数学代写|数值分析代写numerical analysis代考|MATH3003

如果你也在 怎样代写数值分析numerical analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数值分析是数学的一个分支,使用数字近似法解决连续问题。它涉及到设计能给出近似但精确的数字解决方案的方法,这在精确解决方案不可能或计算成本过高的情况下很有用。

statistics-lab™ 为您的留学生涯保驾护航 在代写数值分析numerical analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数值分析numerical analysis代写方面经验极为丰富,各种代写数值分析numerical analysis相关的作业也就用不着说。

我们提供的数值分析numerical analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|数值分析代写numerical analysis代考|MATH3003

数学代写|数值分析代写numerical analysis代考|bit floating-point numbers

By far the most common computer number representation system is the 64-bit “double” floating-point number system. This is the default used by all major mathematical and computational software. In some cases, it makes sense to use 32 or 128 bit number systems, but that is a discussion for later (later, as in “not in this book”), as first we must learn the basics. Each “bit” on a computer is a 0 or a 1, and each number on a computer is represented by 640 ‘s and 1’s. If we assume each number is in standard binary form, then the important information for each number is (i) sign of the number, (ii) exponent, and (iii) the digits after the decimal point. Note that the number 0 is an exception and is treated as a special case for the number system.
The IEEE standard divides up the 64 bits as follows:

  • 1 bit sign: 0 for positive, 1 for negative;
  • 11 bit exponent: the base 2 representation of (standard binary form exponent + 1023);
  • 52 bit mantissa: the first 52 digits after decimal point from standard binary form.
    The reason for the “shift” (sometimes also called bias) of 1023 in the exponent is so that the computer does not have to store a sign for the exponent (more numbers can be stored this way). The computer knows internally that the number is shifted, and knows how to handle it.

With the bits from above denoted as sign $s$, exponent $E$, and mantissa $b_1, \ldots, b_{52}$ the corresponding number is standard binary form is $(-1)^s \cdot 1 . b_1 \ldots b_{52} \times 2^{E-1023}$.
Example 2. Convert the base 10 number $d=11.5625$ to 64 bit double floating-point representation.

From a previous example, we know that $11.5625=(1011.1001)_{\text {base2 }}$, and so has standard binary representation of $1.0111001 \times 2^3$. Hence, we immediately know that
$$
\begin{aligned}
& \text { sign bit }=0 \
& \text { mantissa }=0111001000000000000000000000000000000000000000000000
\end{aligned}
$$

数学代写|数值分析代写numerical analysis代考|Adding large and small numbers is bad

As we saw in Example 1 in this chapter, if we add 1 to $10^{-16}$, it does not change the 1 at all. Additionally, the next computer representable number after 1 is $1+2^{-52}=$ $1+2.22 \times 10^{-16}$. Since $1+10^{-16}$ is closer to 1 than it is to $1+2.22 \times 10^{-16}$, it gets rounded to 1 , leaving the $10^{-16}$ to be lost forever.

We have seen this effect in the example at the beginning of this chapter when repeatedly adding $10^{-16}$ to 1 . Theoretically speaking, addition in floating-point computation is not associative, meaning $(A+B)+C=A+(B+C)$ may not hold, due to rounding.

One way to minimize this type of error when adding several numbers is to add from smallest to largest (if they all have the same sign) and to use factorizations that lessen the problem. There are other more complicated ways to deal with this kind of error that is out of the scope of this book, for example, the “Kahan Summation Formula.”

The issue here is that insignificant digits can become significant digits, and the problem is illustrated in Example 2, earlier in this chapter. Consider the following MATLAB command and output:
$$
\begin{aligned}
& \gg 1+1 e-15-1 \
& \text { ans }= \
& \text { 1. } 110223024625157 \mathrm{e}-15 \
&
\end{aligned}
$$
Clearly, the answer should be $10^{-15}$, but we do not get that, as we observe error in the second significant digit. It is true that the digits of accuracy in the subtraction operation is 16 , but there is a potential problem with the “garbage” digits 110223024625157 (these digits arise from rounding error). If we are calculating a limit, for example, they could play a role.

数学代写|数值分析代写numerical analysis代考|MATH3003

数值分析代考

数学代写|数值分析代写numerical analysis代考|bit floating-point numbers

到目前为止,最常见的计算机数字表示系统是 64 位”双精度”浮点数系统。这是所有主要数学和计算软件 使用的默认值。在某些情况下,使用 32 位或 128 位数字系统是有意义的,但这是稍后的讨论(稍后,如 “不在本书中”),因为首先我们必须学习基础知识。计算机上的每个”位”都是 0 或 1 ,计算机上的每个数 字都由 640 和 1 表示。如果我们假设每个数字都是标准的二进制形式,那么每个数字的重要信息是 (i) 数 字的符号,(ii) 指数,以及 (iii) 小数点后的数字。请注意,数字 0 是一个例外,被视为数字系统的特例。 IEEE标准对64位的划分如下:

  • 1位符号: 0为正, 1 为负;
  • 11位指数: (标准二进制形式指数 $+1023$ ) 的2进制表示;
  • 52 位尾数:标准二进制形式的小数点后的前 52 位。
    指数中 1023 的”移位” (有时也称为偏差) 的原因是计算机不必为指数存储符号 (可以通过这种方式 存储更多数字) 。计算机内部知道数字被移动了,并且知道如何处理它。
    上面的位表示为符号 $s$ ,指数 $E$ ,和尾数 $b_1, \ldots, b_{52}$ 相应的数字是标准的二进制形式是 $(-1)^s \cdot 1 . b_1 \ldots b_{52} \times 2^{E-1023}$.
    示例 2. 转换以 10 为底的数字 $d=11.5625$ 到 64 位双浮点表示。
    从前面的例子我们知道 $11.5625=(1011.1001)_{\text {base22 }}$ ,所以有标准的二进制表示 $1.0111001 \times 2^3$. 因此,我们立即知道
    $$
    \text { sign bit }=0 \quad \text { mantissa }=011100100000000000000000000000000000000000000000
    $$

数学代写|数值分析代写numerical analysis代考|Adding large and small numbers is bad

正如我们在本章的示例 1 中看到的,如果我们将 1 添加到 $10^{-16}$ ,它根本不会改变 1 。此外,1之后的下 一个计算机可表示数是 $1+2^{-52}=1+2.22 \times 10^{-16}$. 自从 $1+10^{-16}$ 比它更接近 1 $1+2.22 \times 10^{-16}$ ,它四舍五入为 1 ,留下 $10^{-16}$ 永远失去。
我们已经在本章开头的例子中看到了重复添加时的这种效果 $10^{-16}$ 到 1 。从理论上讲,浮点计算中的加法 不是关联的,这意味着 $(A+B)+C=A+(B+C)$ 由于四舍五入,可能不成立。
将多个数字相加时最小化此类错误的一种方法是从最小到最大相加 (如果它们都具有相同的符号) 并使用 减少问题的因式分解。还有其他更复杂的方法可以处理超出本书范围的这种错误,例如“卡汉求和公式”。
这里的问题是无意义的数字可以变成有效的数字,这个问题在本章前面的示例 2 中得到了说明。考虑以 下 MATLAB 命令和输出:
$$
\gg 1+1 e-15-1 \quad \text { ans }=1.110223024625157 \mathrm{e}-15
$$
很明显,答案应该是 $10^{-15}$ ,但我们没有得到,因为我们观察到第二个有效数字的错误。减法运算的精度 位数确实是 16 位,但“垃圾”位 110223024625157 (这些位来自舍入误差) 存在潜在问题。例如,如果 我们正在计算一个限制,它们就可以发挥作用。

数学代写|数值分析代写numerical analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注