### 经济代写|供应链管理代写supply chain management代考|ASCl2022

statistics-lab™ 为您的留学生涯保驾护航 在代写供应链管理supply chain management方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写供应链管理supply chain management代写方面经验极为丰富，各种代写供应链管理supply chain management相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 经济代写|供应链管理代写supply chain management代考|Research Methodology

To formulate a hierarchical list of barriers, we have applied the BWM, aligning with the objective of this study, and we have consulted five stakeholders, having 10-15 years of experience to give their inputs. BWM has helped us in generating weights of these barriers using only two vectors which makes this method more relevant in comparison to other MCDM techniques. Our technique only requires ‘best-to-others’ and ‘others-to-best’ vectors, thereby reducing the complexity and decision-making time. Let the chosen challenge sets be $\mathrm{SV}=\left{\mathrm{SV}1, \mathrm{SV}_2, \ldots, \mathrm{SV}_9\right}$. The BWM model makes decision of prioritizing the challenges after undergoing the following steps: Step 1: Selecting the most and least critical barrier. Initially, the most and least critical barrier are chosen based on the input of each stakeholder. Step 2: Determining the most critical barrier over decision set. This step involves evaluating the most critical barrier based on the pairwise comparison made using scale of 1-9. Formula for calculating ‘best-to-others’ resulting vector is as follows: $$\mathrm{SV}_B=\left(\mathrm{sV}{B 1}, \ldots, \mathrm{sv}{B 9}\right)$$ where $\mathrm{sv}{B i}$ gives preference to the most critical barrier over ith challenge and $\mathrm{sv}_{B B}=1$.

Step 3: Calculating the preference of the least critical barrier over decision set.

This step utilizes the pairwise comparison to validate the preference of other barrier over the least critical barrier, again using the scale of 1-9.
Formula for calculating “worst-to-others” resulting vector is as follows:
$$\mathrm{SV}W=\left(\mathrm{sv}{1 W}, \ldots, \mathrm{sv}{9 W}\right)^T$$ where $\mathrm{sv}{W i}$ gives the preference to the least critical barrier over ith challenge and $\mathrm{sv}_{W W}=1$.
Step 4: Calculating the optimum weights of barrier.
This step aims at calculating the optimum weight vector $\left(z_1^, \ldots, z_9^\right)$ of the barrier.

## 经济代写|供应链管理代写supply chain management代考|Data Analysis

The flaws such as corruption, non-uniform transaction record and inefficient database in the existing Indian PDS have paved the way for the emerging technology such as Blockchain. These new age technologies have the potential to change the way we live, work and relate to one another including the operations of PDS (Mishra and Maheshwari, 2021). This section presents the analysis of the data to verify the anticipated framework. Following the BWM steps as mentioned in research methodology section, the barriers have been ranked based on their criticality. Since the BWM needs only a few variables, it becomes easier for the decision makers to choose the criteria for the least critical and the best critical barrier. Table $4.3$ demonstrates the rating of the stakeholder for best-to-others and others-to-best vectors for Intra-Organizational Barriers (B1).
Similarly, the inputs of the stakeholders were taken for other categories of barriers. Problem P2 of Linear Programming is used in Step 4 to determine the weights. The ratio of consistency $\phi^*$ and the ideal weight can be found out by solving P2. The result shows that the consistency is within range for all the challenges. Problem P2 is used to calculate the optimum weights for the challenges. Now after calculation of the average of these weights, these barriers can be appropriately ranked, as shown in Table 4.4.

In this chapter, we aim in calculating the weights of these barriers based on their criticality levels. The challenges with more weight tend to be the ones with higher critical levels and require immediate attention. Based on the ranking done using the BWM technique, it is evident that among the barriers, Variations in standards (B2.3) are ranked first because it has the maximum weightage of $0.1814$. Supply chain readiness (B2.1) is ranked second with the weightage of $0.1880$. It can be observed that the highest weights are for inter-organizational barriers; these occur at the base level when the collaboration between the organizations is lacking. Supply chain management is primarily concerned with managing connections among partners to produce value for stakeholders.

## 经济代写|供应链管理代写supply chain management代考|Research Methodology

$$\mathrm{SV}B=(\mathrm{sVB} 1, \ldots, \mathrm{sv} B 9)$$ 在哪里 $s v B i$ 优先考虑最关键的障碍而不是挑战，并且 $s_B{ }{B B}=1$.

$$\mathrm{SVW}=(\operatorname{sv} 1 W, \ldots, \operatorname{sv} 9 W)^T$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。