robotics代写|寻路算法代写Path Planning Algorithms|Mapping of Planetary Surface

statistics-lab™ 为您的留学生涯保驾护航 在代写寻路算法Path Planning Algorithms方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写寻路算法Path Planning Algorithms代写方面经验极为丰富，各种代写寻路算法Path Planning Algorithms相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

robotics代写|寻路算法代写Path Planning Algorithms|Mapping of Planetary Surface

In planetary exploration, one or more spacecraft or artificial satellites with onboard cameras, sensors and radar altimeters moving in the vicinity of a planet may be used to map out the planet surface and its physical properties. It is desirable to choose appropriate trajectories for the spacecraft or artificial satellite such that a specified part of the planet surface can be mapped out completely. Here, the object under observation is a 2-dimensional surface embedded in a 3-dimensional world space. The observers correspond to moving cameras and sensors with finite viewing apertures. In the case of multiple spacecraft or artificial satellites, the observation may be made in a cooperative manner so that complete surface mapping can be accomplished by using a minimal amount of non-redundant observation data. One may develop cooperative strategies based on the chosen spacecraft trajectories, or in conjunction with the motion planning task.

The placement of fixed cameras for observing a $3 \mathrm{D}$-object in the world space for analysis and action is a basic task in surveillance and monitoring systems. The cameras generally have finite viewing apertures, and they are mounted on fixed observation platforms. For complete visual coverage of the object, more than one camera are needed. A basic problem is to determine the minimum number of cameras and their locations for complete visual coverage of the object under observation.

robotics代写|寻路算法代写Path Planning Algorithms|Radio Repeater Allocation

Modern cellular telephone and wireless communication networks make use of multiple radio or optical repeaters to cover a given service area. These repeaters receive radio or electromagnetic-wave signals from the users via line-of-sight transmission, and relay the signals to other users in the network. In the planning and design of the repeater network, it is desirable to use a minimum number of stationary repeaters to achieve complete coverage of a given service area. A basic problem is to determine the minimum number of repeaters and their locations in a specified spatial domain such that complete coverage of the service area is attained. The service area and the allowable area for repeater installation are generally not identical.

The identification of cancer or abnormal cells by means of computer-aided analysis of microscopic observation of a sample collection of living cells is of great interest in biomedical applications. To keep the cells alive during the observation period, they are usually immersed in a liquid medium. To obtain 3D images of the cells, more than one cameras placed on a platform outside or immersed inside the liquid medium are required. Thus, a basic problem is to determine the minimum number of cameras and their locations for a given observation platform. Recently, studies involving the interaction of living cells call for the manipulation of living cells using microscopic images. The image information may be used for the feedback control of cell movements. In this application, it is necessary to ensure that the cell properties such as geometric shapes are unaffected by the observation and actuation processes. For example, when active electromagnetic sensors such as laser-based sensors and manipulators are used for observation and actuation, the electromagnetic pressure exerted on the cell-surface produced by the sensors and actuators may affect the cell shape and structural properties.

robotics代写|寻路算法代写Path Planning Algorithms|Health-Monitoring and Control of Micro-distributed

In the health monitoring and control of micro-distributed systems such as microopto-electromechanical systems composed of micro-machined solid structures, it is required to observe the structural surface by means of a finite number of discrete optical sensors. An optimum design problem is to determine the minimum number of these sensors and their locations to observe the entire structural surface. This problem is akin to the well-known “Art Gallery Problem” first posed by Klee [12], i.e. determine the minimum number and locations of point guards inside an n-wall polygonal art gallery room such that every wall can be seen by at least one-guard. In the Art Gallery Problem, the observation points (locations of the guards) are in the interior or on the boundary of a polygonal spatial domain. Here, the object under observation is a surface or a 2 -dimensional manifold in the 3 -dimensional Euclidean space, and the observation points are restricted to another surface which does not intersect the observed one.

In the surveillance of a specified terrestrial domain and exploration of a planetary surface, single or multiple Unmanned Aerial Vehicles (UAV’s) and robotic rovers equipped with cameras may be used. It is desirable to find their motions such that complete visual coverage of the terrestrial domain or maximum amount of sensor data can be obtained along their corresponding paths in the spatial domain. These paths may be determined before launching the UAV’s or robotic rovers based on known terrestrial data. The mobile-observer motions may also be determined in real-time based on the observed terrestrial and/or sensor data accumulated along the past path up to the present time.

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。