如果你也在 怎样代写随机控制Stochastic Control这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。
随机控制或随机最优控制是控制理论的一个子领域,它涉及到观察中或驱动系统演变的噪声中存在的不确定性。
随机控制或随机最优控制是控制理论的一个子领域,它涉及到观察中或驱动系统进化的噪声中存在的不确定性。系统设计者以贝叶斯概率驱动的方式假设,具有已知概率分布的随机噪声会影响状态变量的演变和观察。随机控制的目的是设计受控变量的时间路径,以最小的成本执行所需的控制任务,尽管存在这种噪声,但以某种方式定义。
statistics-lab™ 为您的留学生涯保驾护航 在代写随机控制Stochastic Control方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机控制Stochastic Control代写方面经验极为丰富,各种代写随机控制Stochastic Control相关的作业也就用不着说。
我们提供的随机控制Stochastic Control及其相关学科的代写,服务范围广, 其中包括但不限于:
- Statistical Inference 统计推断
- Statistical Computing 统计计算
- Advanced Probability Theory 高等概率论
- Advanced Mathematical Statistics 高等数理统计学
- (Generalized) Linear Models 广义线性模型
- Statistical Machine Learning 统计机器学习
- Longitudinal Data Analysis 纵向数据分析
- Foundations of Data Science 数据科学基础
统计代写|随机控制代写Stochastic Control代考|Particle model due to Brownian motion force
The position of particles in water at time $t$, is designated by $(X(t), Y(t))$. Different random locations of the particle are described with the aid of stochastic differential equation. The integration of the movements of the particle in water is done in two steps. A deterministic step consisting of velocity field of water and a random step known as diffusion modelled by the stochastic process A. W. Heemink (1990);
$$
\begin{aligned}
d X(t) & \stackrel{\text { It̂̂ }}{=}\left[U+\frac{D}{H} \frac{\partial H}{\partial x}+\frac{\partial D}{\partial x}\right] d t+\sqrt{2 D} d W_{1}(t), X(0)=x_{0} \
d Y(t) \stackrel{\text { Itô }}{=}\left[V+\frac{D}{H} \frac{\partial H}{\partial y}+\frac{\partial D}{\partial y}\right] d t+\sqrt{2 D} d W_{2}(t), Y(0)=y_{0} .
\end{aligned}
$$
Here $D$ is the dispersion coefficient in $m^{2} / s ; U(x, y, t), V(x, y, t)$ are the averaged flow velocities $(m / s)$ in respectively $x, y$ directions; $H(x, y, t)$ is the total depth in $m$ at location $(x, y)$, and $d W(t)$ is a Brownian motion with mean $(0,0)^{T}$ and $\mathbb{E}\left[d W_{1}(t) d W_{2}(t)^{\mathrm{T}}\right]=I d t$ where $I$ is a $2 \times 2$ identity matrixP.E. Kloeden et al. (2003). Note that the advective part of the particle model eqns.(25)-(26) is not only containing the averaged water flow velocities but also spatial variations of the diffusion coefficient and the averaged depth. This correction term makes sure that particles are not allowed to be accumulated in regions of low diffusivity as demonstrated by (see e.g., J. R. Hunter et al. (1993); R.W.Barber et al. (2005)). At closed boundaries particle bending is done by halving the time step sizes until the particle no longer crosses closed boundary. As a result there is no loss of mass through such boundaries. The position $(X(t), Y(t))$ process is Markovian and the evolution of its probability density function $(p(x, y, t))$, is described by an advection-diffusion type of the partial differential equation known as the Fokker-Planck equation (see e.g.,A.H. Jazwinski (1970))
统计代写|随机控制代写Stochastic Control代考|Boundaries
Numerical schemes such as the Euler scheme often show very poor convergence behaviour G.N. Milstein (1995); P.E. Kloeden et al. (2003). This implies that, in order to get accurate results, small time steps are needed thus requiring much computation. Another problem with the Euler (or any other numerical scheme) is its undesirable behaviour in the vicinity of boundaries; a time step that is too large may result in particles unintentionally crossing boundaries. To tackle this problem two types of boundaries are prescribed. Closed boundaries representing boundaries intrinsic to the domain, and open boundaries which arise from the modeller’s decision to artificially limit the domain at that location. Besides these boundary types, the is of what what happens if, during integration, a particle crosses one of these two borders is also considered as in J.W. Stijnen et al. (2003); W. M. Charles et al. (2009);
- In case an open boundary is crossed by a particle, the particle remains in the sea but is now outside the scope of the model and is therefore removed;
- In case a closed boundary is crossed by a particle during the advective step of integration, the step taken is cancelled and the time step halved until the boundary is no longer crossed. However, because of the halving, say $n$ times, the integration time is reduced to $2^{-n} \Delta t$, leaving a remaining $\left(1-2^{-n}\right) \Delta t$ integration time. This means at least another $2^{n}-1$ steps need to be taken at the new integration step in order to complete the full time-step $\Delta t$. This way, shear along the coastline is modelled;
- If a closed boundary is crossed during the diffusive part of integration, the step size halving procedure described above is maintained with the modification that in addition to the position, the white noise process is also restored to its state prior to the abandoned integration step. Again the process of halving the time step and continuing integration is repeated until no boundaries are crossed and the full $\Delta t$ time step has been integrated.
随机控制代写
统计代写|随机控制代写Stochastic Control代考|Particle model due to Brownian motion force
时间粒子在水中的位置 $t$, 指定为 $(X(t), Y(t))$. 借助随机微分方程描述粒子的不同随机位置。粒子在水中运动的 积分分两步完成。由水的速度场和称为扩散的随机步虝组成的确定性步骤,由随机过程 AW Heemink (1990) 建 模;
$$
d X(t) \stackrel{\text { It }}{=}\left[U+\frac{D}{H} \frac{\partial H}{\partial x}+\frac{\partial D}{\partial x}\right] d t+\sqrt{2 D} d W_{1}(t), X(0)=x_{0} d Y(t) \stackrel{\text { It. }}{=}\left[V+\frac{D}{H} \frac{\partial H}{\partial y}+\frac{\partial D}{\partial y}\right] d t
$$
这里 $D$ 是色散系数 $m^{2} / s ; U(x, y, t), V(x, y, t)$ 是平均流速 $(m / s)$ 分别在 $x, y$ 方向; $H(x, y, t)$ 是总深度 $m$ 在 位置 $(x, y)$ ,和 $d W(t)$ 是具有均值的布朗运动 $(0,0)^{T}$ 和 $\mathbb{E}\left[d W_{1}(t) d W_{2}(t)^{\mathrm{T}}\right]=I d t$ 在哪里 $I$ 是一个 $2 \times 2$ 单 位矩阵P.E. 克洛登等人。(2003 年)。注意粒子模型方程 $(25)-(26)$ 的平流部分不仅包含平均水流速度,还 包含扩散系数和平均深度的空间变化。该校正项确保粒子不允许在低扩散率区域聚集,如(参见例如,JR Hunter 等人(1993 年);RWBarber 等人 (2005 年) ) 所证明的那样。在封闭边界,粒子弯曲是通过将时间步长减半 直到粒子不再穿过封闭边界来完成的。因此,通过这些边界没有质量损失。职位 $(X(t), Y(t))$ 过程是马尔可夫及 其概率密度函数的演变 $(p(x, y, t)$ ,由称为 Fokker-Planck 方程的偏溦分方程的平流-扩散类型描述(参见例如, AH Jazwinski (1970))
统计代写|随机控制代写Stochastic Control代考|Boundaries
诸如欧拉方案之类的数值方案通常表现出非常差的收敛行为 GN Milstein (1995);PE Kloeden 等人。(2003 年)。这意味着,为了获得准确的结果,需要小时间步长,因此需要大量计算。欧拉(或任何其他数值方案)的另一个问题是它在边界附近的不良行为。过大的时间步长可能会导致粒子无意中跨越边界。为了解决这个问题,规定了两种类型的边界。表示域固有边界的封闭边界,以及由建模者决定在该位置人为限制域而产生的开放边界。除了这些边界类型之外,如果在积分过程中,一个粒子穿过这两个边界之一会发生什么也被认为是 J. W. Stijnen 等人(2003 年);W. M. Charles 等人(2009 年);
- 如果粒子穿过开放边界,粒子仍留在海中,但现在不在模型范围内,因此被移除;
- 如果在积分平流步骤期间粒子穿过封闭边界,则取消所采取的步骤并将时间步长减半,直到不再越过边界。但是,由于减半,说n次,积分时间减少到2−nD吨, 剩下一个(1−2−n)D吨整合时间。这至少意味着另一个2n−1需要在新的集成步骤中采取步骤以完成完整的时间步骤D吨. 这样,沿海岸线的切变就被建模了;
- 如果在积分的扩散部分期间越过闭合边界,则保持上述步长减半过程,修改为除了位置之外,白噪声过程也恢复到放弃积分步骤之前的状态。再次重复将时间步长减半并继续积分的过程,直到没有跨越边界并且完全D吨时间步已被整合。
统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。
金融工程代写
金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。
非参数统计代写
非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。
广义线性模型代考
广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。
术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。
有限元方法代写
有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。
有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。
tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。
随机分析代写
随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。
时间序列分析代写
随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。
回归分析代写
多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。