统计代写|随机过程代写stochastic process代考|STAT3021

如果你也在 怎样代写随机过程stochastic process这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

随机过程 用于表示在时间上发展的统计现象以及在处理这些现象时出现的理论模型,由于这些现象在许多领域都会遇到,因此这篇文章具有广泛的实际意义。

statistics-lab™ 为您的留学生涯保驾护航 在代写随机过程stochastic process方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机过程stochastic process代写方面经验极为丰富,各种代写随机过程stochastic process相关的作业也就用不着说。

我们提供的随机过程stochastic process及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|随机过程代写stochastic process代考|STAT3021

统计代写|随机过程代写stochastic process代考|Point Count and Interarrival Times

An immediate result is that $F_s(x-k / \lambda)$ is centered at $k / \lambda$. Also, if $s=0$, then $X_k=k / \lambda$. If $s$ is very small, $X_k$ is very close to $k / \lambda$ most of the time. But when $s$ is large, the points $X_k$ ‘s are no longer ordered, and the larger $s$, the more randomly they are permutated (or shuffled, or mixed) on the real line.
Let $B=[a, b]$ be an interval on the real line, with $a2$. This is due to the combinatorial nature of the Poisson-binomial distribution. But you can easily obtain approximated values using simulations.

Another fundamental, real-valued random variable, denoted as $T$ or $T(\lambda, s)$, is the interarrival times between two successive points of the process, once the points are ordered on the real line. In two dimensions, it is replaced by the distance between a point of the process, and its nearest neighbor. Thus it satisfies (see Section $4.2$ ) the following identity:
$$
P(T>y)=P[N(B)=0],
$$
with $\left.B=] X_0, X_0+y\right]$, assuming it is measured at $X_0$ (the point of the process corresponding to $k=0$ ). See Formula (38) for the distribution of $T$. In practice, this intractable exact formula is not used; instead it is approximated via simulations. Also, the point $X_0$ is not known, since the $X_k$ ‘s are in random order, and retrieving $k$ knowing $X_k$ is usually not possible. The indices (the $k$ ‘s) are hidden. However, see Section $4.7$. The fundamental question is whether using $X_0$ or any $X_k$ (say $X_5$ ), matters for the definition of $T$. This is discussed in Section $1.4$ and illustrated in Table 4.

统计代写|随机过程代写stochastic process代考|Limiting Distributions, Speed of Convergence

I prove in Theorem $4.5$ that Poisson-binomial processes converge to ordinary Poisson processes. In this section, I illustrate the rate of convergence, both for the interarrival times and the point count in one dimension.

In Figure 1 , we used $\lambda=1$ and $B=[-0.75,0.75] ; \mu(B)=1.5$ is the length of $B$. The limiting values (combined with those of Table 3), as $s \rightarrow \infty$, are in agreement with $N(B)$ ‘s moments converging to those of a Poisson distribution of expectation $\lambda \mu(B)$, and $T$ ‘s moments to those of an exponential distribution of expectation $1 / \lambda$. In particular, it shows that $P[N(B)=0] \rightarrow \exp [-\lambda \mu(B)]$ and $E\left[T^2\right] \rightarrow 2 / \lambda$ as $s \rightarrow \infty$. These limiting distributions are features unique to stationary Poisson processes of intensity $\lambda$.

Figure 1 illustrates the speed of convergence of the Poisson-binomial process to the stationarity Poisson process of intensity $\lambda$, as $s \rightarrow \infty$. Further confirmation is provided by Table 3 , and formally established by Theorem 4.5. Of course, when testing data, more than a few statistics are needed to determine whether you are dealing with a Poisson process or not. For a full test, compare the empirical moment generating function (the estimated $\mathrm{E}\left[T^r\right]^{\prime}$ s say for all $r \in[0,3]$ ) or the empirical distribution of the interarrival times, with its theoretical limit (possibly obtained via simulations) corresponding to a Poisson process of intensity $\lambda$. The parameter $\lambda$ can be estimated based on the data. See details in Section 3.

In Figure 1, the values of $\mathrm{E}\left[T^2\right]$ are more volatile than those of $P[N(B)=0]$ because they were estimated via simulations; to the contrary, $P[N(B)=0]$ was computed using the exact Formula (6), though truncated to 20,000 terms. The choice of a Cauchy or logistic distribution for $F$ makes almost no difference. But a uniform $F$ provides noticeably slower, more bumpy convergence. The Poisson approximation is already quite good with $s=10$, and only improves as $s$ increases. Note that in our example, $N(B)>0$ if $s=0$. This is because $X_k=k$ if $s=0$; in particular, $X_0=0 \in B=[-0.75,0.75]$. Indeed $N(B)>0$ for all small enough $s$, and this effect is more pronounced (visible to the naked eye on the left plot, blue curve in Figure 1 ) if $F$ is uniform. Likewise, $E\left[T^2\right]=1$ if $s=0$, as $T(\lambda, s)=\lambda$ if $s=0$, and here $\lambda=1$.

The results discussed here in one dimension easily generalize to higher dimensions. In that case $B$ is a domain such as a circle or square, and $T$ is the distance between a point of the process, and its nearest neighbor. The limit. Poisson process is stationary with intensity $\lambda^d$, where $d$ is the dimension.

统计代写|随机过程代写stochastic process代考|STAT3021

随机过程代考

统计代写|随机过程代写stochastic process代考|Point Count and Interarrival Times

一个立竿见影的结果是 $F_s(x-k / \lambda)$ 以 $k / \lambda$. 另外,如果 $s=0$ ,然后 $X_k=k / \lambda$. 如果 $s$ 很小, $X_k$ 非 常接近 $k / \lambda$ 大多数时候。但当 $s$ 大,分 $X_k$ 的不再有序,更大的 $s$ ,它们在实线上的排列(或混洗或混合) 越随机。
让 $B=[a, b]$ 是实线上的一个区间,有 $a 2$. 这是由于泊松二项分布的组合性质。但是您可以使用模拟轻 松获得近似值。
另一个基本的实值随机变量,表示为 $T$ 要么 $T(\lambda, s)$, 是过程的两个连续点之间的到达间隔时间,一旦这 些点在实际线上被排序。在二维中,它被过程中的一个点与其最近邻点之间的距离所取代。因此它满足 (见第 $4.2$ ) 以下身份:
$$
P(T>y)=P[N(B)=0],
$$
和 $\left.B=] X_0, X_0+y\right]$ ,假设它是在 $X_0$ (对应的过程点 $k=0$ ). 的分布见式 (38) $T$. 实际上,并没有使 用这个棘手的精确公式;相反,它是通过模拟来近似的。还有,重点 $X_0$ 不知道,因为 $X_k$ 的是随机顺 序,并检索 $k$ 会心 $X_k$ 通常是不可能的。指标 ( $k$ 的) 是隐藏的。但是,请参阅第 $4.7$. 根本的问题是是否 使用 $X_0$ 或任何 $X_k$ (说 $X_5$ ), 事项的定义 $T$. 这在第节中讨论 $1.4$ 并在表4中说明。

统计代写|随机过程代写stochastic process代考|Limiting Distributions, Speed of Convergence

我在定理中证明 $4.5$ 泊松二项式过程收敛于普通泊松过程。在本节中,我说明了到达间隔时间和一维点数 的收敛速度。
在图 1 中,我们使用了 $\lambda=1$ 和 $B=[-0.75,0.75] ; \mu(B)=1.5$ 是的长度 $B$. 限值(结合表 3 的限
值),如 $s \rightarrow \infty$ ,同意 $N(B)$ 的时刻收敛于期望的泊松分布 $\lambda \mu(B)$ ,和 $T$ 的时刻与期望指数分布的时刻 $1 / \lambda$. 特别地,它表明 $P[N(B)=0] \rightarrow \exp [-\lambda \mu(B)]$ 和 $E\left[T^2\right] \rightarrow 2 / \lambda$ 作为 $s \rightarrow \infty$. 这些极限分 布是稳态泊松强度过程所独有的特征 $\lambda$.
图 1 说明了泊松二项式过程向平稳泊松强度过程的收敛速度 $\lambda$ ,作为 $s \rightarrow \infty$. 表 3 提供了进一步的确 认,并由定理 $4.5$ 正式确立。当然,在测试数据时,需要更多的统计数据来确定您是否正在处理泊松过程。对于完整测试,比较经验力矩生成函数(估计的 $\mathrm{E}\left[T^r\right]^{\prime}$ 对所有人说 $r \in[0,3]$ ) 或到达间隔时间的经 验分布,其理论极限(可能通过模拟获得)对应于强度的泊松过程 $\lambda$. 参数 $\lambda$ 可以根据数据进行估算。请 参阅第 3 节中的详细信息。
在图 1 中,值 $\mathrm{E}\left[T^2\right]$ 比那些更不稳定 $P[N(B)=0]$ 因为它们是通过模拟估计的;从相反的方面来说, $P[N(B)=0]$ 是使用精确的公式 (6) 计算的,尽管被截断为 20,000 个术语。柯西分布或逻辑分布的选 改进为 $s$ 增加。请注意,在我们的示例中, $N(B)>0$ 如果 $s=0$. 这是因为 $X_k=k$ 如果 $s=0$; 特别 是, $X_0=0 \in B=[-0.75,0.75]$. 的确 $N(B)>0$ 对于所有足够小的 $s$ ,并且这种效果更明显 (左 图中肉眼可见,图 1 中的蓝色曲线) 如果 $F$ 是统一的。同样地, $E\left[T^2\right]=1$ 如果 $s=0$ ,作为 $T(\lambda, s)=\lambda$ 如果 $s=0 \mathrm{~ , ~ 和 这 里 ~} \lambda=1$.
这里在一维中讨论的结果很容易推广到更高的维度。在这种情况下 $B$ 是一个域,例如圆形或正方形,并 且 $T$ 是过程中的一个点与其最近邻点之间的距离。极限。泊松过程随强度平稳 $\lambda^d$ ,在哪里 $d$ 是维度。

数学代写|随机过程统计代写Stochastic process statistics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注