### 数学代写|常微分方程代写ordinary differential equation代考|MATH2410

statistics-lab™ 为您的留学生涯保驾护航 在代写常微分方程ordinary differential equation方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写常微分方程ordinary differential equation代写方面经验极为丰富，各种代写常微分方程ordinary differential equation相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|常微分方程代写ordinary differential equation代考|Linear ODEs

Another important type of ODE which can be solved easily is the linear equation (both homogeneous and non-homogeneous). Let $J$ be a closed interval and $P: J \rightarrow \mathbb{R}$ be a continuous function. An equation of the form
$$y^{\prime}(x)+P(x) y(x)=0$$
is called a first order linear homogeneous ODE. If $Q$ is a nonzero continuous function on $J$, then
$$y^{\prime}(x)+P(x) y(x)=Q(x)$$
is called a first order linear non-homogeneous ODE. Any first order ODE that we consider in this chapter which is not in any of the forms (2.26) or (2.27) is called a nonlinear $O D E$.

There are many ways to solve (2.26). One of them is to apply the method of separation of variables. On comparing (2.26) with (2.1), we get
$$f(x)=-P(x), g(y)=\frac{1}{y} .$$
Therefore a solution to (2.26) is implicitly given by
$$\begin{gathered} \int^y \frac{d y}{y}=-\int^x P(x) d x+\tilde{c}, \tilde{c} \in \mathbb{R}, \ y=e^{\tilde{c}} e^{-\int^x P(x) d x} . \end{gathered}$$
From the previous relation, we directly obtain that
$$\phi(x)=c e^{-\int^x P(x) d x}, c \in \mathbb{R},$$
is a solution to (2.26). We now describe another way of obtaining the solution given in (2.28). Let $\phi$ be a solution to (2.26). On substituting $\phi$ in (2.26) and multiplying with $e^{\int^x P(x) d x}$ on both sides, we arrive at
or
$$\begin{gathered} e^{\int^x P(x) d x} \frac{d \phi(x)}{d x}+\frac{d}{d x}\left(e^{\int^x P(x) d x}\right) \phi(x)=0 \ \frac{d}{d x}\left(\phi(x) e^{\int^x P(x) d x}\right)=0 \end{gathered}$$

## 数学代写|常微分方程代写ordinary differential equation代考|Well-posedness

Throughout this chapter, we assume that every interval that we consider has a positive length ${ }^3$. We assume that $J$ and $\Omega$ are open intervals in $\mathbb{R}$. Let $\bar{J}$ and $\bar{\Omega}$ denote the smallest closed intervals containing $J$ and $\Omega$, respectively. Let $f: \bar{J} \times \bar{\Omega} \rightarrow \mathbb{R}$ be a function. Consider the problem
$$\left{\begin{array}{l} y^{\prime}(x)=f(x, y(x)), x \in J, \ y\left(x_0\right)=y_0 . \end{array}\right.$$
Definition 2.2.1. Let $J_1 \subseteq \bar{J}$ be an interval containing $x_0$. We say that a function $\phi: J_1 \rightarrow \mathbb{R}$ is said to be a solution to (2.34) if
(i) $\phi \in C\left(J_1\right) \cap C^1\left(J_1^o\right)$, where $J_1^o$ is the interval (inf $J_1, \sup J_1$ ),
(ii) $\phi(x) \in \Omega, x \in J_1$,
(iii) on substituting $y=\phi$ in (2.34) we get an identity in $J_1$.
Moreover, if $J_1 \backslash\left{x_0\right} \subset J \backslash\left{x_0\right}$, then we say that $\phi$ is a local solution. Otherwise it is called a global solution. If $J_1$ is of the form $\left[x_0, x_1\right]$ or $\left[x_0, x_1\right)$, then we say that $\phi$ is a right solution. If $J_1$ is of the form $\left[x_1, x_0\right]$ or $\left(x_1, x_0\right]$, then we say that $\phi$ is a left solution. If $x_0 \in J_1^o$ then we say that $\phi$ is a bilateral solution. If $J=\left(x_0, x_1\right)$ where $x_1 \in \mathbb{R} \cup{\infty}$, then (2.34) is said to be an initial value problem (IVP) and we deal with the right solutions in the study of IVPs. On the other hand, if $x_0 \in J$ then (2.34) is said to be a Cauchy problem. We usually seek bilateral solutions while studying Cauchy problems.
In fact, one of the main theorems of this chapter is to prove the existence of a bilateral (right) solutions to Cauchy problems (IVPs).

# 常微分方程代写

## 数学代写|常微分方程代写ordinary differential equation代考|Linear ODEs

$$y^{\prime}(x)+P(x) y(x)=0$$

$$y^{\prime}(x)+P(x) y(x)=Q(x)$$

(2.26)有多种求解方法。其中之一是应用变量分离法。将 (2.26) 与 (2.1) 进行比较，我们得到
$$f(x)=-P(x), g(y)=\frac{1}{y}$$

$$\int^y \frac{d y}{y}=-\int^x P(x) d x+\tilde{c}, \tilde{c} \in \mathbb{R}, y=e^{\bar{c}} e^{-\int^x P(x) d x}$$

$$\phi(x)=c e^{-\int^x P(x) d x}, c \in \mathbb{R}$$

$$e^{\int^x P(x) d x} \frac{d \phi(x)}{d x}+\frac{d}{d x}\left(e^{f^x P(x) d x}\right) \phi(x)=0 \frac{d}{d x}\left(\phi(x) e^{f^x P(x) d x}\right)=0$$

## 数学代写|常微分方程代写ordinary differential equation代考|Well-posedness

y^{\prime}(x)=f(x, y(x)), x \in J, y\left(x_0\right)=y_0
$$正确的。 \ \$$

(二) $\phi(x) \in \Omega, x \in J_1$,
(iii) 关于替代 $y=\phi$ 在 (2.34) 中我们得到一个恒等式 $J_1$. 决方案。如果 $J_1$ 是形式 $\left[x_0, x_1\right]$ 要么 $\left[x_0, x_1\right)$ ，那么我们说 $\phi$ 是一个正确的解决方案。如果 $J_1$ 是形式 $\left[x_1, x_0\right]$ 要么 $\left(x_1, x_0\right]$ ，那么我们说 $\phi$ 是左解。如果 $x_0 \in J_1^o$ 然后我们说 $\phi$ 是双边解决方案。如果
$J=\left(x_0, x_1\right)$ 在哪里 $x_1 \in \mathbb{R} \cup \infty$ ，那么 (2.34) 被称为初始值问题 (IVP) 并且我们在 IVP 的研究中处理正 确的解决方案。另一方面，如果 $x_0 \in J$ 则 (2.34) 被称为柯西问题。我们在研究柯西问题时通常寻求双边 解快方案。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。