cs代写|复杂网络代写complex network代考|CS60078

如果你也在 怎样代写复杂网络complex network这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在网络理论的背景下,复杂网络是具有非微观拓扑特征的图(网络)这些特征在格子或随机图等简单网络中不出现,但在代表真实系统的网络中经常出现。

statistics-lab™ 为您的留学生涯保驾护航 在代写复杂网络complex network方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复杂网络complex network代写方面经验极为丰富,各种代写复杂网络complex network相关的作业也就用不着说。

我们提供的复杂网络complex network及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
cs代写|复杂网络代写complex network代考|CS60078

cs代写|复杂网络代写complex network代考|DEFINITIONS OF SYNCHRONIZATION AND CONSENSUS

Before moving forward, the definition of consensus of MASs is given. Moreover, the synchronization of complex networks can be defined similarly.

Consider an MAS which consists of $N$ agents. Without loss of generality, we label the $N$ agents as agents $1, \ldots, N$, respectively. The dynamics of agent $i, i=1, \ldots, N$, are represented by
$$
\dot{x}{i}(t)=f\left(t, x{i}(t), u_{i}(t)\right),
$$
where $x_{i}(t) \in \mathbb{R}^{n}$ and $u_{i}(t) \in \mathbb{R}^{m}$ represent, respectively, the state and the control input, $f(\cdot, \cdot \cdot):\left[t_{0},+\infty\right) \times \mathbb{R}^{n} \times \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ represents the nonlinear dynamics of agent i. A particular case is the general linear time-invariant MASs with the dynamics of agent $i$ are described by
$$
\dot{x}{i}(t)=A x{i}(t)+B u_{i}(t), i=1, \ldots, N,
$$
where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ represent, respectively, the state matrix and control input matrix. For convenience, throughout this book, we call MAS (1.1) to represent the MAS whose dynamics are described by (1.1).

Definition $1.1$ Consensus of the MAS (1.1) is said to be achieved if for arbitrary initial conditions $x_{i}\left(t_{0}\right), i=1, \ldots, N$,
$$
\lim {t \rightarrow \infty}\left|x{i}(t)-x_{j}(t)\right|=0, i, j=1, \ldots, N .
$$
The definition of consensus for MAS (1.1) given by Eq. (1.3) does not concern about the final consensus states. However, it is sometimes important to make the states of all agents in the considered MASs to finally converge to some predesigned trajectory, especially from the viewpoint of controlling various complex engineering systems. To ensure the states of all agents in MAS (1.1) converge to some desired states, a target system (may be virtual) is introduced to the network (1.1) as
$$
\dot{s}(t)=f(t, s(t))
$$
for some given initial value $s\left(t_{0}\right) \in \mathbb{R}^{n}$. Under this scenario, we call agent $i$ whose dynamics are described by (1.1) the follower $i, i=1, \ldots, N$, and call the agent whose dynamics are described by (1.4) the leader.

cs代写|复杂网络代写complex network代考|SYNCHRONIZATION OF COMPLEX NETWORKS WITH SWITCHING TOPOLOGIES

In the field of complex networks’ synchronization with switching topologies, a wide range of research has been recently focused on dealing with issues related to the switchings and their effects on synchronization.

There has been increasing recognition that each topology candidate’s properties and the switching strategy for topologies play essential roles in achieving synchronization for complex networks with switching topologies. The analytical approaches for synchronization of continuous- and discrete-time complex networks with switching topologies are generally different. Mathematically, the continuous-time complex network with switching topologies is a special kind of those with time-varying topology. However, it is preliminarily assumed in some existing works on synchronization of continuous-time network systems with time-varying topology that the connection links evolve continuously over time with a known bound for the changing rate [103] or with a time-varying Laplacian matrix being simultaneously diagonalizable [11]. Thus, the techniques developed in these works to solve synchronization problem of complex networks with special time-varying topology are generally hard to apply to that with switching topologies, especially to the case with directed switching topologies.

Specifically, averaging-based approaches were developed to analyze synchronization of continuous-time complex networks with fast switching topologies $[7,140]$ while multiple Lyapunov functions (MLFs)-based approaches were developed to analyze synchronization of continuous-time complex networks with slowly switching topologies (especially for the case with directed switching topologies) [190]. Furthermore, MLFLs-based approaches were usually employed to analyze synchronization of continuous-time complex networks with switching topologies under delayed or sampled-data coupling $[90,187]$. Common Lyapunov function (CLF)- and functional (CLFL)-based approaches are applicable only to some special continuous-time complex networks with switching topologies such as each possible topology candidate is undirected [222].

For discrete-time CNSs with switching topologies, global synchronization for nonautonomous linear complex networks with randomly switching topologies was studied in [200] by developing a kind of approaches from ergodicity theory for nonhomogeneous Markovian chains. A method based on the Hajnal diameter of infinite coupling matrices was proposed in [97] to analyze the local synchronizability of a class of discrete-time complex networks with directed switching topologies. Synchronization of discrete-time complex networks with undirected switching topologies and impulsive controller was studied in [73] by constructing MLFs. Globally almost sure synchronization for discrete-time complex networks with switching topologies was investigated in [51] by using the super-martingale convergence theorem. For more recent related works, one can refer to the survey.

cs代写|复杂网络代写complex network代考|CS60078

复杂网络代写

cs代写|复杂网络代写complex network代考|DEFINITIONS OF SYNCHRONIZATION AND CONSENSUS

在继续之前,给出了 MAS 共识的定义。此外,可以类似地定义复杂网络的同步。
考虑一个 MAS,它由 $N$ 代理。不失一般性,我们标记 $N$ 代理人作为代理人 $1, \ldots, N$ ,分别。代理的动态 $i, i=1, \ldots, N$, 表示为
$$
\dot{x} i(t)=f\left(t, x i(t), u_{i}(t)\right),
$$
在哪里 $x_{i}(t) \in \mathbb{R}^{n}$ 和 $u_{i}(t) \in \mathbb{R}^{m}$ 分别表示状态和控制输入, $f(\cdot, \cdot \cdot):\left[t_{0},+\infty\right) \times \mathbb{R}^{n} \times \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ 表示代 理 $\mathrm{i}$ 的非线性动力学。一个特例是具有代理动力学的一般线性时不变 MAS $i$ 被描述为
$$
\dot{x} i(t)=A x i(t)+B u_{i}(t), i=1, \ldots, N,
$$
在哪里 $A \in \mathbb{R}^{n \times n}$ 和 $B \in \mathbb{R}^{n \times m}$ 分别表示状态矩阵和控制输入矩阵。为方便起见,在整本书中,我们称 MAS (1.1) 来表示其动力学由 (1.1) 描述的 MAS。
定义1.1如果对于任意初始条件,则据说可以实现 MAS (1.1) 的共识 $x_{i}\left(t_{0}\right), i=1, \ldots, N$ ,
$$
\lim t \rightarrow \infty\left|x i(t)-x_{j}(t)\right|=0, i, j=1, \ldots, N .
$$
由方程式给出的 MAS (1.1) 共识的定义。(1.3) 不关心最终共识状态。然而,有时重要的是使所考虑的 MAS 中的所 有代理的状态最终收敛到某个预先设计的轨迹,特别是从控制各种复杂工程系统的角度来看。为了确保 MAS (1.1) 中所有代理的状态收敛到一些期望的状态,将目标系统 (可能是虚拟的) 引入网络 (1.1) 为
$$
\dot{s}(t)=f(t, s(t))
$$
对于一些给定的初始值 $s\left(t_{0}\right) \in \mathbb{R}^{n}$. 在这种情况下,我们称代理 $i$ 其动力学由 $(1.1)$ 跟随者描述 $i, i=1, \ldots, N$ , 并调用由 (1.4) 描述动态的智能体为领导者。

cs代写|复杂网络代写complex network代考|SYNCHRONIZATION OF COMPLEX NETWORKS WITH SWITCHING TOPOLOGIES

在复杂网络与交换拓扑的同步领域,最近广泛的研究集中在处理与交换相关的问题及其对同步的影响。

人们越来越认识到,每个拓扑候选的属性和拓扑的交换策略在实现具有交换拓扑的复杂网络的同步方面起着至关重要的作用。具有交换拓扑的连续和离散时间复杂网络同步的分析方法通常是不同的。在数学上,具有交换拓扑的连续时间复杂网络是具有时变拓扑的一种特殊网络。然而,在一些现有的关于具有时变拓扑的连续时间网络系统同步的工作中,初步假设连接链路随着时间的推移以已知的变化率[103]或时变拉普拉斯矩阵不断演变同时可对角化[11]。因此,

具体来说,开发了基于平均的方法来分析具有快速切换拓扑的连续时间复杂网络的同步[7,140]同时开发了多个基于 Lyapunov 函数 (MLF) 的方法来分析具有缓慢切换拓扑的连续时间复杂网络的同步(特别是对于有向切换拓扑的情况)[190]。此外,基于 MLFL 的方法通常用于分析具有切换拓扑的连续时间复杂网络在延迟或采样数据耦合下的同步[90,187]. 基于通用 Lyapunov 函数 (CLF) 和泛函 (CLFL) 的方法仅适用于一些具有切换拓扑的特殊连续时间复杂网络,例如每个可能的拓扑候选者都是无向的 [222]。

对于具有切换拓扑的离散时间CNS,在[200]中研究了具有随机切换拓扑的非自治线性复杂网络的全局同步,通过开发一种非齐次马尔可夫链的遍历性理论方法。在[97]中提出了一种基于无限耦合矩阵的Hajnal直径的方法来分析一类具有定向切换拓扑的离散时间复杂网络的局部同步性。[73] 通过构建 MLF 研究了具有无向开关拓扑和脉冲控制器的离散时间复杂网络的同步。在[51]中使用超鞅收敛定理研究了具有交换拓扑的离散时间复杂网络的全局几乎确定的同步。更多近期相关作品。

cs代写|复杂网络代写complex network代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。