### 数学代写|离散数学作业代写discrete mathematics代考|CS3653

statistics-lab™ 为您的留学生涯保驾护航 在代写离散数学discrete mathematics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写离散数学discrete mathematics代写方面经验极为丰富，各种代写离散数学discrete mathematics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|离散数学作业代写discrete mathematics代考|Random variables

Let us now recall the definition of a generic random variable, and then the specific case of discrete random variables.

DEFINITION 1.9.-Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probabilizable space and $(E, \mathcal{E})$ be a measurable space. A random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in the measurable space $(E, \mathcal{E})$, is any mapping $X: \Omega \longrightarrow E$ such that, for any $B$ in $\mathcal{E}, X^{-1}(B) \in \mathcal{F}$; in other words, $X: \Omega \longrightarrow E$ is a random variable if it is an $(\mathcal{F}, \mathcal{E})$-measurable mapping. We then write the event ” $\mathrm{X}$ belongs to $\mathrm{B}$ ” by
$$X^{-1}(B)={\omega \in \Omega ; X(\omega) \in B}=(X \in B) .$$
In the specific case where $E=\mathbb{R}$ and $\mathcal{E}=\mathcal{B}(\mathbb{R})$, the mapping $X$ is called a real random variable. If $E=\mathbb{R}^d$ with $d \geq 2$, and $\mathcal{E}=\mathcal{B}\left(\mathbb{R}^d\right)$, the mapping $X$ is said to be a real random vector.

EXAMPLE 1.12.- Let us return to the experiment where a six-sided die is rolled, where the set of possible outcomes is $\Omega={1,2,3,4,5,6}$, which is endowed with the uniform probability. Consider the following game:

• if the result is even, you win $10 €$;
• if the result is odd, you win $20 €$.
This game can be modeled using the random variable $X: \Omega \longmapsto{10,20}$, defined by:
$$X(\omega)=\left{\begin{array}{l} 10 \text { if } \omega \in{2,4,6} \ 20 \text { if } \omega \in{1,3,5} . \end{array}\right.$$
This mapping is a random variable, since for any $B \in \mathcal{P}({10,20})$, we have
$$(X \in B)=X^{-1}(B)=\left{\begin{array}{c} {2,4,6} \text { if } B={10} \ {1,3,5} \text { if } B={20} \ \Omega \text { if } B={10,20} \ \emptyset \text { if } B=\emptyset . \end{array}\right.$$
and all these events are in $\mathcal{P}(\Omega)$.

## 数学代写|离散数学作业代写discrete mathematics代考|algebra generated by a random variable

We now define the $\sigma$-algebra generated by a random variable. This concept is important for several reasons. For instance, it can make it possible to define the independence of random variables. It is also at the heart of the definition of conditional expectations; see Chapter 2.

Proposition 1.6.- Let $X$ be a real random variable, defined on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in $\left(E, \mathcal{E}\right.$ ). Then, $\mathcal{F}_X=X^{-1}(\mathcal{E})=\left{X^{-1}(A) ; A \in \mathcal{E}\right}$ is a sub- $\sigma$-algebra of $\mathcal{F}$ on $\Omega$. This is called the $\sigma$-algebra generated by the random variable $X$. It is written as $\sigma(X)$. It is the smallest $\sigma$-algebra on $\Omega$ that makes $X$ measurable:
$$\sigma(X)=X^{-1}(\mathcal{B}(\mathbb{R}))=\left{X^{-1}(B) ; B \in \mathcal{B}(\mathbb{R})\right}={(X \in B) ; B \in \mathcal{B}(\mathbb{R})}$$
EXAMPLE 1.19.- Let $\mathcal{F}_0={\emptyset, \Omega}$ and $X=c \in \mathbb{R}$ be a constant. Then, for any Borel set $B$ in $\mathbb{R},(X \in B)$ has the value $\emptyset$ if $c \notin B$ and $\Omega$ if $c \in B$. Thus, the $\sigma$-algebra generated by $X$ is $\mathcal{F}_0$. Reciprocally, it can be demonstrated that the only $\mathcal{F}_0$-measurable random variables are the constants. Indeed, let $X$ be a $\mathcal{F}_0$-measurable random variable. Assume that it takes at least two different values, $x$ and $y$. It may be assumed that $y \geq x$ without loss of generality. Therefore, let $B=\left[x, \frac{x+y}{2}\right]$. We have that $(X \in B)$ is non-empty because $x \in B$ but is not $\Omega$ since $y \notin B$. Therefore, $X$ is not $\mathcal{F}_0$-measurable.

This technical result will be useful in certain demonstrations further on in the text. In general, if it is known that $Y$ is $\sigma(X)$-measurable, we cannot (and do not need to) make explicit the function $f$. Reciprocally, if $Y$ can be written as a measurable function of $X$, it automatically follows that $Y$ is $\sigma(X)$-measurable.

# 离散数学代写

## 数学代写|离散数学作业代写discrete mathematics代考|Random variables

$$X^{-1}(B)=\omega \in \Omega ; X(\omega) \in B=(X \in B) .$$

• 如果结果是偶数，你就赢了 $10 €$;
• 如果结果是奇数，你赢了 $20 €$. 这个游戏可以使用随机变量建模 $X: \Omega \longmapsto 10,20$, 定义为: $\$ \ $X($ lomega $)=$ left {
10 if $\omega \in 2,4,620$ if $\omega \in 1,3,5$.
正确的。

## 数学代写|离散数学作业代写discrete mathematics代考|algebra generated by a random variable

$\mathbb{R},(X \in B)$ 有价值 0 如果 $c \notin B$ 和 $\Omega$ 如果 $c \in B$. 就这样 $\sigma$-由生成的代数 $X$ 是 $\mathcal{F}_0$. 反过来，可 以证明只有 $\mathcal{F}_0$-可测量的随机变量是常量。的确，让 $X$ 是一个 $\mathcal{F}_0$ – 可测量的随机变量。假设它 至少需要两个不同的值， $x$ 和 $y$. 可以假设 $y \geq x$ 不失一般性。因此，让 $B=\left[x, \frac{x+y}{2}\right]$. 我们 有那个 $(X \in B)$ 是非空的， 因为 $x \in B$ 但不是 $\Omega$ 自从 $y \notin B$. 所以， $X$ 不是 $\mathcal{F}_0$-可衡量的。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。