### 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|MAST9008

statistics-lab™ 为您的留学生涯保驾护航 在代写多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富，各种代写多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Testing Issues with Count Data

One of the main practical interests in regression models for contingency tables is to test restrictions on the parameters of a more complete model. These testing ideas are created in the same spirit as in Sect. $3.5$ where we tested restrictions in ANOVA models.

In linear models, the test statistics is based on the comparison of the goodness of fit for the full model and for the reduced model. Goodness of fit is measured by the residual sum of squares (RSS). The idea here will be the same here but with a more appropriate measure for goodness of fit. Once a model has been estimated, we can compute the predicted value under that model for each cell of the table. We will denote, as above, the observed value in a cell by $y_k$ and $\hat{m}_k$ will denote the expected value predicted by the model. The goodness of fit may be appreciated by measuring, in some way, the distance between the series of observed and of predicted values.

Two statistics are proposed: the Pearson chi-square $X^2$ and the Deviance noted $G^2$. They are defined as follows:
\begin{aligned} X^2 & =\sum_{k=1}^K \frac{\left(y_k-\hat{m}k\right)^2}{\hat{m}_k} \ G^2 & =2 \sum{k=1}^K y_k \log \left(\frac{y_k}{\hat{m}_k}\right) \end{aligned}
where $K$ is the total number of cells of the table. The deviance is directly related to the log-likelihood ratio statistic and is usually preferred because it can be used to compare nested models as we usually do in this context.

Under the hypothesis that the model used to compute the predicted value is true, both statistics (for large samples) are approximately distributed as a $\chi^2$ variable with degrees of freedom $d . f$. depending on the model. The $d . f$. can be computed as follows:
d.f. $=$ # free cells $-$ # free parameters estimated.
For saturated models, the fit is perfect: $X^2=G^2=0$ with $d . f .=0$.
Suppose now that we want to test a reduced model which is a restricted version of a full model. The deviance can then be used as the $F$ statistics in linear regression. The test procedure is straightforward:
$H_0$ : reduced model with $r$ degrees of freedom
$H_1$ : full model with $f$ degrees of freedom.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Logit Models for Binary Response

Consider the vector $y(n \times 1)$ of observations on a binary response variable (a value of ” 1 ” indicating the presence of a particular qualitative trait and a value of ” 0 “, its absence). The logit model makes the assumption that the probability for observing $y_i=1$ given a particular value of $x_i=\left(x_{i 1}, \ldots, x_{i p}\right)^{\top}$ is given by the logistic function of a “score”, a linear combination of $x$ :
$$p\left(x_i\right)=\mathrm{P}\left(y_i=1 \mid x_i\right)=\frac{\exp \left(\beta_0+\sum_{j=1}^p \beta_j x_{i j}\right)}{1+\exp \left(\beta_0+\sum_{j=1}^p \beta_j x_{i j}\right)} .$$
This entails the probability of the absence of the trait:
$$1-p\left(x_i\right)=\mathrm{P}\left(y_i=0 \mid x_i\right)=\frac{1}{1+\exp \left(\beta_0+\sum_{j=1}^p \beta_j x_{i j}\right)},$$
which implies
$$\log \left{\frac{p\left(x_i\right)}{1-p\left(x_i\right)}\right}=\beta_0+\sum_{j=1}^p \beta_j x_{i j} .$$
This indicates that the logit model is equivalent to a log-linear model for the odds ratio $p\left(x_i\right) /\left{1-p\left(x_i\right)\right}$. A positive value of $\beta_j$ indicates an explanatory variable $x_j$ that will favour the presence of the trait since it improves the odds. A zero value of $\beta_j$ corresponds to the absence of an effect of this variable on the appearance of the qualitative trait.
For i.i.d observations the likelihood function is:
$$L\left(\beta_0, \beta\right)=\prod_{i=1}^n p\left(x_i\right)^{y_i}\left{1-p\left(x_i\right)\right}^{1-y_i} .$$
The maximum likelihood estimators of the $\beta$ ‘s are obtained as the solution of the non-linear maximisation problem $\left(\hat{\beta}0, \hat{\beta}\right)=\arg \max {\beta_0, \beta} \log L\left(\beta_0, \beta\right)$ where
$$\log L\left(\beta_0, \beta\right)=\sum_{i=1}^n\left[y_i \log p\left(x_i\right)+\left(1-y_i\right) \log \left{1-p\left(x_i\right)\right}\right]$$

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Testing Issues with Count Data

$\mathrm{df}=#$ 自由细胞一# 估计的自由参数。

$H_0$ ：缩小模型 $r$ 自由程度
$H_1$ : 完整模型 $f$ 自由程度。

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Logit Models for Binary Response

$$p\left(x_i\right)=\mathrm{P}\left(y_i=1 \mid x_i\right)=\frac{\exp \left(\beta_0+\sum_{j=1}^p \beta_j x_{i j}\right)}{1+\exp \left(\beta_0+\sum_{j=1}^p \beta_j x_{i j}\right)}$$

$$1-p\left(x_i\right)=\mathrm{P}\left(y_i=0 \mid x_i\right)=\frac{1}{1+\exp \left(\beta_0+\sum_{j=1}^p \beta_j x_{i j}\right)},$$

$(\hat{\beta} 0, \hat{\beta})=\arg \max \beta_0, \beta \log L\left(\beta_0, \beta\right)$ 在哪里

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。