计算机代写|机器学习代写machine learning代考|COMP5318

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP5318

计算机代写|机器学习代写machine learning代考|Linear Classifiers and Perceptrons

You are given sample of $n$ observations, each with $d$ features [aka predictors]. Some observations belong to class $\mathrm{C}$; some do not.
Example: Observations are bank loans
Features are income \& age $(d=2)$
Some are in class “defaulted,” some are not
Goal: Predict whether future borrowers will default, based on their income \& age.
Represent each observation as a point in $d$-dimensional space, called a sample point / a feature vector / independent variables.

[We draw these lines/curves separating C’s from $\mathrm{X}$ ‘s. Then we use these curves to predict which future borrowers will default. In the last example, though, we’re probably overfitting, which could hurt our predictions.]
decision boundary: the boundary chosen by our classifier to separate items in the class from those not. overfitting: When sinuous decision boundary fits sample points so well that it doesn’t classify future points well.
[A reminder that underlined phrases are definitions, worth memorizing.]
Some (not all) classifiers work by computing a
decision function: A function $f(x)$ that maps a point $x$ to a scalar such that
$\begin{array}{ll}f(x)>0 & \text { if } x \in \text { class } \mathrm{C} \ f(x) \leq 0 & \text { if } x \notin \text { class C. }\end{array}$
Aka predictor function.
For these classifiers, the decision boundary is $\left{x \in \mathbb{R}^d: f(x)=0\right}$
[That is, the set of all points where the decision function is zero.]
Usually, this set is a $(d-1)$-dimensional surface in $\mathbb{R}^d$.
${x: f(x)=0}$ is also called an isosurface of $f$ for the isovalue 0 .
$f$ has other isosurfaces for other isovalues, e.g., ${x: f(x)=1}$.

计算机代写|机器学习代写machine learning代考|Perceptron Learning; Maximum Margin Classifiers

Recall:

  • linear decision $\mathrm{fn} f(x)=w \cdot x$
    (for simplicity, no $\alpha$ )
  • decision boundary ${x: f(x)=0}$
    (a hyperplane through the origin)
  • sample points $X_1, X_2, \ldots, X_n \in \mathbb{R}^d$; class labels $y_1, \ldots, y_n=\pm 1$
  • goal: find weights $w$ such that $y_i X_i \cdot w \geq 0$
  • goal, revised: find $w$ that minimizes $R(w)=\sum_{i \in V}-y_i X_i \cdot w$
    [risk function] where $V$ is the set of indices $i$ for which $y_i X_i \cdot w<0$.
    [Our original problem was to find a separating hyperplane in one space, which I’ll call $x$-space. But we’ve transformed this into a problem of finding an optimal point in a different space, which I’ll call w-space. It’s important to understand transformations like this, where a geometric structure in one space becomes a point in another space.]
  • Point $x$ lies on hyperplane ${z: w \cdot z=0} \Leftrightarrow w \cdot x=0 \Leftrightarrow$ point $w$ lies on hyperplane ${z: x \cdot z=0}$ in $w$-space.
  • [So a hyperplane transforms to a point that represents its normal vector. And a sample point transforms to the hyperplane whose normal vector is the sample point.]
  • [In this algorithm, the transformations happen to be symmetric: a hyperplane in $x$-space transforms to a point in $w$-space the same way that a hyperplane in $w$-space transforms to a point in $x$-space. That won’t always be true for the decision boundaries we use this semester.]
  • If we want to enforce inequality $x \cdot w \geq 0$, that means
  • in $x$-space, $x$ should be on the same side of ${z: w \cdot z=0}$ as $w$
计算机代写|机器学习代写machine learning代考|COMP5318

机器学习代考

计算机代写|机器学习代写machine learning代考|Linear Classifiers and Perceptrons

你得到的样品 $n$ 观察,每一个 $d$ 特征 [aka 预测因子]。一些观察属于类C; 有些没有。
示例: 观察值是银行贷款
特征是收入 $1 \&$ 年龄 $(d=2)$
有些属于“违约”类别,有些则不是
目标: 根据收入和年龄预测末来借款人是否会违约。
将每个观察结果表示为 $d$ 维空间,称为样本点/特征向量/自变量。
[我们绘制这些线/曲线将 C 与X的。然后我们使用这些曲线来预测末来哪些借款人会违约。不过,在最后 一个示例中,我们可能过度拟合,这可能会影响我们的预测。]
决策边界:我们的分类器选择的边界,用于将类中的项目与非类中的项目分开。过度拟合:当曲折的决策 边界非常适合样本点时,它不能很好地对末来的点进行分类。
[提醒下划线的短语是定义,值得记住。]
一些 (不是全部) 分类器通过计算
决策函数来工作: 一个函数 $f(x)$ 映射一个点 $x$ 到这样的标量
$f(x)>0 \quad$ if $x \in$ class $\mathrm{C} f(x) \leq 0 \quad$ if $x \notin$ class C.
又名预测函数。
对于这些分类器,决策边界是 $\backslash$ left $\left{x \backslash i\right.$ \mathbb $\left.{R}^{\wedge} d: f(x)=0 \backslash r i g h t\right}$
[即决策函数为零的所有点的集合。]
通常,这个集合是一个 $(d-1)$-维表面 $\mathbb{R}^d$.
$x: f(x)=0$ 也称为等值面 $f$ 对于等值 0 。
$f$ 具有其他等值的其他等值面,例如, $x: f(x)=1$.

计算机代写|机器学习代写machine learning代考|Perceptron Learning; Maximum Margin Classifiers

记起:

  • 线性决策 $\mathrm{fn} f(x)=w \cdot x$
    (为简单起见,不 $\alpha$ )
  • 决策边界 $x: f(x)=0$
    (通过原点的超平面)
  • 样本点 $X_1, X_2, \ldots, X_n \in \mathbb{R}^d$; 类标签 $y_1, \ldots, y_n=\pm 1$
  • 目标: 找到权重 $w$ 这样 $y_i X_i \cdot w \geq 0$
  • 目标,修订: 找到 $w$ 最小化 $R(w)=\sum_{i \in V}-y_i X_i \cdot w$
    [风险函数] 其中 $V$ 是指数集 $i$ 为了哪个 $y_i X_i \cdot w<0$.
    [我们最初的问题是在一个空间中找到一个分离超平面,我称之为 $x$-空间。但我们已将其转化为在不 同空间中寻找最佳点的问题,我将其称为 w 空间。理解这样的变换很重要,一个空间中的几何结构 变成另一个空间中的一个点。]
  • 观点 $x$ 位于超平面上 $z: w \cdot z=0 \Leftrightarrow w \cdot x=0 \Leftrightarrow$ 观点 $w$ 位于超平面上 $z: x \cdot z=0$ 在 $w$-空间。
  • [所以一个超平面变换到一个代表它的法向量的点。并且样本点变换到法向量为样本点的超平面。]
  • [在这个算法中,变换恰好是对称的: 一个超平面在 $x$-空间变换到一个点 $w$-空间与超平面相同 $w$-空 间变换到一个点 $x$-空间。对于我们本学期使用的决策边界,情况并非总是如此。]
  • 如果我们想加强不平等 $x \cdot w \geq 0$, 这意味着
  • 在 $x$-空间, $x$ 应该在同一侧 $z: w \cdot z=0$ 作为 $w$
计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注