金融代写|风险理论代写Risk theory代考|STAT4901

如果你也在 怎样代写风险理论Risk theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

风险理论试图解释人们在面对未来的不确定性时做出的决定。通常情况下,可以应用风险理论的情况涉及世界的一些可能状态,一些可能的决定,以及每种状态和决定的组合的结果。

statistics-lab™ 为您的留学生涯保驾护航 在代写风险理论Risk theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写风险理论Risk theory相关的作业也就用不着说。

我们提供的风险理论Risk theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|风险理论代写Risk theory代考|STAT4901

金融代写|风险理论代写Risk theory代考|Reinsurance

Reinsurance means that the company (the cedent or first insurer) insures a part of the risk at another insurance company (the reinsurer). The purposes of reinsurance are to reduce risk and/or to reduce the risk volume of the company.

We start by formulating the basic concepts within the framework of a single risk $X \geq 0$. A reinsurance arrangement is then defined in terms of a function $r(x)$ with the property $0 \leq r(x) \leq x$. Here $r(x)$ is the amount of the claim $x$ to be paid by the reinsurer and $s(x)=x-r(x)$ the amount to be paid by the cedent. The function $s(x)$ is referred to as the retention function. The most common examples are the following two:

  • Proportional reinsurance $r(x)=(1-\theta) x, s(x)=\theta x$ for some $\theta \in(0,1)$. Also called quota share reinsurance.
  • Stop-loss reinsurance $r(x)=(x-b)^{+}$for some $b \in(0, \infty)$, referred to as the retention limit. The retention function is $x \wedge b$.

Concerning terminology, note that in the actuarial literature the stop-loss transform of $F(x)=\mathbb{P}(X \leq x)$ (or, equivalently, of $X)$ is defined as the function
$$
b \mapsto \mathbb{E}(X-b)^{+}=\int_b^{\infty}(x-b) F(\mathrm{~d} x)=\int_b^{\infty} \bar{F}(x) \mathrm{d} x
$$
(the last equality follows by integration by parts, see formula (A.1.1) in the Appendix). It shows up in a number of different contexts, see e.g. Sect. VIII.2.1, where some of its main properties are listed.

The risk $X$ is often the aggregate claims amount $A=\sum_1^N V_i$ in a certain line of business during one year; one then talks of global reinsurance. However, reinsurance may also be done locally, i.e. at the level of individual claims. Then, if $N$ is the number of claims during the period and $V_1, V_2, \ldots$ their sizes, then the amounts paid by reinsurer, resp. the cedent, are
$$
\sum_{i=1}^N r\left(V_i\right), \text { resp. } \sum_{i=1}^N s\left(V_i\right)
$$

金融代写|风险理论代写Risk theory代考|The Poisson Process

By a (simple) point process $\mathscr{N}$ on a set $\Omega \subseteq \mathbb{R}^d$ we understand a random collection of points in $\Omega$ [simple means that there are no multiple points]. We are almost exclusively concerned with the case $\Omega=[0, \infty)$. The point process can then be specified by the sequence $T_1, T_2, \ldots$ of interarrival times such that the points are $T_1, T_1+T_2, \ldots$ The associated counting process ${N(t)}_{t \geq 0}$ is defined by letting $N(t)$ be the number of points in $[0, t]$. Write
$$
\mathscr{N}(s, t]=N(t)-N(s)=#\left{n: s<T_1+\cdots+T_n \leq t\right}
$$
for the increment of ${N(t)}$ over $(s, t]$ or equivalently the number of points in $(s, t]$.
Definition 5.2 $\mathscr{N}$ is a Poisson process on $[0, \infty)$ with rate $\lambda$ if ${N(t)}$ has independent increments and $N(t)-N(s)$ has a Poisson $(\lambda(t-s))$ distribution for $s<t$.

Here independence of increments means independence of increments over disjoint intervals.

It is not difficult to extend the reasoning hehind example 1) ahnve to conclude. that for a large insurance portfolio, the number of claims in disjoint time intervals are independent Poisson r.v.s, and so the times of occurrences of claims form a Poisson process. There are, however, different ways to approach the Poisson process. In particular, the infinitesimal view in part (iii) of the following result will prove useful for many of our purposes.

金融代写|风险理论代写Risk theory代考|STAT4901

风险理论代考

金融代写|风险理论代写Risk theory代考|Reinsurance

再保险是指公司 (分出人或第一保险公司) 为另一家保险公司 (再保险公司) 投保部分风险。再保险的目的是降 低风险和/或降低公司的风险量。
我们首先在单一风险的框架内制定基本概念 $X \geq 0$. 然后根据功能定义再保险安排 $r(x)$ 与财产 $0 \leq r(x) \leq x$. 这 里 $r(x)$ 是索赔金额 $x$ 由再保险人支付,并且 $s(x)=x-r(x)$ 分出人须支付的款额。功能 $s(x)$ 称为保留函数。最 常见的例子有以下两个:

  • 比例再保险 $r(x)=(1-\theta) x, s(x)=\theta x$ 对于一些 $\theta \in(0,1)$. 也称为配额份额再保险。
  • 止损再保险 $r(x)=(x-b)^{+}$对于一些 $b \in(0, \infty)$ ,称为保留限制。保留函数为 $x \wedge b$.
    关于术语,请注意在精算文献中,止损变换 $F(x)=\mathbb{P}(X \leq x)$ (或者,等效地, $X$ )被定义为函数
    $$
    b \mapsto \mathbb{E}(X-b)^{+}=\int_b^{\infty}(x-b) F(\mathrm{~d} x)=\int_b^{\infty} \bar{F}(x) \mathrm{d} x
    $$
    (最后一个等式后面是分部积分,见附录中的公式 (A.1.1) )。它出现在许多不同的上下文中,例如参见 Sect。 VIII.2.1,其中列出了它的一些主要属性。
    风险 $X$ 通常是总索赔额 $A=\sum_1^N V_i$ 一年内从事某项业务;然后有人谈到全球再保险。然而,再保险也可以在当 地进行,即在个人索赔层面。那么,如果 $N$ 是该期间的索赔数量,并且 $V_1, V_2, \ldots$ 他们的规模,然后是再保险公 司支付的金额,resp。分出商是
    $$
    \sum_{i=1}^N r\left(V_i\right), \text { resp. } \sum_{i=1}^N s\left(V_i\right)
    $$

金融代写|风险理论代写Risk theory代考|The Poisson Process

通过 (简单) 点过程 $\mathscr{N}$ 在一组 $\Omega \subseteq \mathbb{R}^d$ 我们理解点的随机集合 $\Omega$ [简单意味着没有多个点]。我们几乎只关心这个 案子 $\Omega=[0, \infty)$. 然后可以通过序列指定点过程 $T_1, T_2, \ldots$ 到达间隔时间,使得点是 $T_1, T_1+T_2, \ldots$. 相关的计 数过程 $N(t)_{t \geq 0}$ 定义为 $N(t)$ 是点的数量 $[0, t]$. 写
对于增量 $N(t)$ 超过 $(s, t]$ 或等效的点数 $(s, t]$.
定义 5.2 $N$ 是一个泊松过程 $[0, \infty)$ 有率 $\lambda$ 如果 $N(t)$ 有独立的增量和 $N(t)-N(s)$ 有泊松 $(\lambda(t-s))$ 分配给 $s<t$
这里增量的独立性意味着增量在不相交的间隔上的独立性。
不难推导出例子 1) 后面的推理来得出结论。即对于大型保险组合,不相交时间间隔内的理赔次数是独立的
Poisson rvs,因此理赔发生的次数构成一个 Poisson 过程。然而,有不同的方法来处理泊松过程。特别是,以下 结果的 (iii) 部分中的无穷小视图将证明对我们的许多目的有用。

金融代写|风险理论代写Risk theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注