### 统计代写|随机过程代写stochastic process代考|STAT3021

statistics-lab™ 为您的留学生涯保驾护航 在代写随机过程stochastic process方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机过程stochastic process代写方面经验极为丰富，各种代写随机过程stochastic process相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|随机过程代写stochastic process代考|Point Count and Interarrival Times

An immediate result is that $F_s(x-k / \lambda)$ is centered at $k / \lambda$. Also, if $s=0$, then $X_k=k / \lambda$. If $s$ is very small, $X_k$ is very close to $k / \lambda$ most of the time. But when $s$ is large, the points $X_k$ ‘s are no longer ordered, and the larger $s$, the more randomly they are permutated (or shuffled, or mixed) on the real line.
Let $B=[a, b]$ be an interval on the real line, with $a2$. This is due to the combinatorial nature of the Poisson-binomial distribution. But you can easily obtain approximated values using simulations.

Another fundamental, real-valued random variable, denoted as $T$ or $T(\lambda, s)$, is the interarrival times between two successive points of the process, once the points are ordered on the real line. In two dimensions, it is replaced by the distance between a point of the process, and its nearest neighbor. Thus it satisfies (see Section $4.2$ ) the following identity:
$$P(T>y)=P[N(B)=0],$$
with $\left.B=] X_0, X_0+y\right]$, assuming it is measured at $X_0$ (the point of the process corresponding to $k=0$ ). See Formula (38) for the distribution of $T$. In practice, this intractable exact formula is not used; instead it is approximated via simulations. Also, the point $X_0$ is not known, since the $X_k$ ‘s are in random order, and retrieving $k$ knowing $X_k$ is usually not possible. The indices (the $k$ ‘s) are hidden. However, see Section $4.7$. The fundamental question is whether using $X_0$ or any $X_k$ (say $X_5$ ), matters for the definition of $T$. This is discussed in Section $1.4$ and illustrated in Table 4.

## 统计代写|随机过程代写stochastic process代考|Limiting Distributions, Speed of Convergence

I prove in Theorem $4.5$ that Poisson-binomial processes converge to ordinary Poisson processes. In this section, I illustrate the rate of convergence, both for the interarrival times and the point count in one dimension.

In Figure 1 , we used $\lambda=1$ and $B=[-0.75,0.75] ; \mu(B)=1.5$ is the length of $B$. The limiting values (combined with those of Table 3), as $s \rightarrow \infty$, are in agreement with $N(B)$ ‘s moments converging to those of a Poisson distribution of expectation $\lambda \mu(B)$, and $T$ ‘s moments to those of an exponential distribution of expectation $1 / \lambda$. In particular, it shows that $P[N(B)=0] \rightarrow \exp [-\lambda \mu(B)]$ and $E\left[T^2\right] \rightarrow 2 / \lambda$ as $s \rightarrow \infty$. These limiting distributions are features unique to stationary Poisson processes of intensity $\lambda$.

Figure 1 illustrates the speed of convergence of the Poisson-binomial process to the stationarity Poisson process of intensity $\lambda$, as $s \rightarrow \infty$. Further confirmation is provided by Table 3 , and formally established by Theorem 4.5. Of course, when testing data, more than a few statistics are needed to determine whether you are dealing with a Poisson process or not. For a full test, compare the empirical moment generating function (the estimated $\mathrm{E}\left[T^r\right]^{\prime}$ s say for all $r \in[0,3]$ ) or the empirical distribution of the interarrival times, with its theoretical limit (possibly obtained via simulations) corresponding to a Poisson process of intensity $\lambda$. The parameter $\lambda$ can be estimated based on the data. See details in Section 3.

In Figure 1, the values of $\mathrm{E}\left[T^2\right]$ are more volatile than those of $P[N(B)=0]$ because they were estimated via simulations; to the contrary, $P[N(B)=0]$ was computed using the exact Formula (6), though truncated to 20,000 terms. The choice of a Cauchy or logistic distribution for $F$ makes almost no difference. But a uniform $F$ provides noticeably slower, more bumpy convergence. The Poisson approximation is already quite good with $s=10$, and only improves as $s$ increases. Note that in our example, $N(B)>0$ if $s=0$. This is because $X_k=k$ if $s=0$; in particular, $X_0=0 \in B=[-0.75,0.75]$. Indeed $N(B)>0$ for all small enough $s$, and this effect is more pronounced (visible to the naked eye on the left plot, blue curve in Figure 1 ) if $F$ is uniform. Likewise, $E\left[T^2\right]=1$ if $s=0$, as $T(\lambda, s)=\lambda$ if $s=0$, and here $\lambda=1$.

The results discussed here in one dimension easily generalize to higher dimensions. In that case $B$ is a domain such as a circle or square, and $T$ is the distance between a point of the process, and its nearest neighbor. The limit. Poisson process is stationary with intensity $\lambda^d$, where $d$ is the dimension.

# 随机过程代考

## 统计代写|随机过程代写stochastic process代考|Point Count and Interarrival Times

$$P(T>y)=P[N(B)=0],$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。