### 经济代写|博弈论代写Game Theory代考|ECOS3012

statistics-lab™ 为您的留学生涯保驾护航 在代写博弈论Game Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写博弈论Game Theory代写方面经验极为丰富，各种代写博弈论Game Theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 经济代写|博弈论代写Game Theory代考|STRATEGIC GAMES

Prisoner’s Dilemma is a canonical example of a strategic game because, as we will see shortly, it typifies many scenarios that confront decision makers. Further, being a simple scenario, it can be used to illustrate many of the fundamental concepts of game theory, and it also clearly demonstrates a fundamental dilemma in our (human) decision-making processes.

We model this scenario as a strategic game in which the two suspects, each confined in a separate interrogation room, are the players. We will often refer to our two players in strategic games as Rose and Colin. (This convention helps later to emphasize the distinction between row and column players and was popularized by Phil Straffin in his book Game Theory and Strategy [110].) They each have two strategies available to them which we name Quiet and Confess. Table $3.1$ lists each of the strategy profiles in the form (Rose, Colin) and the resulting outcome.

We assume that each suspect is primarily concerned about their own sentence and wants to minimize it. Table $3.2$ provides payoffs (a common synonym for utilities) for each player. Here we use the utility function 6 minus the number of years in prison; this is consistent with the player preferences. Based on our assumptions, these payoffs are ordinal. For these payoffs to also be vNM, we would need to assume that the suspects are risk neutral in the number of years to be served in prison.

Tables $3.1$ and $3.2$ complete the construction of the model by identifying the strategies, outcomes, and payoffs. We will refer to this model of the Prisoner’s Dilemma scenario as the Prisoner’s Dilemma strategic game.

We are now ready to look for a solution that maximizes the payoffs to the players. By observing that $5>3$, we see that Confess is the best response strategy for Rose if she knows that Colin will choose Quiet. Further, we can observe that Confess is also a best response for Rose if she knows Colin will choose Confess. We formalize the definition of a best response strategy below.

## 经济代写|博弈论代写Game Theory代考|FINALJEOPARDY

As we observed in Section 3.1, the phrase “Prisoner’s Dilemma” has been used to describe many real-world scenarios; however, not all of these scenarios actually fit the mathematical definition. This can only be revealed by constructing and analyzing a model of the scenario.

We examine a situation in Jeopardy! which fans have identified as a Prisoner’s Dilemma. In the Final Jeopardy round, each contestant makes a wager as to whether they can answer a specific question correctly. When making the wager, contestants know the category of the question, but not the question itself, and the amount of money each of the other contestants has available. Each player’s wager can be between 0 and their current winnings. Depending on whether the contestant answers the question correctly, they win or lose the amount of money wagered. The contestant with the most money after this final round of play wins the game. The winner keeps all of their winnings, and the other two contestants lose essentially all of their money. If there is a tie at the end of the round, a simple, essentially random, tie-breaker rule is applied to identify the winner.

The so-called Prisoner’s Dilemma situation occurs when two contestants are tied for the lead, and the third contestant has less than half of the money of either of the first two contestants. For simplicity we will assume that it is contestants 1 and 2 who are tied with the most money.

In this situation, aficionados of Jeopardy! often refer to “Jeek’s Rule,” which asserts that while they could wager any amount up to their current winnings, contestants 1 and 2 should either wager nothing or everything. We discuss the reasonableness of this rule and then make it an assumption when we define our strategic game.

Let $E$ ‘ be the amount of money contestants 1 and ‘ 2 have each won at the time Final Jeopardy begins. Let $w_i$ denote the wager of contestant $i$ and suppose that contestant 1 ‘s wager satisfies $0<w_1<E$. There are four cases to consider:

Case 1: Both contestants answer the question correctly. In this case, if $w_1<w_2$, contestant 1 regrets not wagering $E$ in order to win. If $w_1 \geq w_2$, then contestant 1 regrets not wagering $E$ to maximize their winnings.

Case 2: Contestant 1 answers the question correctly and contestant 2 does not. Here contestant 1 regrets not wagering $E$ in order to maximize their winnings.

Case 3 : Contestant 1 answers the question incorrectly and contestant 2 answers correctly. Then contestant 1 is indifferent about their bet unless $w_2=0$, in which case they regret not wagering $w_1=0$.

Case 4: Both contestants answer the question incorrectly. Here, if $w_1 \geq w_2$, contestant 1 regrets not wagering $w_1=0$ in order to win. If $w_1<w_2$, then contestant 1 regrets not wagering $w_1=0$ to maximize their winnings.

# 博弈论代考

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。