数学代写|数值分析代写numerical analysis代考|MATH2722

如果你也在 怎样代写数值分析numerical analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数值分析是数学的一个分支,使用数字近似法解决连续问题。它涉及到设计能给出近似但精确的数字解决方案的方法,这在精确解决方案不可能或计算成本过高的情况下很有用。

statistics-lab™ 为您的留学生涯保驾护航 在代写数值分析numerical analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数值分析numerical analysis代写方面经验极为丰富,各种代写数值分析numerical analysis相关的作业也就用不着说。

我们提供的数值分析numerical analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|数值分析代写numerical analysis代考|MATH2722

数学代写|数值分析代写numerical analysis代考|Solving Fredholm Integral Equation via Tight Framelets

Many methods have been presented to find exact and approximate solutions of different integral equations. In this work, we introduce a new method for solving the above-mentioned class of equations. We use quasi-affine tight framelets systems generated by the UEP and OEP for solving some types of integral equations. Consider the second-kind linear Fredholm integral equation of the form:
$$
u(x)=f(x)+\lambda \int_a^b \mathcal{K}(x, t) u(t) d t,-\infty<a \leq x \leq b<\infty,
$$
where $\lambda$ is a real number, $f$ and $\mathcal{K}$ are given functions and $u$ is an unknown function to be determined. $\mathcal{K}$ is called the kernel of the integral Equation (10). A function $u(x)$ defined over $[a, b]$ can be expressed by quasi-affine tight framelets as Equation (5). To find an approximate solution $u_n$ of (10), we will truncate the quasi-affine framelet representation of $u$ as in Equation (6). Then,
$$
u(x) \approx u_n(x)=\sum_{\ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} \psi_{j, k}^{\ell}(x),
$$
where
$$
c_{j, k}^{\ell}=\int_{\mathbb{R}} u_n(x) \psi_{j, k}^{\ell}(x) d x .
$$
Substituting (11) into (10) yields
$$
\sum_{\ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} \psi_{j, k}^{\ell}(x)=f(x)+\lambda \sum_{\ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} \int_a^b \mathcal{K}(x, t) \psi_{j, k}^{\ell}(t) d t
$$
Multiply Equation (12) by $\sum_{s=1}^r \psi_{p, q}^s(x)$ and integrate both sides from $a$ to $b$. This can be a generalization of Galerkin method used in Reference [29,30]. Then, with a few algebra, Equation (12) can be simplified to a system of linear equations with the unknown coefficients $c_{j, k}^{\ell}$ (to be determined) given by
$$
\sum_{s, \ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} m_{j, k, p, q}^{\ell, s}=g_{p, q \prime} \quad p, q \in \mathbb{Z},
$$
where
$$
m_{j, k, p, q}^{\ell, s}=\int_a^b \psi_{j, k}^{\ell}(x) \psi_{p, q}^s(x) d x-\lambda \int_a^b \int_a^b \mathcal{K}(x, t) \psi_{j, k}^{\ell}(t) \psi_{p, q}^s(x) d x d t, \quad p, q \in \mathbb{Z}
$$
and
$$
g_{p, q}=\sum_{s=1}^r \int_a^b f(x) \psi_{p, q}^s(x) d x, \quad p, q \in \mathbb{Z} .
$$

数学代写|数值分析代写numerical analysis代考|Error Analysis

In this section, we get an upper bound for the error of our method. Let $\phi$ be as in Equation (1) and $W_2^m(\mathbb{R})$ is the Sobolev space consists of all square integrable functions $f$ such that $\left{f^{(k)}\right}_{k=0}^m \in L^2(\mathbb{R})$. Then, $X^0(\Psi)$ provides approximation order $m$, if
$$
\left|f-S_n f\right|_2 \leq C 2^{-n m} \mid f^{(m)} |_2, \quad \forall f \in W_2^m(\mathbb{R}), n \in \mathbb{N} .
$$
The approximation order of the truncated function $S_n$ was studied in References [20,31]. It is well known in the literature that the vanishing moments of the framelets can be determined by its low and high pass filters $\hat{h}_{\ell} \ell=0, \ldots, r$. Also, if the quasi-affine framelet system has vanishing moments of order say $m_1$ and the low pass filter of the system satisfy the following,
$$
1-\left|\hat{h}_0(\xi)\right|^2=\mathcal{O}\left(|\cdot|^{2 m}\right),
$$
at the origin, then the approximation order of $X^0(\Psi)$ is equal to $\min \left{m_1, m\right}$. Therefore, as the OEP increases the vanishing moments of the quasi-affine framelet system, the accuracy order of the truncated framelet representation, will increase as well.

As mentioned earlier, integral equations describe many different events in applications such as image processing and data reconstructions, for which the regularity of the function $f$ is low and does not meet the required order of smoothness. This makes the determination of the approximation order difficult from the functional analysis side. Instead, it is assumed that the solution function to satisfy a decay condition with a wavelet characterization of Besov space $B_{2,2}^s$. We refer the reader to Reference [32] for more details. Hence, we impose the following decay condition such that
$$
N_f=\sum_{\ell=1}^r \sum_{j \geq 0} \sum_{k \in \mathbb{Z}} 2^{s j}\left|\left\langle f, \psi_{j, k}^{\ell}\right\rangle\right|<\infty,
$$
where $s \geq-1$.

数学代写|数值分析代写numerical analysis代考|MATH2722

数值分析代考

数学代写|数值分析代写numerical analysis代考|Solving Fredholm Integral Equation via Tight Framelets

已经提出了许多方法来寻找不同积分方程的精确解和近似解。在这项工作中,我们介绍了一种求解上述方 程组的新方法。我们使用由 UEP 和 OEP 生成的准仿射紧框架系统来求解某些类型的积分方程。考虑以下 形式的第二类线性 Fredholm 积分方程:
$$
u(x)=f(x)+\lambda \int_a^b \mathcal{K}(x, t) u(t) d t,-\infty<a \leq x \leq b<\infty,
$$
在哪里 $\lambda$ 是实数, $f$ 和 $\mathcal{K}$ 被赋予功能和 $u$ 是待定的末知函数。 $\mathcal{K}$ 被称为积分方程 (10) 的核。一个功能 $u(x)$ 定义超过 $[a, b]$ 可以用准仿射紧框架表示为等式 (5)。求一个近似解 $u_n$ 的 (10),我们将截断准仿 射框架表示 $u$ 如等式 (6) 所示。然后,
$$
u(x) \approx u_n(x)=\sum_{\ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} \psi_{j, k}^{\ell}(x),
$$
在哪里
$$
c_{j, k}^{\ell}=\int_{\mathbb{R}} u_n(x) \psi_{j, k}^{\ell}(x) d x .
$$
将 (11) 代入 (10) 得到
$$
\sum_{\ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} \psi_{j, k}^{\ell}(x)=f(x)+\lambda \sum_{\ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} \int_a^b \mathcal{K}(x, t) \psi_{j, k}^{\ell}(t) d t
$$
将等式 (12) 乘以 $\sum_{s=1}^r \psi_{p, q}^s(x)$ 并整合双方 $a$ 到 $b$. 这可以是参考文献 [29,30] 中使用的 Galerkin 方法的 推广。然后,用一些代数,方程 (12) 可以简化为具有末知系数的线性方程组 $c_{j, k}^{\ell}$ (待定) 由
$$
\sum_{s, \ell=1}^r \sum_{j<n} \sum_{k \in \mathbb{Z}} c_{j, k}^{\ell} m_{j, k, p, q}^{\ell, s}=g_{p, q^{\prime}} \quad p, q \in \mathbb{Z},
$$
在哪里
$$
m_{j, k, p, q}^{\ell, s}=\int_a^b \psi_{j, k}^{\ell}(x) \psi_{p, q}^s(x) d x-\lambda \int_a^b \int_a^b \mathcal{K}(x, t) \psi_{j, k}^{\ell}(t) \psi_{p, q}^s(x) d x d t, \quad p, q \in \mathbb{Z}
$$
$$
g_{p, q}=\sum_{s=1}^r \int_a^b f(x) \psi_{p, q}^s(x) d x, \quad p, q \in \mathbb{Z}
$$

数学代写|数值分析代写numerical analysis代考|Error Analysis

在本节中,我们获得了方法误差的上限。让 $\phi$ 如等式 (1) 和 $W_2^m(\mathbb{R})$ Sobolev 空间是否由所有平方可积 函数组成 $f$ 这样 $\backslash$ left $\left{f^{\wedge}{(k)} \backslash r i g h t\right}_{-}{k=0}^{\wedge} m \backslash i n L^{\wedge} 2(\backslash m a t h b b{R})$. 然后, $X^0(\Psi)$ 提供近似顺序 $m$ ,如果
$$
\left|f-S_n f\right|2 \leq C 2^{-n m}\left|f^{(m)}\right|_2, \quad \forall f \in W_2^m(\mathbb{R}), n \in \mathbb{N} . $$ 截断函数的逼近阶数 $S_n$ 在参考文献 [20,31] 中进行了研究。在文献中众所周知,小框架的消失时刻可以通 过其低通和高通滤波器来确定 $\hat{h}{\ell} \ell=0, \ldots, r$. 此外,如果准仿射框架系统具有消失的秩序时刻说 $m_1$ 并 且系统的低通滤波器满足以下条件,
$$
1-\left|\hat{h}0(\xi)\right|^2=\mathcal{O}\left(|\cdot|^{2 m}\right), $$ 在原点,那么近似阶 $X^0(\Psi)$ 等于 \min \eft{m_1, m\right } } \text { . 因此,随着 OEP 增加准仿射小框架系统的消失 } 矩,截断小框架表示的精度阶数也将增加。 如前所述,积分方程描述了图像处理和数据重建等应用中的许多不同事件,其中函数的正则性 $f$ 低且不满 足所需的平滑度顺序。这使得从泛函分析方面难以确定近似阶数。相反,假设解函数满足具有 Besov 空 间小波特征的衰减条件 $B{2,2}^s$. 我们建议读者参阅参考文献 [32] 了解更多详细信息。因此,我们施加以下衰 减条件,使得
$$
N_f=\sum_{\ell=1}^r \sum_{j \geq 0} \sum_{k \in \mathbb{Z}} 2^{s j}\left|\left\langle f, \psi_{j, k}^{\ell}\right\rangle\right|<\infty
$$
在哪里 $s \geq-1$.

数学代写|数值分析代写numerical analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注