### 物理代写|电动力学代写electromagnetism代考|PHYS3040

statistics-lab™ 为您的留学生涯保驾护航 在代写电动力学electrodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电动力学electrodynamics代写方面经验极为丰富，各种代写电动力学electrodynamics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|电动力学代写electromagnetism代考|COULOMB’S LAW

As we have seen in Chapter 1, electronic charge comes in two forms: negative charge from an electron and positive charge from a proton. In both cases, a single isolated charge has a charge of $1.6 \times 10^{-19}$ Coulomb. If there are two charges close to each other, they tend to repel each other if the charges are alike or attract each other if they are dissimilar. Thus, we can say that these charges exert a force on each other.
Charles Augustin de Coulomb (1736-1806) determined by direct experimental observation that the force between two charges is proportional to the product of the two charges and inversely proportional to the square of the distance between them. In terms of the SI units, the force between two charges, a vector quantity, is given by
$$\boldsymbol{F}=\frac{q_1 q_2}{4 \pi \varepsilon r^2} \boldsymbol{r}$$
where
$\boldsymbol{F}$ is the force between the charges (N)
$q_1$ and $q_2$ are the magnitudes of the two charges (C)
$\varepsilon$ is a material constant $\left(\mathrm{F} \mathrm{m}^{-1}\right)$
$r$ is the distance between the charges (m)
and $r$ is a unit vector acting in the direction of the line joining the two charges

This is Coulomb’s law. The force, as given by Equation (2.1), is positive (i.e. repulsive) if the charges are alike, and negative (i.e. attractive) if the charges are dissimilar (see Figure 2.1). As Equation (2.1) shows, the force between the charges is inversely dependent on a material constant, $\varepsilon$, the permittivity. Good insulators have very high values of permittivity, typically ten times that of air for glass and so the electrostatic force is correspondingly smaller.

If no material separates the charges, i.e., if they are in a vacuum, the permittivity has the lowest possible value of $8.854 \times 10^{-12}$ or $1 / 36 \pi \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$. (These rather obscure values result from the adoption of the SI units.) As permittivity has such a low value, it is more usual to normalize the permittivity of a material to that of free-space. This normalized permittivity is commonly known as the relative permittivity, $\varepsilon_{\mathrm{r}}$, given by
$$\varepsilon_{\mathrm{r}}=\frac{\varepsilon}{\varepsilon_{\mathrm{o}}}$$

## 物理代写|电动力学代写electromagnetism代考|ELECTRIC FLUX AND ELECTRIC FLUX DENSITY

One definition of flux is that it is the flow of material from one place to another. Some familiar examples of flow are water flowing out of a tap or spring, air flowing from areas of high pressure to low pressure and audio waves flowing outward from a source of disturbance. In general, we can say that flux flows away from a source and towards a sink.

If we adapt this to electrostatics, we can say that a positive charge is a source of electric flux, and a negative charge acts as a sink. We must exercise extreme caution here. Nothing physically flows out of positive charges – a charge does not run out of electric flux! What we are doing is adapting the general definition of flux, so that we can visualize what is happening. If we consider isolated point charges, we can draw a diagram as in Figure 2.2. (A point charge is simply a physically small charge or collection of charges. This raises the question of how small is small? The answer lies with relative sizes. Relative to the distance between the Earth and the Sun, the height of Mount Everest is insignificant. Similarly, we can regard a collection of individual charges, arranged in a 10-nm diameter sphere, as a point charge when viewed from $10 \mathrm{~m}$ away.)

Now, what happens to the distribution of electric flux if we bring two positive charges together? As the charges are both sources of electric flux, the fluxes repel each other to produce the distribution shown in Figure 2.3. One of the main things to note from this diagram is the distortion of the lines of flux in the space between the charges. This causes the force of repulsion between the two charges, in agreement with Coulomb’s law.
If we now return to Coulomb’s law, we can rewrite it as
$$\boldsymbol{F}=\frac{q_1}{4 \pi r^2} \frac{1}{\varepsilon} q_2 \boldsymbol{r}$$

The first term in Equation (2.3) consists of the electronic charge, $q_1$, divided by the surface area of a sphere, $4 \pi r^2$. Thus, $q_1 / 4 \pi r^2$ has units of $\mathrm{C} \mathrm{m}^{-2}$ and would appear to be a surface density of some sort – the flux density. To explain this, we must use Gauss’ law (Karl Friedrich Gauss, 1777-1855) which states that the flux through any closed surface is equal to the charge enclosed by that surface.

Figure $2.4$ shows an imaginary spherical surface surrounding an isolated point charge. Application of Gauss’ law shows that the flux, $\psi$, radiating outwards in all directions has a value of $q_1$ – the amount of charge enclosed by the sphere. The area of the Gaussian surface is simply that of a sphere, i.e., a surface area of $4 \pi r^2$. Thus, we get a flux density, $\boldsymbol{D}$, of
$$\boldsymbol{D}=\frac{q_1}{4 \pi r^2} \boldsymbol{r}$$

## 物理代写|电动力学代写electromagnetism代考|COULOMB’S LAW

Charles Augustin de Coulomb (1736-1806) 通过直接实验观察确定，两个电荷之间的力与两个电荷的 乘积成正比，与它们之间距离的平方成反比。就 SI 单位而言，两个电荷之间的力，一个向量，由下式 给出
$$\boldsymbol{F}=\frac{q_1 q_2}{4 \pi \varepsilon r^2} \boldsymbol{r}$$

$\boldsymbol{F}$ 是电荷之间的力 (N)
$q_1$ 和 $q_2$ 是两个电荷的大小 (C)
$\varepsilon$ 是材料常数 $\left(\mathrm{Fm}^{-1}\right)$
$r$ 是电荷之间的距离 $(\mathrm{m})$

• 径向单位向量
这是库仑定律。如公式 (2.1) 所给出的，如果电荷相同，则力为正（即排斥），如果电荷不同， 则力为负（即吸引）（见图 2.1）。如等式 (2.1) 所示，电荷之间的力与材料常数成反比， $\varepsilon$ ， 介电常数。好的绝缘体具有非常高的介电常数值，通常是玻璃的空气的十倍，因此静电力相应较 小。
如果没有材料分离电荷，即，如果它们处于真空中，则介电常数的最低值可能为 $8.854 \times 10^{-12}$ 或者 $1 / 36 \pi \times 10^{-9} \mathrm{~F} \mathrm{~m}^{-1}$. (这些相当模糊的值是采用 SI 单位造成的。) 由于介电常数的值如此之低， 因此更通常将材料的介电常数归一化为自由空间的介电常数。这种归一化的介电常数通常称为相对介电 常数， $\varepsilon_{\mathrm{r}}$ ，由
$$\varepsilon_{\mathrm{r}}=\frac{\varepsilon}{\varepsilon_{\mathrm{o}}}$$

## 物理代写|电动力学代写electromagnetism代考|ELECTRIC FLUX AND ELECTRIC FLUX DENSITY

$$\boldsymbol{F}=\frac{q_1}{4 \pi r^2} \frac{1}{\varepsilon} q_2 \boldsymbol{r}$$

$$\boldsymbol{D}=\frac{q_1}{4 \pi r^2} \boldsymbol{r}$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。