计算机代写|深度学习代写deep learning代考|COMP30027

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP30027

计算机代写|深度学习代写deep learning代考|Optimizing the Network Architecture

As a network becomes more sophisticated with the addition of layers or various node types it puts direct consequences on how the loss/error is backpropagated through it. Figure $1.2$ demonstrates the more common problems we typically encounter when growing more complex and larger DL systems.

Larger networks mean the amount of loss needs to be divided into smaller and smaller components that eventually approach or get close to zero. When these loss components or gradients approach zero we call this a vanishing gradient problem often associated with deep networks. Conversely, components may also get exceptionally large by successively passing through layers that magnify those input signals. Resulting in gradient components getting large or what’s called exploding gradients.

Both gradient problems can be resolved using various techniques like normalizing input data and again through the layers. Special types of layer functions called normalization and dropout are shown in Figure 1.3. These techniques also add to the computational complexity and requirements for the network. They may also overtly smooth over important and characteristic features in data. Thus, requiring larger and more diverse training datasets to develop good network performance.

Normalization may solve the vanishing/exploding gradient problems of deep networks but as models grow these manifest other concerns. As networks grow, they increase the ability to digest larger sets of input, bigger images for example. Yet, this also may cause a side effect known as network memorization which can occur again if the input training set is too small. This occurs because the network is so large that it may start to memorize sets of input chunks or potentially whole images or sets of text.

The cutting-edge DL models that you may have heard about like the GPT-3, a natural language processor from OpenAI, suffer in part from memorization. This is even after feeding billions of documents representing multiple forms of text into such models. Even with such diverse and massive training sets models like GPT-3 have been shown to replay whole paragraphs of remembered text. Which may be an effective feature for a database that doesn’t fit well into a DL model.

There have been workarounds developed for the memorization problem called dropout, a process by which a certain percentage of the nodes within network layers may be deactivated through each training pass. The result of turning off/on nodes within each pass creates a more general network. Yet at a cost of still requiring the network to now be 100 $200 \%$ larger.

计算机代写|深度学习代写deep learning代考|What is Automated Machine Learning, AutoML?

AutoML or automated machine learning is a tool or set of tools used to automate and enhance the building of $\mathrm{AI} / \mathrm{ML}$. It is not a specific technology but a collection of methods and strategies in which evolutionary algorithms or evolutionary optimization methods would be considered a subset. It is a tool that can be used throughout the $\mathrm{AI} / \mathrm{ML}$ workflow as depicted in Figure 1.3.

Figure $1.1$ depicts the typical AI/ML workflow for building a good model used later for confident inference of new data. This workflow is often undertaken manually by various oractitioners of AI/ML but there have been various attempts to automate all steps. Below is a summary of each of these steps in more detail and how they may be automated with AML:

expensive. In general, preparing data Automating this task can dramatically increase the performance of data workflows critical to fine-tuning complex models. AutoML online services often assume that the user has already prepared and cleaned data as required by most ML models. With evolutionary methods, there are several ways to automate the preparation of data and while this task is not specific to EDL, we will cover it in later chapters.

  • Feature Engineering – is the process of extracting relevant features in data using prior domain knowledge. With experts picking and choosing relevant features based on their intuition and experience. Since domain experts are expensive and opinionated, automating this task reduces costs and improves standardization. Depending on the AutoML tool feature engineering may be included in the process.
  • Model Selection – as AI/ML has advanced there are now hundreds of various model types that could be used to solve similar problems. Often data scientists will spend days or weeks just selecting a group of models to further evaluate. Automating this process speeds up model development and helps the data scientist affirm they are using the right model for the job. A good AutoML tool may choose from dozens or hundreds of models including DL variations or model ensembles.
  • Model Architecture – depending on the area of $\mathrm{AI} / \mathrm{ML}$ and deep learning, defining the right model architecture is often critical. Getting this right in an automated way alleviates countless hours of tuning architecture and rerunning models. Depending on the implementation some AutoML systems may vary model architecture, but this is typically limited to well-known variations.
  • Hyperparameter Optimization – the process of fine-tuning a model’s hyperparameters can be time-consuming and error-prone. To overcome this, many practitioners rely on intuition and previous experience. While this has been successful in the past, increasing model complexity now makes this task untenable. By automating HP tuning we not only alleviate work from the builders but also uncover potential flaws in the model selection or architecture.
  • Validation Selection – there are many options for evaluating the performance of a model. From deciding on how much data to use for training and testing to visualizing the output performance of a model. Automating the validation of a model provides a robust means to recharacterize model performance when data changes and makes a model more explainable long term. For online AutoML services, this is a key strength that provides a compelling reason to employ such tools.
计算机代写|深度学习代写deep learning代考|COMP30027

深度学习代写

计算机代写|深度学习代写deep learning代考|Optimizing the Network Architecture

随着网络通过添加层或各种节点类型变得更加复杂,它直接影响了损失/错误如何通过它反向传播。数字1.2展示了我们在开发更复杂和更大的 DL 系统时通常会遇到的更常见的问题。

更大的网络意味着损失量需要被分成越来越小的部分,最终接近或接近于零。当这些损失分量或梯度接近零时,我们称其为通常与深度网络相关的梯度消失问题。相反,组件也可能通过连续穿过放大这些输入信号的层而变得异常大。导致梯度分量变大或所谓的梯度爆炸。

这两个梯度问题都可以使用各种技术来解决,例如标准化输入数据并再次通过层。图 1.3 显示了称为归一化和丢弃的特殊类型的层函数。这些技术还增加了网络的计算复杂性和要求。他们也可能公然掩盖数据中的重要特征和特征。因此,需要更大、更多样化的训练数据集来开发良好的网络性能。

归一化可以解决深层网络的消失/爆炸梯度问题,但随着模型的增长,这些问题会显现出其他问题。随着网络的发展,它们增加了消化更大输入集的能力,例如更大的图像。然而,这也可能导致称为网络记忆的副作用,如果输入训练集太小,这种副作用可能会再次发生。发生这种情况是因为网络太大以至于它可能开始记住输入块集或可能的整个图像或文本集。

您可能听说过的尖端 DL 模型,例如来自 OpenAI 的自然语言处理器 GPT-3,在一定程度上会受到记忆的影响。这甚至是在将代表多种文本形式的数十亿文档输入此类模型之后。即使有如此多样化和庞大的训练集,像 GPT-3 这样的模型也被证明可以重播记忆文本的整个段落。对于不太适合 DL 模型的数据库来说,这可能是一个有效的特性。

已经针对称为 dropout 的记忆问题开发了变通方法,通过该过程,网络层中的一定比例的节点可能会在每次训练过程中停用。在每次传递中关闭/打开节点的结果创建了一个更通用的网络。然而,代价是仍然要求网络现在是 100200%更大。

计算机代写|深度学习代写deep learning代考|What is Automated Machine Learning, AutoML?

AutoML 或自动化机器学习是一种工具或一组工具,用于自动化和增强构建一种我/米大号. 它不是一种特定的技术,而是一种方法和策略的集合,其中进化算法或进化优化方法将被视为一个子集。它是一个可以在整个过程中使用的工具一种我/米大号工作流程如图 1.3 所示。

数字1.1描述了典型的 AI/ML 工作流程,用于构建一个良好的模型,稍后用于对新数据进行自信的推理。此工作流通常由 AI/ML 的各种执行者手动执行,但已经有各种尝试使所有步骤自动化。下面更详细地总结了每个步骤,以及如何使用 AML 将它们自动化:

昂贵的。一般来说,准备数据自动化此任务可以显着提高对微调复杂模型至关重要的数据工作流的性能。AutoML 在线服务通常假设用户已经按照大多数 ML 模型的要求准备和清理了数据。使用进化方法,有几种方法可以自动准备数据,虽然这个任务不是 EDL 特有的,但我们将在后面的章节中介绍它。

  • 特征工程——是使用先验领域知识从数据中提取相关特征的过程。专家根据他们的直觉和经验挑选和选择相关特征。由于领域专家的费用昂贵且固执己见,因此自动化此任务可降低成本并提高标准化程度。根据 AutoML 工具的不同,特征工程可能包含在该过程中。
  • 模型选择——随着 AI/ML 的进步,现在有数百种不同的模型类型可用于解决类似的问题。数据科学家通常会花费数天或数周的时间来选择一组模型进行进一步评估。自动化此过程可加快模型开发并帮助数据科学家确认他们正在使用正确的模型来完成工作。一个好的 AutoML 工具可能会从数十个或数百个模型中进行选择,包括 DL 变体或模型集成。
  • 模型架构——取决于区域一种我/米大号和深度学习,定义正确的模型架构通常是至关重要的。以自动化方式正确完成此操作可以减少无数小时的架构调整和重新运行模型。根据实现的不同,一些 AutoML 系统可能会改变模型架构,但这通常仅限于众所周知的变体。
  • 超参数优化——微调模型超参数的过程可能既耗时又容易出错。为了克服这个问题,许多从业者依靠直觉和以往的经验。虽然这在过去是成功的,但现在增加的模型复杂性使这项任务变得难以维持。通过自动化 HP 调整,我们不仅可以减轻构建者的工作量,还可以发现模型选择或架构中的潜在缺陷。
  • 验证选择——有许多选项可用于评估模型的性能。从决定用于训练和测试的数据量到可视化模型的输出性能。自动验证模型提供了一种强大的方法,可以在数据发生变化时重新表征模型性能,并使模型在长期内更易于解释。对于在线 AutoML 服务,这是一个关键优势,它提供了使用此类工具的令人信服的理由。
计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注