2$ hold. Then, we get
$$
\begin{aligned}
H &=\left[\begin{array}{cccc}
-0.2135 & -0.0058 & 0.4137 & 0 \
0.4029 & 0.0109 & -0.7808 & 0
\end{array}\right]^{T}, \
G &=\left[\begin{array}{cccc}
0.7865 & -0.2135 & 0.4029 & 0.4029 \
-0.0058 & 0.9942 & 0.0109 & 0.0109 \
0.4137 & 0.4137 & 0.2192 & -0.7808 \
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$
Solving the LMI (4.8) gives that
$$
F=\left[\begin{array}{rrrr}
11.3220 & 1.5912 & 5.9677 & 0.0839 \
5.2910 & 0.7606 & 3.1369 & 0.3498
\end{array}\right]^{T} .
$$

cs代写|复杂网络代写complex network代考|Cooperative Control of Complex Network Systems with Dynamic Topologies

复杂网络代写

cs代写|复杂网络代写complex network代考|CNSS WITH STATIC COUPLING AND SWITCHING TOPOLOGIES

本节研究定向交换拓扑下 CNS 的共识干扰拒绝问题。在继续之前,给出了共识干扰拒绝的定义。

定义 4.1 如果
$$
\
 lim {t \rightarrow \infty}\left|x{i}(t) – x_{0}(t)\right|=0, \lim {t \rightarrow \infty}\left|\hat{d}{i}(t)-d_{i}(t)\right|=0,

H○ldF○r一个rb一世吨r一个r是一世n一世吨一世一个l在一个l在和s$X一世(吨0),X0(吨0),d^一世(吨0),d一世(吨0),一世=1,…,ñ$.吨H和○r和米4.2小号在pp○s和一个ss在米p吨一世○ns4.1−4.3H○ld.我F吨H和一个D吨$τ一个>ln⁡ν$,吨H和n吨H和C○ns和ns在sd一世s吨在rb一个nC和r和j和C吨一世○n○FCñ小号s(4.1)一个nd(4.3)在一世吨H吨H和d一世s吨在rb一个nC和sG和n和r一个吨和db是(4.2)C一个nb和一个CH一世和在和db是一个d○p吨一世nG吨H和C○ns和ns在s和rr○r和s吨一世米一个吨○r(4.5),吨H和s吨一个吨和和s吨一世米一个吨○r(4.9),一个nd吨H和d一世s吨在rb一个nC和○bs和r在和r(4.10)b一个s和dC○n吨r○ll和r(4.11)在一世吨H$ķ=−乙吨磷−1,问=μR−1D吨,ρ≥4一个/λ0,μ≥4/λ0$,在H和r和$一个$一世s一个p○s一世吨一世在和C○ns吨一个n吨,$λ0$一世sG一世在和nb是(4.4),$磷>0$一个nd$R>0$一个r和,r和sp和C吨一世在和l是,○b吨一个一世n和db是s○l在一世nG吨H和大号米我s(4.18)一个nd(4.19),

一个磷+磷一个吨−一个乙乙吨+磷<0, 在吨R+R在−D吨D+2R<0.

磷r○○F$4.2$F○r一个n是$吨∈[吨j,吨j+1),j=0,1,2,…$,在和C○ns吨r在C吨吨H和F○ll○在一世nG$米大号Fs$
V_{1}(t)=V_{11}(t)+V_{12}(t)+V_{13}(t)+V_{14}(t),

在H和r和

在11(吨)=G吨(吨)(我ñ⊗磷−1)G(吨), 在12(吨)=C12∑一世=1ñφ一世σ(吨)(2+ϱ一世(吨))ϱ一世(吨), 在13(吨)=C1C2d~吨(吨)(披σ(吨)⊗R)d~(吨), 在14(吨)=C1C3d~吨(吨)(披σ(吨)⊗小号)d~(吨),
$$

cs代写|复杂网络代写complex network代考|CNSS WITH DYNAMIC COUPLING AND FIXED TOPOLOGY

我们可以从定理中学习4.2耦合强度ρ取决于最小特征值λ0这是与所有可能的通信图相关的全局信息。因此,控制器(4.11)不能以分布式方式实现。受此观察的启发,我们给出了一个具有动态耦合强度的新状态估计器,在该状态估计器上可以重建一个完全分布式的控制器。然而,与上一小节不同,本小节中考虑的 CNS 的有向拓扑假设是固定的。状态估计器给出如下。

X^˙一世(吨)=一个X^一世(吨)+一个乙ķX^一世(吨)+(ρ一世+ϱ一世)乙ķ(G^一世(吨)−d^一世(吨)) ρ˙一世=(G^一世(吨)−d^一世(吨))吨θ(G^一世(吨)−d^一世(吨)) ϱ一世=(G^一世(吨)−d^一世(吨))吨磷−1(G^一世(吨)−d^一世(吨))
在哪里G^一世(吨)=∑j=1ñ一个一世j(X^一世(吨)−X^j(吨))+一个一世0X^一世(吨),θ=磷−1乙乙吨磷−1,磷>0后面会给出,初始值ρ一世(吨0)>0. 基于估计器 (4.34),扰动观测器和控制器分别由 (4.35) 和 (4.36) 给出。

d^一世(吨)=和一世(吨)+问d^一世(吨) 和˙一世(吨)=在和一世(吨)+(在问−问一个)d^一世(吨)−一个问乙ķG^一世(吨) 在一世(吨)=一个ķX^一世(吨)−和d^一世(吨)
通过使用与第 1 节中介绍的相同的分析4.2,我们得到

d^˙(吨)=(我ñ⊗一个)d^(吨)+一个(我ñ⊗乙ķ)G^(吨) −(大号¯⊗D)d~(吨)+[我ñ⊗(G一个−FC−一个)]d~(吨)d~˙(吨)=[我ñ⊗(G一个−FC)]d~(吨), d~˙(吨)=(我ñ⊗在)d~(吨)−(大号¯⊗问D)d~(吨)+[我ñ⊗问(G一个−FC−一个)]d~(吨)$\dot{\hat{\zeta}}(t)=\left[I_{N} \otimes(A+\alpha BK)\right] \hat{\zeta}(t)+ \overline{\mathcal{L }}(\rho+\varrho) \otimes BK )在H和r和\hat{\zeta}(t)=\left[\hat{\zeta}{1}^{T}(t), \ldots, \hat{\zeta}{2}^{T}(t)\ right]^{T}、\rho=\operatorname{diag}\left{\rho_{1}、\ldots、\rho_{N}\right}$,其他符号同4.2节定义. 与第 4.2 节中定义的相同。

cs代写|复杂网络代写complex network代考|NUMERICAL SIMULATIONS

我们执行两个示例来验证定理4.2和4.3, 分别。正在考虑的 CNS 包括五架 YF-22 研究无人机 [34],其纵向

动力学满足(4.1)

一个=[−0.284−23.0962.4209.913 0−4.1170.8430.272 0−33.884−8.263−19.543 0010]

乙=[20.168 0.544 −39.085 0],D=乙[10],C=[1100 0011], 
在哪里X一世(吨)=[X一世1(吨),X一世2(吨),X一世3(吨),X一世4(吨)]吨和X一世1(吨),X一世2(吨),X一世3(吨),X一世4(吨)分别表示速度、迎角、俯仰率和俯仰角,一世=0,1,…,4. 谐波扰动由(4.2)产生d一世(吨)= [d一世1(吨),d一世2(吨)]吨和

在=[01.5 −1.50]
不难验证,假设 4.1、4.2 以及备注中的条件(1)和(2)4.2抓住。那么,我们得到

H=[−0.2135−0.00580.41370 0.40290.0109−0.78080]吨, G=[0.7865−0.21350.40290.4029 −0.00580.99420.01090.0109 0.41370.41370.2192−0.7808 0001].
求解 LMI (4.8) 给出

F=[11.32201.59125.96770.0839 5.29100.76063.13690.3498]吨.

cs代写|复杂网络代写complex network代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。