统计代写|多元统计分析代写Multivariate Statistical Analysis代考|OLET5610

如果你也在 怎样代写多元统计分析Multivariate Statistical Analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

多变量统计分析被认为是评估地球化学异常与任何单独变量和变量之间相互影响的意义的有用工具。

statistics-lab™ 为您的留学生涯保驾护航 在代写多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富,各种代写多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

我们提供的多元统计分析Multivariate Statistical Analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|多元统计分析代写Multivariate Statistical Analysis代考|OLET5610

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Log-Linear Models for Contingency Tables

Consider a $(J \times K)$ two-way table, where $y_{j k}$ is the number of observations having the nominal value $j$ for the first qualitative character and nominal value $k$ for the second character. Since the total number of observations is fixed $n=$ $\sum_{j=1}^J \sum_{k=1}^K y_{j k}$, there are $J K-1$ free cells in the table. The multinomial likelihood can be written as in (8.6)
$$
L=\frac{n !}{\prod_{j=1}^J \prod_{k=1}^K y_{j k} !} \prod_{j=1}^J \prod_{k=1}^K\left(\frac{m_{j k}}{n}\right)^{y_{j k}},
$$
where we now introduce a log-linear structure to analyse the role of the rows and the columns to determine the parameters $m_{j k}=\mathrm{E}\left(y_{j k}\right)$ (or $p_{j k}$ ).

  1. Model without interaction
    Suppose that there is no interaction between the rows and the columns: this corresponds to the hypothesis of independence between the two qualitative characters. In other words, $p_{j k}=p_j p_k$ for all $j, k$. This implies the log-linear model:
    $$
    \log m_{j k}=\mu+\alpha_j+\gamma_k \text { for } j=1, \ldots, J, k=1, \ldots, K,
    $$
    where, as in ANOVA models for identification purposes $\sum_{j=1}^J \alpha_j=\sum_{k=1}^K \gamma_k=$ 0 . Using the same coding devices as above, the model can be written as
    $$
    \log m=\mathcal{X} \beta .
    $$

For a $(2 \times 3)$ table we have:
$$
\log m=\left(\begin{array}{l}
\log m_{11} \
\log m_{12} \
\log m_{13} \
\log m_{21} \
\log m_{22} \
\log m_{23}
\end{array}\right), \mathcal{X}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 0 \
1 & 1 & 0 & 1 \
1 & 1 & -1 & -1 \
1 & -1 & 1 & 0 \
1 & -1 & 0 & 1 \
1 & -1 & -1 & -1
\end{array}\right), \beta=\left(\begin{array}{l}
\beta_0 \
\beta_1 \
\beta_2 \
\beta_3
\end{array}\right)
$$
where the first column of $\mathcal{X}$ is for the constant term, the second column is the coded column for the 2-levels row effect and the two last columns are the coded columns for the 3-levels column effect. The estimation is obtained by maximising the log-likelihood which is equivalent to maximising the function $L(\beta)$ in $\beta$ :
$$
L(\beta)=\sum_{j=1}^J \sum_{k=1}^K y_{j k} \log m_{j k} .
$$

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Three-Way Tables

The models presented above for two-way tables can be extended to higher order tables but at a cost of notational complexity. We show how to adapt to threeway tables. This deserves special attention due to the presence of higher-order interactions in the saturated model.

A $(J \times K \times L)$ three-way table may be constructed under multinomial sampling as follows: each of the $n$ observations falls in one, and only one, category of each of three categorical variables having $J, K$ and $L$ modalities respectively. We end up with a three-dimensional table with $J K L$ cells containing the counts $y_{j k \ell}$ where $n=\sum_{j, k, \ell} y_{j k \ell}$. The expected counts depend on the unknown probabilities $p_{j k \ell}$ in the usual way:
$$
m_{j k \ell}=n p_{j k \ell}, j=1, \ldots, J, k=1, \ldots, K, \ell=1, \ldots, L
$$

  1. The saturated model
    A full saturated log-linear model reads as follows:
    $$
    \begin{aligned}
    \log m_{j k \ell}= & \mu+\alpha_j+\beta_k+\gamma \ell+(\alpha \beta){j k}+(\alpha \gamma){j \ell}+(\beta \gamma){k \ell}+(\alpha \beta \gamma){j k \ell}, \
    j & =1, \ldots, J, k=1, \ldots, K, \ell=1, \ldots, L .
    \end{aligned}
    $$
    The restrictions are the following (using the “dot” notation for summation on the corresponding indices):
    $$
    \begin{aligned}
    & \alpha_{(\bullet)}=\beta_{(\bullet)}=\gamma_{(\bullet)}=0 \
    & (\alpha \beta){j \bullet}=(\alpha \gamma){j \bullet}=(\beta \gamma){k \bullet}=0 \ & (\alpha \beta){\bullet k}=(\alpha \gamma){\bullet \ell}=(\beta \gamma){\bullet \ell}=0 \
    & (\alpha \beta \gamma){j k \bullet}=(\alpha \beta \gamma){j \bullet \ell}=(\alpha \beta \gamma){\bullet k \ell}=0 \end{aligned} $$ The parameters $(\alpha \beta){j k},(\alpha \gamma){j \ell},(\beta \gamma){k \ell}$ are called first-order interactions. The second-order interactions are the parameters $(\alpha \beta \gamma){j k \ell}$, they allow to take into account heterogeneities in the interactions between two of the three variables. For instance, let $\ell$ stand for the two gender categories $(L=2)$, if we suppose that $(\alpha \beta \gamma){j k 1}=-(\alpha \beta \gamma)_{j k 2} \neq 0$. we mean that the interactions between the variable $J$ and $K$ are not the same for both gender categories.
统计代写|多元统计分析代写Multivariate Statistical Analysis代考|OLET5610

多元统计分析代考

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Log-Linear Models for Contingency Tables

考虑一个 $(J \times K)$ 双向表,其中 $y_{j k}$ 是具有标称值的观测数 $j$ 对于第一个定性特征和标称值 $k$ 对于第二个字 符。由于观察总数是固定的 $n=\sum_{j=1}^J \sum_{k=1}^K y_{j k}$ ,有 $J K-1$ 表中的空闲单元格。多项似然可以写成 (8.6)
$$
L=\frac{n !}{\prod_{j=1}^J \prod_{k=1}^K y_{j k} !} \prod_{j=1}^J \prod_{k=1}^K\left(\frac{m_{j k}}{n}\right)^{y_{j k}}
$$
我们现在引入对数线性结构来分析行和列的作用以确定参数 $m_{j k}=\mathrm{E}\left(y_{j k}\right)$ (或者 $p_{j k}$ ).

  1. 没有交互作用
    的模型假设行和列之间没有交互作用:这对应于两个定性特征之间的独立性假设。换句话说, $p_{j k}=p_j p_k$ 对所有人 $j, k$. 这意味着对数线性模型:
    $$
    \log m_{j k}=\mu+\alpha_j+\gamma_k \text { for } j=1, \ldots, J, k=1, \ldots, K,
    $$
    其中,与用于识别目的的 ANOVA 模型一样 $\sum_{j=1}^J \alpha_j=\sum_{k=1}^K \gamma_k=0$ 。使用与上述相同的编码设 备,模型可以写成
    $$
    \log m=\mathcal{X} \beta
    $$
    为一个 $(2 \times 3)$ 我们有表:
    其中第一列 $\mathcal{X}$ 是常数项,第二列是 2 级行效应的编码列,最后两列是 3 级列效应的编码列。估计是通过最 大化对数似然得到的,这相当于最大化函数 $L(\beta)$ 在 $\beta$ :
    $$
    L(\beta)=\sum_{j=1}^J \sum_{k=1}^K y_{j k} \log m_{j k} .
    $$

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Three-Way Tables

上面介绍的双向表模型可以扩展到更高阶的表,但代价是符号复杂性。我们展示了如何适应三向表。由于 饱和模型中存在高阶相互作用,这值得特别注意。
一个 $(J \times K \times L)$ 三向表可以在多项式抽样下构建如下: 每个 $n$ 观察结果落在三个分类变量中的每一个的 一个类别中,并且只有一个类别具有 $J, K$ 和 $L$ 方式分别。我们最终得到一个三维表 $J K L$ 包含计数的单元 格 $y_{j k \ell}$ 在哪里 $n=\sum_{j, k, \ell} y_{j k \ell}$. 预期计数取决于末知概率 $p_{j k \ell}$ 以通常的方式:
$$
m_{j k \ell}=n p_{j k \ell}, j=1, \ldots, J, k=1, \ldots, K, \ell=1, \ldots, L
$$

  1. 饱和模型
    一个完整的饱和对数线性模型如下:
    $$
    \log m_{j k \ell}=\mu+\alpha_j+\beta_k+\gamma \ell+(\alpha \beta) j k+(\alpha \gamma) j \ell+(\beta \gamma) k \ell+(\alpha \beta \gamma) j k \ell, j=1, \ldots, J
    $$
    限制如下(使用“点”符号对相应索引求和):
    $$
    \alpha_{(\bullet)}=\beta_{(\bullet)}=\gamma_{(\bullet)}=0 \quad(\alpha \beta) j \bullet=(\alpha \gamma) j \bullet=(\beta \gamma) k \bullet=0(\alpha \beta) \bullet k=(\alpha \gamma) \bullet \ell=(\beta \gamma) \bullet \ell
    $$
    参数 $(\alpha \beta) j k,(\alpha \gamma) j \ell,(\beta \gamma) k \ell$ 称为一阶相互作用。二阶相互作用是参数 $(\alpha \beta \gamma) j k \ell$ ,它们允许考虑 三个变量中两个变量之间相互作用的异质性。例如,让 $\ell$ 代表两个性别类别 $(L=2)$ ,如果我们假设 $(\alpha \beta \gamma) j k 1=-(\alpha \beta \gamma)_{j k 2} \neq 0$. 我们的意思是变量之间的相互作用 $J$ 和 $K$ 两种性别类别的情况并不相同。
统计代写|多元统计分析代写Multivariate Statistical Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注