电子工程代写|数字信号处理代写Digital Signal Processing代考|EE615

如果你也在 怎样代写数字信号处理Digital Signal Processing这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数字信号处理器(DSP)将现实世界的信号,如语音、音频、视频、温度、压力或位置,经过数字化处理,然后以数学方式处理它们。数字信号处理器被设计用于快速执行数学功能,如 “加”、”减”、”乘 “和 “除”。

statistics-lab™ 为您的留学生涯保驾护航 在代写数字信号处理Digital Signal Processing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数字信号处理Digital Signal Processing方面经验极为丰富,各种代写数字信号处理Digital Signal Processing相关的作业也就用不着说。

我们提供的数字信号处理Digital Signal Processing及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
电子工程代写|数字信号处理代写Digital Signal Processing代考|EE615

电子工程代写|数字信号处理代写Digital Signal Processing代考|Textbooks

The following textbooks are the most relevant for this module:

  • “Essentials of Digital Signal Processing,” B.P. Lathi and R.A. Green, Cambridge University Press, 2014. Lathi has authored several popular textbooks on signals and systems. This recent text is quite accessible and features strong integration with MATLAB.
  • “Essential MATLAB for engineers and scientists,” B. Hahn and D. Valentine, Academic Press, 7th Edition, 2019. There are many excellent free re-
  • sources for MATLAB, including the official software documentation (go to the help browser within the software or visit https://uk . mathworks. com/help/ matlab/index.html). While this book has only a very brief chapter on signal processing, it is good for a broad overview of MATLAB if you are seeking a general reference. It is also up to date as of MATLAB release $2018 \mathrm{~b}$.
  • “Discrete-Time Signal Processing,” Oppenheim and Schafer, Pearson, 3rd Edition, 2013. Every signal processing textbook will have its relative strengths and weaknesses. This book serves as an alternative to Lathi and Green’s “Essentials of Digital Signal Processing.” While MATLAB is used for some of the examples, it is not thoroughly integrated, but overall this book has greater depth and breadth of topics. For example, it provides better coverage of random processes and signals.
  • We will refer to several other textbooks and resources throughout the module, but they will only be relevant for 1 or 2 lessons each. Please see “Further Reading” at the end of each lesson for details.

电子工程代写|数字信号处理代写Digital Signal Processing代考|Signals and Signal Classification

So what are signals? A signal is a quantity that can be varied in order to convey information. If a signal does not contain useful information (at least not in the current context), then the signal is regarded as noise. You may have a useful audio signal for your neighbour in a lecture, but this could be noise to anyone nearby that is trying to listen to the instructor!

Practically any physical phenomena can be understood as a signal (e.g., temperature, pressure, concentration, voltage, current, impedance, velocity, displacement, vibrations, colour). Immaterial quantities can also be signals (e.g., words, stock prices, module marks). Signals are usually described over time, frequency, and/or spatial domains. Time and frequency will be the most common in the context of this module, but our brief introduction to image processing will treat images as two-dimensional signals.

There are several ways of classifying signals. We will classify according to how they are defined over time and in amplitude. Over time we have:

  1. Continuous-time signals – signals that are specified for every value of time $t$ (e.g., sound level in a classroom).
  2. Discrete-time signals – signals that are specified at discrete values of time (e.g., the average daily temperature). The times are usually denoted by the integer $n$.
    In amplitude we have:
  3. Analogue signals – signals can have any value over a continuous range (e.g., body temperature).
  4. Digital signals – signals whose amplitude is restricted to a finite number of values (e.g., the result of rolling a die).

While we can mix and match these classes of signals, in practice we most often see continuous-time analogue signals (i.e., many physical phenomena) and discrete-time digital signals (i.e., how signals are most easily represented in a computer); see Fig. 1.1. However, digital representations of data are often difficult to analyse mathematically, so we will usually treat them as if they were analogue. Thus, the key distinction is actually continuous-time versus discrete-time, even though for convenience we will refer to these as analogue and digital. The corresponding mathematics for continuous-time and discrete-time signals are distinct, and so they also impose the structure of this module.

电子工程代写|数字信号处理代写Digital Signal Processing代考|EE615

数字信号处理代考

电子工程代写|数字信号处理代写Digital Signal Processing代考|Textbooks

以下教科书与本模块最相关:

  • “Essentials of Digital Signal Processing”,BP Lathi 和 RA Green,剑桥大学出版社,2014 年。Lathi 撰写了多本关于信号和系统的热门教科书。这篇最近的文章很容易理解,并且与 MATLAB 紧密集成。
  • “工程师和科学家的基本 MATLAB”,B. Hahn 和 D. Valentine,Academic Press,第 7 版,2019 年。
  • MATLAB 的资源,包括官方软件文档(转到软件内的帮助浏览器或访问 https://uk.mathworks.com/help/matlab/index.html)。虽然这本书只有一个非常简短的章节介绍信号处理,但如果您正在寻找一般参考资料,那么它有助于对 MATLAB 进行广泛的概述。它也是最新的 MATLAB 版本2018 b.
  • “离散时间信号处理”,Oppenheim 和 Schafer,Pearson,第 3 版,2013 年。每本信号处理教科书都有其相对优势和劣势。本书可替代 Lathi 和 Green 的“数字信号处理基础”。虽然 MATLAB 用于某些示例,但并未完全集成,但总体而言,本书的主题具有更大的深度和广度。例如,它可以更好地覆盖随机过程和信号。
  • 我们将在整个模块中参考其他几本教科书和资源,但它们每本仅与 1 或 2 节课相关。详情请见每课后的“延伸阅读”。

电子工程代写|数字信号处理代写Digital Signal Processing代考|Signals and Signal Classification

那么什么是信号呢?信号是可以改变以传递信息的量。如果信号不包含有用的信息(至少在当前上下文中不包含),则该信号被视为噪声。您可能在讲座中为您的邻居提供有用的音频信号,但这对于附近任何试图听讲师讲课的人来说可能是噪音!

实际上,任何物理现象都可以理解为信号(例如,温度、压力、浓度、电压、电流、阻抗、速度、位移、振动、颜色)。非物质量也可以是信号(例如,文字、股票价格、模块标记)。信号通常在时间、频率和/或空间域上进行描述。时间和频率在本模块的上下文中是最常见的,但我们对图像处理的简要介绍会将图像视为二维信号。

有几种对信号进行分类的方法。我们将根据它们随时间和振幅的定义方式进行分类。随着时间的推移,我们有:

  1. 连续时间信号——为每个时间值指定的信号吨(例如,教室中的声级)。
  2. 离散时间信号——以离散时间值指定的信号(例如,日平均温度)。次数通常用整数表示n.
    在幅度方面,我们有:
  3. 模拟信号——信号可以在连续范围内具有任何值(例如,体温)。
  4. 数字信号——其幅度被限制在有限数量值内的信号(例如,掷骰子的结果)。

虽然我们可以混合和匹配这些类别的信号,但实际上我们最常看到的是连续时间模拟信号(即许多物理现象)和离散时间数字信号(即信号在计算机中最容易表示的方式);见图 1.1。然而,数据的数字表示通常难以进行数学分析,因此我们通常将它们视为模拟的。因此,关键区别实际上是连续时间与离散时间,尽管为方便起见,我们将它们称为模拟和数字。连续时间和离散时间信号对应的数学是不同的,因此它们也强加了这个模块的结构。

电子工程代写|数字信号处理代写Digital Signal Processing代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注