标签: CS468

机器学习代写|流形学习代写manifold data learning代考|ICML2022

如果你也在 怎样代写流形学习manifold data learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

流形学习是机器学习的一个流行且快速发展的子领域,它基于一个假设,即一个人的观察数据位于嵌入高维空间的低维流形上。本文介绍了流形学习的数学观点,深入探讨了核学习、谱图理论和微分几何的交叉点。重点放在图和流形之间的显著相互作用上,这构成了流形正则化技术的广泛使用的基础。

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富,各种代写流形学习manifold data learning相关的作业也就用不着说。

我们提供的流形学习manifold data learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|流形学习代写manifold data learning代考|ICML2022

机器学习代写|流形学习代写manifold data learning代考|History of Probabilistic Dimensionality Reduction

The probabilistic variants of many of the spectral dimensionality reduction methods were gradually developed and proposed. For example, probabilistic $P C A[50,62]$ is the stochastic version of PCA, and it assumes that data are obtained by the addition of noise to the linear projection of a latent random variable. It can be demonstrated that PCA is a special case of probabilistic PCA, where the variance of noise tends to zero. The probabilistic PCA, itself, is a special case of factor analysis [17]. In the factor analysis, the different dimensions of noise can be correlated, while they are uncorrelated and isometric in the probabilistic PCA. The factor analysis and the probabilistic PCA use expectation maximization and variational inference on the data.

The linear spectral dimensionality reduction methods, such as PCA and FDA, learn a projection matrix from the data for better data representation or more separation between classes. In 1984, it was surprisingly determined that if a random matrix is used for the linear projection of the data, without being learned from the data, it represents data well! The correctness of this mystery of random projection was proven by the Johnson-Lindenstrauss lemma [33], which put a bound on the error of preservation of the distances in the subspace. Later, nonlinear variants of random projection were developed, including random Fourier features [48] and random kitchen sinks [49].

Sufficient Dimension Reduction $(S D R)$ is another family of probabilistic methods, whose first method was proposed in 1991 [39]. It is used for finding a transformation of data to a lower-dimensional space, which does not change the conditional of labels given data. Therefore, the subspace is sufficient for predicting labels from projected data onto the subspace. SDR was mainly proposed for high-dimensional regression, where the regression labels are used. Later, Kernel Dimensionality Reduction $(K D R)$ was proposed [18] as a method in the family of SDR for dimensionality reduction in machine learning.

Stochastic Neighbour Embedding (SNE) was proposed in 2003 [30] and took a probabilistic approach to dimensionality reduction. It attempted to preserve the probability of a point being a neighbour of others in the subspace. A problem with SNE was that it could not find an optimal subspace because it was not possible for it to preserve all the important information of high-dimensional data in the low-dimensional subspace. Therefore, t-SNE was proposed [41], which used another distribution with more capacity in the subspace. This allowed t-SNE to preserve a larger amount of information in the low-dimensional subspace. A recent successful probabilistic dimensionality reduction method is the Uniform Manifold Approximation and Projection (UMAP) [43], which is widely used for data visualization. Today, both t-SNE and UMAP are used for high-dimensional data visualization, especially in the visualization of extracted features in deep learning. They have also been widely used for visualizing high-dimensional genome data.

机器学习代写|流形学习代写manifold data learning代考|History of Neural Network-Based Dimensionality

Neural networks are machine learning models modeled after the neural structure of the human brain. Neural networks are currently powerful tools for representation learning and dimensionality reduction. In the 1990s, researchers’ interest in neural networks decreased; this was called the winter of neural networks. This winter occurred mainly because networks could not become deep, as gradients vanished after many layers of network during optimization. The success of kernel support vector machines [10] also exaggerated this winter. In 2006, Hinton and Salakhutdinov demonstrated that a network’s weights can be initialized using energy-based training, where the layers of the network are considered stacks of Restricted Boltzmann Machines (RBM) [1,31]. RBM is a two-layer structure of neurons, whose weights between the two layers are trained using maximum likelihood estimation [68]. This initialization saved the neural network from the vanishing gradient problem and ended the neural networks’ winter. A deep network using RBM training was named the deep belief network [29]. Although, later, the proposal of the ReLU activation function [23] and the dropout technique [59] made it possible to train deep neural networks with random initial weights [24].

In fundamental machine learning, people often extract features using traditional dimensionality reduction and then apply the classification, regression, or clustering task afterwards. However, modern deep learning extracts features and learns embedding spaces in the layers of the network; this process is called end-to-end. Therefore, deep learning can be seen as performing a form of dimensionality reduction as part of its model. One problem with end-to-end models is that they are harder to troubleshoot if the performance is not satisfactory on a part of the data. The insights and meaning of the data coming from representation learning are critical to fully understand a model’s performance. Some of these insights can be useful for improving or understanding how deep neural networks operate. Researchers often visualize the extracted features of a neural network to interpret and analyze why deep learning is working properly on their data.

Deep metric learning [35] utilizes deep neural networks for extracting lowdimensional descriptive features from data at the last or one-to-last layer of the network. Siamese networks [11] are important network structures for deep metric learning. They contain several identical networks that share their weights, but have different inputs. Contrastive loss [27] and triplet loss [56] are two well-known loss functions that were proposed for training Siamese networks. Deep reconstruction autoencoders also make it possible to capture informative features at the bottleneck between the encoder and decoder.

机器学习代写|流形学习代写manifold data learning代考|ICML2022

流形学习代写

机器学习代写|流形学习代写manifold data learning代考|History of Probabilistic Dimensionality Reduction

许多谱降维方法的概率变体逐渐被开发和提出。例如,概率PCA[50,62]是 PCA 的随机版本,它假设数据是通过将噪声添加到潜在随机变量的线性投影中获得的。可以证明 PCA 是概率 PCA 的一个特例,其中噪声的方差趋于零。概率 PCA 本身是因子分析的一个特例 [17]。在因子分析中,噪声的不同维度可以相关,而在概率PCA中它们是不相关和等距的。因子分析和概率 PCA 对数据使用期望最大化和变分推理。

PCA 和 FDA 等线性光谱降维方法从数据中学习投影矩阵,以实现更好的数据表示或更好的类间分离。1984年,令人惊奇地确定,如果用一个随机矩阵来做数据的线性投影,不用从数据中学习,就可以很好地表示数据!Johnson-Lindenstrauss 引理 [33] 证明了这种随机投影之谜的正确性,该引理限制了子空间中距离保存的误差。后来,开发了随机投影的非线性变体,包括随机傅立叶特征 [48] 和随机厨房水槽 [49]。

足够的降维(小号丁R)是另一类概率方法,其第一个方法于 1991 年提出 [39]。它用于寻找数据到低维空间的转换,这不会改变给定数据的标签条件。因此,子空间足以预测来自投影数据到子空间的标签。SDR 主要是为高维回归提出的,其中使用了回归标签。后来,内核降维(钾丁R)被提议 [18] 作为 SDR 家族中的一种方法,用于机器学习中的降维。

随机邻域嵌入(SNE)于 2003 年提出 [30],并采用概率方法来降维。它试图保留一个点作为子空间中其他点的邻居的概率。SNE 的一个问题是它找不到最佳子空间,因为它不可能在低维子空间中保留高维数据的所有重要信息。因此,t-SNE被提出[41],它使用了另一种子空间容量更大的分布。这允许 t-SNE 在低维子空间中保留大量信息。最近成功的概率降维方法是均匀流形近似和投影(UMAP)[43],它被广泛用于数据可视化。今天,t-SNE和UMAP都用于高维数据可视化,特别是深度学习中提取特征的可视化。它们还被广泛用于可视化高维基因组数据。

机器学习代写|流形学习代写manifold data learning代考|History of Neural Network-Based Dimensionality

神经网络是模仿人脑神经结构的机器学习模型。神经网络目前是表示学习和降维的强大工具。20 世纪 90 年代,研究人员对神经网络的兴趣下降;这被称为神经网络的冬天。这个冬天的发生主要是因为网络无法变深,因为在优化过程中,梯度在多层网络之后消失了。内核支持向量机 [10] 的成功也在这个冬天被夸大了。2006 年,Hinton 和 Salakhutdinov 证明了可以使用基于能量的训练来初始化网络的权重,其中网络的层被视为受限玻尔兹曼机 (RBM) 的堆栈 [1,31]。RBM是神经元的两层结构,其两层之间的权重使用最大似然估计 [68] 进行训练。这种初始化将神经网络从梯度消失问题中解救出来,结束了神经网络的寒冬。使用 RBM 训练的深度网络被命名为深度信念网络 [29]。尽管后来,ReLU 激活函数 [23] 和 dropout 技术 [59] 的提出使训练具有随机初始权重的深度神经网络成为可能 [24]。

在基础机器学习中,人们通常使用传统的降维方法提取特征,然后再应用分类、回归或聚类任务。然而,现代深度学习提取特征并学习网络层中的嵌入空间;这个过程称为端到端。因此,深度学习可以被视为执行一种形式的降维,作为其模型的一部分。端到端模型的一个问题是,如果部分数据的性能不令人满意,则很难对其进行故障排除。来自表示学习的数据的见解和意义对于充分理解模型的性能至关重要。其中一些见解可能有助于改进或理解深度神经网络的运作方式。

深度度量学习 [35] 利用深度神经网络从网络最后一层或最后一层的数据中提取低维描述性特征。孪生网络 [11] 是深度度量学习的重要网络结构。它们包含几个共享权重但具有不同输入的相同网络。Contrastive loss [27] 和 triplet loss [56] 是两个众所周知的损失函数,它们被提议用于训练 Siamese 网络。深度重建自动编码器还可以在编码器和解码器之间的瓶颈处捕获信息特征。

机器学习代写|流形学习代写manifold data learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

机器学习代写|流形学习代写manifold data learning代考|SCl7314

如果你也在 怎样代写流形学习manifold data learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

流形学习是机器学习的一个流行且快速发展的子领域,它基于一个假设,即一个人的观察数据位于嵌入高维空间的低维流形上。本文介绍了流形学习的数学观点,深入探讨了核学习、谱图理论和微分几何的交叉点。重点放在图和流形之间的显著相互作用上,这构成了流形正则化技术的广泛使用的基础。

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富,各种代写流形学习manifold data learning相关的作业也就用不着说。

我们提供的流形学习manifold data learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|流形学习代写manifold data learning代考|SCl7314

机器学习代写|流形学习代写manifold data learning代考|Dimensionality Reduction and Manifold Learning

Feature extraction is also referred to as dimensionality reduction, manifold learning [12], subspace learning, submanifold learning, manifold unfolding, embedding, encoding, and representation learning [7, 70]. This book uses manifold learning and dimensionality reduction interchangeably for feature extraction. Manifold learning techniques can be used in a variety of ways, including:

  • Data dimensionality reduction: Produce a compact (compressed) lowdimensional encoding of a given high-dimensional dataset.
  • Data visualization: Provide an interpretation of a given dataset in terms of intrinsic degrees of freedom, usually as a byproduct of data dimensionality reduction.
  • Preprocessing for supervised learning: Simplify, reduce, and clean the data for subsequent supervised training.

In dimensionality reduction, the data points are mapped to a lower-dimensional subspace either linearly or nonlinearly. Dimensionality reduction methods can be grouped into three categories-spectral dimensionality reduction, probabilistic dimensionality reduction, and (artificial) neural network-based dimensionality reduction [19] (see Fig.1.3). These categories are introduced in the following subsections.

Consider several points in a three-dimensional Euclidean space. Assume these points lie on a nonlinear submanifold with a local dimensionality of two, as illustrated in Fig. 1.4a. This means that there is no need to have three features to represent each of these points. Rather, two features can represent most of the data points’ information if the two features demonstrate the 2D coordinates on the submanifold. A nonlinear dimensionality reduction method can unfold this manifold correctly, as depicted in Fig. 1.4b. However, a linear dimensionality reduction method cannot properly find a correct underlying $2 \mathrm{D}$ representation of the data points. Figure $1.4 \mathrm{c}$ demonstrates that a linear method ruins the relative structure of the data points. This is because a linear method uses the Euclidean distances between the points, while a nonlinear method considers the geodesic distances along the nonlinear submanifold. If the submanifold is linear, the linear method is able to obtain the lower-dimensional structure of the data. Spectral dimensionality reduction methods typically have a geometric perspective and attempt to find the linear or nonlinear submanifold of the data. These methods are often reduced to a generalized eigenvalue problem [20].

机器学习代写|流形学习代写manifold data learning代考|History of Spectral Dimensionality Reduction

Principal Component Analysis (PCA) [34] was first proposed by Pearson in 1901 [47]. It was the first spectral dimensionality reduction method and one of the first methods in linear subspace learning. It is unsupervised, meaning that it does not use any class labels. Fisher Discriminant Analysis (FDA) [16], proposed by Fisher in 1936 [15], was the first supervised spectral dimensionality reduction method. PCA and FDA are based on the scatter, i.e., variance of the data. A proper subspace preserves either the relative similarity or relative dissimilarity of the data points after transformation of data from the input space to the subspace. This was the goal of Multidimensional Scaling (MDS) [13], which preserves the relative similarities of data points in its subspace. In later MDS approaches, the cost function was changed to preserve the distances between points [37], which developed into Sammon mapping [52]. Sammon mapping is considered to be the first nonlinear dimensionality reduction method.

Figure $1.4$ demonstrates that a linear algorithm cannot perform well on nonlinear data. For nonlinear data, two approaches can be used:

  • a nonlinear algorithm should be designed to handle nonlinear data, or
  • the nonlinear data should be modified to become linear. In this case, the data should be transformed to another space to become linearly separable in that space. Then, the transformed data, which now have a linear pattern, will be able to use a linear approach. This approach is called kernelization in machine learning.
    The kernel PCA $[54,55]$ uses the PCA and the kernel trick [32] to transform data to a high-dimensional space so that it becomes roughly linear within that space. Kernel FDA $[44,45]$ was also proposed to manipulate nonlinear data in a supervised manner using representation theory [3]. Representation theory can be used for kernelization; it will be introduced in Chap. 3 .
机器学习代写|流形学习代写manifold data learning代考|SCl7314

流形学习代写

机器学习代写|流形学习代写manifold data learning代考|Dimensionality Reduction and Manifold Learning

特征提取也称为降维、流形学习 [12]、子空间学习、子流形学习、流形展开、嵌入、编码和表示学习 [7, 70]。本书交替使用流形学习和降维来进行特征提取。流形学习技术可以以多种方式使用,包括:

  • 数据降维:为给定的高维数据集生成紧凑(压缩)的低维编码。
  • 数据可视化:根据内在自由度提供给定数据集的解释,通常作为数据降维的副产品。
  • Preprocessing for supervised learning:简化、减少和清洗数据,用于后续的监督训练。

在降维中,数据点被线性或非线性映射到低维子空间。降维方法可以分为三类——谱降维、概率降维和基于(人工)神经网络的降维[19](见图1.3)。这些类别在以下小节中介绍。

考虑三维欧几里德空间中的几个点。假设这些点位于局部维数为 2 的非线性子流形上,如图 1.4a 所示。这意味着不需要三个特征来表示这些点中的每一个。相反,如果这两个特征展示了子流形上的二维坐标,则这两个特征可以表示大部分数据点的信息。如图 1.4b 所示,非线性降维方法可以正确展开该流形。然而,线性降维方法无法正确找到正确的底层2丁数据点的表示。数字1.4C表明线性方法破坏了数据点的相对结构。这是因为线性方法使用点之间的欧几里得距离,而非线性方法考虑沿非线性子流形的测地线距离。如果子流形是线性的,则线性方法能够获得数据的低维结构。谱降维方法通常具有几何视角,并试图找到数据的线性或非线性子流形。这些方法通常被简化为广义特征值问题 [20]。

机器学习代写|流形学习代写manifold data learning代考|History of Spectral Dimensionality Reduction

主成分分析(PCA)[34]最早由 Pearson 于 1901 年提出[47]。它是第一个谱降维方法,也是线性子空间学习中最早的方法之一。它是无监督的,这意味着它不使用任何类别标签。Fisher判别分析(FDA)[16]是由Fisher于1936年[15]提出的,是第一个有监督的谱降维方法。PCA 和 FDA 基于散点,即数据的方差。在将数据从输入空间转换到子空间之后,适当的子空间保留数据点的相对相似性或相对不相似性。这是多维缩放 (MDS) [13] 的目标,它保留了其子空间中数据点的相对相似性。在后来的 MDS 方法中,更改成本函数以保留点之间的距离 [37],这发展成 Sammon 映射 [52]。Sammon映射被认为是第一个非线性降维方法。

数字1.4表明线性算法不能很好地处理非线性数据。对于非线性数据,可以使用两种方法:

  • 应该设计一个非线性算法来处理非线性数据,或者
  • 非线性数据应修改为线性。在这种情况下,应该将数据转换到另一个空间,使其在该空间中线性可分。然后,现在具有线性模式的转换数据将能够使用线性方法。这种方法在机器学习中称为内核化。
    内核PCA[54,55]使用 PCA 和内核技巧 [32] 将数据转换到高维空间,使其在该空间内大致呈线性。内核FDA[44,45]还提出了使用表示论 [3] 以监督方式操纵非线性数据。表示论可用于核化;将在第 1 章介绍。3.
机器学习代写|流形学习代写manifold data learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

机器学习代写|流形学习代写manifold data learning代考|EECS559

如果你也在 怎样代写流形学习manifold data learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

流形学习是机器学习的一个流行且快速发展的子领域,它基于一个假设,即一个人的观察数据位于嵌入高维空间的低维流形上。本文介绍了流形学习的数学观点,深入探讨了核学习、谱图理论和微分几何的交叉点。重点放在图和流形之间的显著相互作用上,这构成了流形正则化技术的广泛使用的基础。

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富,各种代写流形学习manifold data learning相关的作业也就用不着说。

我们提供的流形学习manifold data learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|流形学习代写manifold data learning代考|EECS559

机器学习代写|流形学习代写manifold data learning代考|Manifold Hypothesis

Each feature of a data point does not carry an equal amount of information. For example, some pixels of an image are background regions with limited information, while other pixels contain important objects that describe the scene in the image. This means that data points can be significantly compressed to preserve the most informative features while eliminating those with limited information. In other words, the $d$-dimensional data points of a dataset usually do not cover the entire $d$ dimensional Euclidean space, but they lie on a specific lower-dimensional structure in the space.

Consider the illustration in Fig. 1.1, where several three-dimensional points exist in $\mathbb{R}^3$. These points can represent any measurement, such as personal health measurements, including blood pressure, blood sugar, and blood fat. As demonstrated in Fig. 1.1, the points of the dataset have a structure in a two-dimensional space. The three-dimensional Euclidean space is called the input space, and the twodimensional space, which has a lower dimensionality than the input space, is called the subspace, the submanifold, or the embedding space. The subspace can be either linear or nonlinear, depending on whether a linear (hyper)plane passes through the points. Usually, subspace and submanifold are used for linear and nonlinear lowerdimensional spaces, respectively. Linear and nonlinear subspaces are depicted in Fig. 1.1a and b, respectively.

Whether the points of a dataset lie on a space is a hypothesis, but this hypothesis is usually true because the data points typically represent a natural signal, such as an image. When the data acquisition process is natural, the data will have a define structure. For example, in the dataset where there are multiple images from different angles depicting the same scene, the objects of the scene remain the same, but the point of view changes (see Fig. 1.2). This hypothesis is called the manifold hypothesis [14]. Its formal definition is as follows. According to the manifold hypothesis, data points of a dataset lie on a submanifold or subspace with lower dimensionality. In other words, the dataset in $\mathbb{R}^d$ lies on an embedded submanifold [38] with local dimensionality less than $d$ [14]. According to this hypothesis, the data points most often lie on a submanifold with high probability [64].

机器学习代写|流形学习代写manifold data learning代考|Feature Engineering

Due to the manifold hypothesis, a dataset can be compressed while preserving most of the important information. Therefore, engineering and processing can be applied to the features for the sake of compression [4]. Feature engineering can be seen as a preprocessing stage, where the dimensionality of the data is reduced. Assume $d$ and $p$ denote the dimensionality of the input space and the subspace, respectively, where $p \in(0, d]$. Feature engineering is a map from a $d$-dimensional Euclidean space to a $p$-dimensional Euclidean space, i.e., $\mathbb{R}^d \rightarrow \mathbb{R}^p$. The dimensionality of the subspace is usually much smaller than the dimensionality of the space, i.e. $p \ll d$, because most of the information usually exists in only a few features.

Feature engineering is divided into two broad approaches-feature selection and feature extraction [22]. In feature selection, the $p$ most informative features of the $d$-dimensional data vector are selected so the features of the transformed data points are a subset of the original features. In feature extraction, however, the $d$-dimensional data vector is transformed to a $p$-dimensional data vector, where the $p$ new features are completely different from the original features. In other words, data points are represented in another lower-dimensional space. Both feature selection and feature extraction are used for compression, which results in either the better discrimination of classes or better representation of data. In other words, the compressed data by feature engineering may have a better representation of the data or may separate the classes of data. This book concentrates on feature extraction.

机器学习代写|流形学习代写manifold data learning代考|EECS559

流形学习代写

机器学习代写|流形学习代写manifold data learning代考|Manifold Hypothesis

数据点的每个特征并不携带等量的信息。例如,图像的一些像素是信息有限的背景区域,而其他像素包含描述图像中场景的重要对象。这意味着可以显着压缩数据点以保留信息最多的特征,同时消除信息有限的特征。换句话说,d数据集的维数据点通常不会覆盖整个d维欧几里德空间,但它们位于空间中特定的低维结构上。

考虑图 1.1 中的图示,其中存在几个三维点R3. 这些点可以表示任何测量值,例如个人健康测量值,包括血压、血糖和血脂。如图 1.1 所示,数据集的点在二维空间中具有结构。三维欧氏空间称为输入空间,维数低于输入空间的二维空间称为子空间、子流形或嵌入空间。子空间可以是线性的也可以是非线性的,这取决于线性(超)平面是否通过这些点。通常,子空间和子流形分别用于线性和非线性低维空间。线性和非线性子空间分别如图 1.1a 和 b 所示。

数据集的点是否位于空间上是一个假设,但这个假设通常是正确的,因为数据点通常表示自然信号,例如图像。当数据采集过程自然时,数据将具有定义的结构。例如,在有多张不同角度的图像描绘同一场景的数据集中,场景的对象保持不变,但视角发生变化(见图1.2)。这个假设被称为流形假设[14]。它的正式定义如下。根据流形假设,数据集的数据点位于较低维度的子流形或子空间上。换句话说,数据集在Rd位于局部维数小于的嵌入子流形 [38] 上d[14]。根据这个假设,数据点最常位于子流形上的概率很高 [64]。

机器学习代写|流形学习代写manifold data learning代考|Feature Engineering

由于流形假设,可以在保留大部分重要信息的同时压缩数据集。因此,为了压缩 [4],可以对特征应用工程和处理。特征工程可以看作是一个预处理阶段,其中数据的维度被降低。认为d和p分别表示输入空间和子空间的维数,其中p∈(0,d]. 特征工程是一张来自d维欧几里德空间到p-维欧几里德空间,即Rd→Rp. 子空间的维数通常远小于空间的维数,即p≪d,因为大部分信息通常只存在于少数特征中。

特征工程分为两大类——特征选择和特征提取[22]。在特征选择中,p最有信息量的特征d选择 维数据向量,因此转换数据点的特征是原始特征的子集。然而,在特征提取中,d维数据向量被转换为p维数据向量,其中p新功能与原来的功能完全不同。换句话说,数据点在另一个低维空间中表示。特征选择和特征提取都用于压缩,这可以更好地区分类别或更好地表示数据。换句话说,通过特征工程压缩的数据可能具有更好的数据表示或可能分离数据的类别。本书专注于特征提取。

机器学习代写|流形学习代写manifold data learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

机器学习代写|流形学习代写manifold data learning代考|SCl 7314

如果你也在 怎样代写流形学习manifold data learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

流形学习是机器学习的一个流行且快速发展的子领域,它基于一个假设,即一个人的观察数据位于嵌入高维空间的低维流形上。本文介绍了流形学习的数学观点,深入探讨了核学习、谱图理论和微分几何的交叉点。重点放在图和流形之间的显著相互作用上,这构成了流形正则化技术的广泛使用的基础。

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富,各种代写流形学习manifold data learning相关的作业也就用不着说。

我们提供的流形学习manifold data learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|流形学习代写manifold data learning代考|SCl 7314

机器学习代写|流形学习代写manifold data learning代考|Curves and Geodesics

If the Riemannian manifold $(\mathcal{M}, g)$ is connected, it is a metric space with an induced topology that coincides with the underlying manifold topology. We can, therefore, define a function $d^{\mathcal{M}}$ on $\mathcal{M}$ that calculates distances between points on $\mathcal{M}$ and determines its structure.

Let $\mathbf{p}, \mathbf{q} \in \mathcal{M}$ be any two points on the Riemannian manifold $\mathcal{M}$. We first define the length of a (one-dimensional) curve in $\mathcal{M}$ that joins $\mathbf{p}$ to $\mathbf{q}$, and then the length of the shortest such curve.

A curve in $\mathcal{M}$ is defined as a smooth mapping from an open interval $\Lambda$ (which may have infinite length) in $\Re$ into $\mathcal{M}$. The point $\lambda \in \Lambda$ forms a parametrization of the curve. Let $c(\lambda)=\left(c_{1}(\lambda), \cdots, c_{d}(\lambda)\right)^{\top}$ be a curve in $\Re^{d}$ parametrized by $\lambda \in \Lambda \subseteq \Re$. If we take the coordinate functions, $\left{c_{h}(\lambda)\right}$, of $c(\lambda)$ to be as smooth as needed (usually, $\mathcal{C}^{\infty}$, functions that have any number of continuous derivatives), then we say that $c$ is a smooth curve. If $c(\lambda+\alpha)=c(\lambda)$ for all $\lambda, \lambda+\alpha \in \Lambda$, the curve $c$ is said to be closed. The velocity (or tangent) vector at the point $\lambda$ is given by
$$
c^{\prime}(\lambda)=\left(c_{1}^{\prime}(\lambda), \cdots, c_{d}^{\prime}(\lambda)\right)^{\tau},
$$
where $c_{j}^{\prime}(\lambda)=d c_{j}(\lambda) / d \lambda$, and the “speed” of the curve is
$$
\left|c^{\prime}(\lambda)\right|=\left{\sum_{j=1}^{d}\left[c_{j}^{\prime}(\lambda)\right]^{2}\right}^{1 / 2}
$$
Distance on a smooth curve $c$ is given by arc-length, which is measured from a fixed point $\lambda_{0}$ on that curve. Usually, the fixed point is taken to be the origin, $\lambda_{0}=0$, defined to be one of the two endpoints of the data. More generally, the arc-length $L(c)$ along the curve $c(\lambda)$ from point $\lambda_{0}$ to point $\lambda_{1}$ is defined as
$$
L(c)=\int_{\lambda_{0}}^{\lambda_{1}}\left|c^{\prime}(\lambda)\right| d \lambda .
$$

机器学习代写|流形学习代写manifold data learning代考|Linear Manifold Learning

Most statistical theory and applications that deal with the problem of dimensionality reduction are focused on linear dimensionality reduction and, by extension, linear manifold learning. A linear manifold can be visualized as a line, a plane, or a hyperplane, depending upon the number of dimensions involved. Data are observed in some high-dimensional space and it is usually assumed that a lower-dimensional linear manifold would be the most appropriate summary of the relationship between the variables. Although data tend not to live on a linear manifold, we view the problem as having two kinds of motivations. The first such motivation is to assume that the data live close to a linear manifold, the distance off the manifold determined by a random error (or noise) component. A second way of thinking about linear manifold learning is that a linear manifold is really a simple linear approximation to a more complicated type of nonlinear manifold that would probably be a better fit to the data. In both scenarios, the intrinsic dimensionality of the linear manifold is taken to be much smaller than the dimensionality of the data.

Identifying a linear manifold embedded in a higher-dimensional space is closely related to the classical statistics problem of linear dimensionality reduction. The recommended way of accomplishing linear dimensionality reduction is to create a reduced set of linear transformations of the input variables. Linear transformations are projection methods, and so the problem is to derive a sequence of low-dimensional projections of the input data that possess some type of optimal properties.

There are many techniques that can be used for either linear dimensionality reduction or linear manifold learning. In this chapter, we describe only two linear methods, namely, principal component analysis and multidimensional scaling. The earliest projection method was principal component analysis (dating back to 1933), and this technique has become the most popular dimensionality-reducing technique in use today. A related method is that of multidimensional scaling (dating back to 1952), which has a very different motivation. An adaptation of multidimensional scaling provided the core element of the IsOMAP algorithm for nonlinear manifold learning.

机器学习代写|流形学习代写manifold data learning代考|SCl 7314

流形学习代写

机器学习代写|流形学习代写manifold data learning代考|Curves and Geodesics

如果黎曼流形 $(\mathcal{M}, g)$ 是连通的,它是一个度量空间,其诱导拓扑与底层流形拓扑一致。因此,我们可以定义一 个函数 $d^{\mathcal{M}}$ 上 $\mathcal{M}$ 计算点之间的距离 $\mathcal{M}$ 并确定其结构。
让 $\mathbf{p}, \mathbf{q} \in \mathcal{M}$ 是黎曼流形上的任意两点 $\mathcal{M}$. 我们首先定义一条 (一维) 曲线的长度 $\mathcal{M}$ 加入 $\mathbf{p}$ 至 $\mathbf{q}$, 然后是最短的 这种曲线的长度。
中的一条曲线 $\mathcal{M}$ 定义为开区间的平滑映射 $\Lambda$ (可能有无限长) 在 $\Re$ 进入 $\mathcal{M}$. 重点 $\lambda \in \Lambda$ 形成曲线的参数化。让 $c(\lambda)=\left(c_{1}(\lambda), \cdots, c_{d}(\lambda)\right)^{\top}$ 成为曲线 $\Re^{d}$ 参数化 $\lambda \in \Lambda \subseteq \Re$. 如果我们取坐标函数,
lleft{c_{h}(Nambda)\right },的 $c(\lambda)$ 尽可能平滑(通常, $\mathcal{C}^{\infty}$ ,具有任意数量的连续导数的函数),那么我们说 $c$ 是 一条平滑曲线。如果 $c(\lambda+\alpha)=c(\lambda)$ 对所有人 $\lambda, \lambda+\alpha \in \Lambda$, 曲线 $c$ 据说是关闭的。该点的速度 (或切线) 矢 量 $\lambda$ 是 (谁) 给的
$$
c^{\prime}(\lambda)=\left(c_{1}^{\prime}(\lambda), \cdots, c_{d}^{\prime}(\lambda)\right)^{\tau}
$$
在哪里 $c_{j}^{\prime}(\lambda)=d c_{j}(\lambda) / d \lambda$ ,曲线的“速度”为
平滑曲线上的距离 $c$ 由弧长给出,从一个固定点测量 $\lambda_{0}$ 在那条曲线上。通常,以不动点为原点, $\lambda_{0}=0$ ,定义为 数据的两个端点之一。更一般地,弧长 $L(c)$ 沿着曲线 $c(\lambda)$ 从点 $\lambda_{0}$ 指向 $\lambda_{1}$ 定义为
$$
L(c)=\int_{\lambda_{0}}^{\lambda_{1}}\left|c^{\prime}(\lambda)\right| d \lambda .
$$

机器学习代写|流形学习代写manifold data learning代考|Linear Manifold Learning

大多数处理降维问题的统计理论和应用都集中在线性降维上,并通过扩展,线性流形学习。线性流形可以可视化为线、平面或超平面,具体取决于所涉及的维数。数据是在一些高维空间中观察到的,通常假设低维线性流形是变量之间关系的最合适的总结。尽管数据往往不存在于线性流形上,但我们认为这个问题有两种动机。第一个这样的动机是假设数据靠近线性流形,流形的距离由随机误差(或噪声)分量确定。关于线性流形学习的第二种思考方式是,线性流形实际上是对更复杂类型的非线性流形的简单线性近似,可能更适合数据。在这两种情况下,线性流形的内在维度都被认为远小于数据的维度。

识别嵌入在高维空间中的线性流形与线性降维的经典统计问题密切相关。完成线性降维的推荐方法是创建一组输入变量的简化线性变换。线性变换是投影方法,因此问题是推导出具有某种最佳属性的输入数据的一系列低维投影。

有许多技术可用于线性降维或线性流形学习。在本章中,我们只描述了两种线性方法,即主成分分析和多维缩放。最早的投影方法是主成分分析(可追溯到 1933 年),该技术已成为当今最流行的降维技术。一种相关的方法是多维缩放(可追溯到 1952 年),其动机非常不同。多维缩放的适应为非线性流形学习提供了 IsOMAP 算法的核心元素。

机器学习代写|流形学习代写manifold data learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

机器学习代写|流形学习代写manifold data learning代考|INFS6077

如果你也在 怎样代写流形学习manifold data learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

流形学习是机器学习的一个流行且快速发展的子领域,它基于一个假设,即一个人的观察数据位于嵌入高维空间的低维流形上。本文介绍了流形学习的数学观点,深入探讨了核学习、谱图理论和微分几何的交叉点。重点放在图和流形之间的显著相互作用上,这构成了流形正则化技术的广泛使用的基础。

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富,各种代写流形学习manifold data learning相关的作业也就用不着说。

我们提供的流形学习manifold data learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|流形学习代写manifold data learning代考|INFS6077

机器学习代写|流形学习代写manifold data learning代考|Topological Spaces

Topological spaces were introduced by Maurice Fréchet (1906) (in the form of metric spaces), and the idea was developed and extended over the next few decades. Amongst those who contributed significantly to the subject was Felix Hausdorff, who in 1914 coined the phrase “topological space” using Johann Benedict Listing’s German word Topologie introduced in $1847 .$

A topological space $\mathcal{X}$ is a nonempty collection of subsets of $\mathcal{X}$ which contains the empty set, the space itself, and arbitrary unions and finite intersections of those sets. A topological space is often denoted by $(\mathcal{X}, \mathcal{T})$, where $\mathcal{T}$ represents the topology associated with $\mathcal{X}$. The elements of $\mathcal{T}$ are called the open sets of $\mathcal{X}$, and a set is closed if its complement is open. Topological spaces can also be characterized through the concept of neighborhood. If $\mathbf{x}$ is a point in a topological space $\mathcal{X}$, its neighborhood is a set that contains an open set that contains $\mathbf{x}$.
Let $\mathcal{X}$ and $\mathcal{Y}$ be two topological spaces, and let $U \subset \mathcal{X}$ and $V \subset \mathcal{Y}$ be open subsets. Consider the family of all cartesian products of the form $U \times V$. The topology formed from these products of open subsets is called the product topology for $\mathcal{X} \times \mathcal{Y}$. If $W \subset \mathcal{X} \times \mathcal{Y}$, then $W$ is open relative to the product topology iff for each point $(x, y) \in \mathcal{X} \times \mathcal{Y}$ there are open neighborhoods, $U$ of $x$ and $V$ of $y$, such that $U \times V \subset W$. For example, the usual topology for $d$-dimensional Euclidean space $\Re^{d}$ consists of all open sets of points in $\Re^{d}$, and this topology is equivalent to the product topology for the product of $d$ copies of $\Re$.

One of the core elements of manifold learning involves the idea of “embedding” one topological space inside another. Loosely speaking, the space $\mathcal{X}$ is said to be embedded in the space $\mathcal{Y}$ if the topological properties of $\mathcal{Y}$ when restricted to $\mathcal{X}$ are identical to the topological properties of $\mathcal{X}$. To be more specific, we state the following definitions. A function $g: \mathcal{X} \rightarrow \mathcal{Y}$ is said to be continuous if the inverse image of an open set in $\mathcal{Y}$ is an open set in $\mathcal{X}$. If $g$ is a bijective (i.e., one-to-one and onto) function such that $g$ and its inverse $g^{-1}$ are continuous, then $g$ is said to be a homeomorphism. Two topological spaces $\mathcal{X}$ and $\mathcal{Y}$ are said to be homeomorphic (or topologically equivalent) if there exists a homeomorphism from one space onto the other. A topological space $\mathcal{X}$ is said to be embedded in a topological space $\mathcal{Y}$ if $\mathcal{X}$ is homeomorphic to a subspace of $\mathcal{Y}$.

机器学习代写|流形学习代写manifold data learning代考|Riemannian Manifolds

In the entire theory of topological manifolds, there is no mention of the use of calculus. However, in a prototypical application of a “manifold,” calculus enters in the form of a “smooth” (or differentiable) manifold $\mathcal{M}$, also known as a Riemannian manifold; it is usually defined in differential geometry as a submanifold of some ambient (or surrounding) Euclidean space, where the concepts of length, curvature, and angle are preserved, and where smoothness relates to differentiability. The word manifold (in German, Mannigfaltigkeit) was coined in an “intuitive” way and without any precise definition by Georg Friedrich Bernhard Riemann (1826-1866) in his 1851 doctoral dissertation (Riemann, 1851; Dieudonné, 2009); in 1854, Riemann introduced in his famous Habilitations lecture the idea of a topological manifold on which one could carry out differential and integral calculus.

A topological manifold $\mathcal{M}$ is called a smooth (or differentiable) manifold if $\mathcal{M}$ is continuously differentiable to any order. All smooth manifolds are topological manifolds, but the reverse is not necessarily true. (Note: Authors often differ on the precise definition of a “smooth” manifold.)

We now define the analogue of a homeomorphism for a differentiable manifold. Consider two open sets, $U \in \Re^{r}$ and $V \in \Re^{s}$, and let $g: U \rightarrow V$ so that for $\mathbf{x} \in U$ and $\mathbf{y} \in V, g(\mathbf{x})=$ y. If the function $g$ has finite first-order partial derivatives, $\partial y_{j} / \partial x_{i}$, for all $i=1,2, \ldots, r$, and all $j=1,2, \ldots, s$, then $g$ is said to be a smooth (or differentiable) mapping on $U$. We also say that $g$ is a $\mathcal{C}^{1}$-function on $U$ if all the first-order partial derivatives are continuous. More generally, if $g$ has continuous higher-order partial derivatives, $\partial^{k_{1}+\cdots+k_{r}} y_{j} / \partial x_{1}^{k_{1}} \cdots \partial x_{r}^{k_{r}}$, for all $j=1,2, \ldots, s$ and all nonnegative integers $k_{1}, k_{2}, \ldots, k_{r}$ such that $k_{1}+k_{2}+\cdots+k_{r} \leq r$, then we say that $g$ is a $\mathcal{C}^{\top}$-function, $r=1,2, \ldots$. If $g$ is a $\mathcal{C}^{r}$-function for all $r \geq 1$, then we say that $g$ is a $\mathcal{C}^{\infty}$-function.

If $g$ is a homeomorphism from an open set $U$ to an open set $V$, then it is said to be a $\mathcal{C}^{r}$-diffeomorphism if $g$ and its inverse $g^{-1}$ are both $\mathcal{C}^{r}$-functions. A $\mathcal{C}^{\infty}$-diffeomorphism is simply referred to as a diffeomorphism. We say that $U$ and $V$ are diffeomorphic if there exists a diffeomorphism between them. These definitions extend in a straightforward way to manifolds. For example, if $\mathcal{X}$ and $\mathcal{Y}$ are both smooth manifolds, the function $g: \mathcal{X} \rightarrow \mathcal{Y}$ is a diffeomorphism if it is a homeomorphism from $\mathcal{X}$ to $\mathcal{Y}$ and both $g$ and $g^{-1}$ are smooth. Furthermore, $\mathcal{X}$ and $\mathcal{Y}$ are diffeomorphic if there exists a diffeomorphism between them, in which case, $\mathcal{X}$ and $\mathcal{Y}$ are essentially indistinguishable from each other.

机器学习代写|流形学习代写manifold data learning代考|INFS6077

流形学习代写

机器学习代写|流形学习代写manifold data learning代考|Topological Spaces

Maurice Fréchet (1906) 引入了拓扑空间(以度量空间的形式),这个想法在接下来的几十年中得到发展和扩 展。对这个主题做出重大贡献的人中有 Felix Hausdorff,他在 1914 年使用 Johann Benedict Listing 的德语单词 Topologie 创造了“拓扑空间”一词。1847.
拓扑空间 $\mathcal{X}$ 是子集的非空集合 $\mathcal{X}$ 它包含空集、空间本身以及这些集合的任意并集和有限交集。拓扑空间通常表示 为 $(\mathcal{X}, \mathcal{T})$ ,在哪里 $\mathcal{T}$ 表示与相关的拓扑 $\mathcal{X}$. 的元素 $\mathcal{T}$ 被称为开集 $\mathcal{X}$ ,如果它的补集是开集,则它是闭集。拓扑空 间也可以通过邻域的概念来表征。如果 $\mathbf{x}$ 是拓扑空间中的一个点 $\mathcal{X}$ ,它的邻域是一个包含一个开集的集合,其中 包含 $\mathbf{x}$.
让 $\mathcal{X}$ 和 $\mathcal{Y}$ 是两个拓扑空间,令 $U \subset \mathcal{X}$ 和 $V \subset \mathcal{Y}$ 是开放子集。考虑以下形式的所有笛卡尔积的族 $U \times V$. 由这些 开放子集的乘积形成的拓扑称为乘积拓扑 $\mathcal{X} \times \mathcal{Y}$. 如果 $W \subset \mathcal{X} \times \mathcal{Y}$ ,然后 $W$ 对于每个点相对于产品拓扑是开 放的 $(x, y) \in \mathcal{X} \times \mathcal{Y}$ 有开放的社区, $U$ 的 $x$ 和 $V$ 的 $y$ ,这样 $U \times V \subset W$. 例如,通常的拓扑 $d$ 维欧几里得空间 $\Re^{d}$ 由所有开集的点组成 $\Re^{d}$, 这个拓扑等价于 的乘积的乘积拓扑 $d$ 的副本 $\Re$.
流形学习的核心要素之一涉及将一个拓扑空间“嵌入“另一个拓扑空间的想法。说白了就是空间 $\mathcal{X}$ 据说嵌入空间 $\mathcal{Y}$ 如果拓扑性质Y)当限制在 $\mathcal{X}$ 与拓扑性质相同 $\mathcal{X}$. 更具体地说,我们陈述以下定义。一个函数 $g: \mathcal{X} \rightarrow \mathcal{Y}$ 如果一个 开集的逆像在 $\mathcal{Y}$ 是一个开集 $\mathcal{X}$. 如果 $g$ 是一个双射(即,一对一和上)函数,使得 $g$ 和它的逆 $g^{-1}$ 是连续的,那么 $g$ 据说是同胚。两个拓扑空间 $\mathcal{X}$ 和 $\mathcal{Y}$ 如果存在从一个空间到另一个空间的同胚,则称其是同胚的(或拓扑等价 的)。拓扑空间 $\mathcal{X}$ 据说嵌入在拓扑空间中 $\mathcal{Y}$ 如果 $\mathcal{X}$ 同胚于一个子空间 $\mathcal{Y}$.

机器学习代写|流形学习代写manifold data learning代考|Riemannian Manifolds

在拓扑流形的整个理论中,没有提到微积分的使用。然而,在“流形”的原型应用中,微积分以“平滑” (或可微分) 流形的形式出现 $\mathcal{M}$ ,也称为黎曼流形;它通常在微分几何中定义为一些周围 (或周围) 欧几里得空间的子流形, 其中保留了长度、曲率和角度的概念,并且平滑度与可微性相关。Georg Friedrich Bernhard Riemann (18261866) 在他 1851 年的博士论文 (Riemann, 1851; Dieudonné, 2009) 中以“直观”的方式创造了流形这个词 (德 语,Mannigfaltigkeit),没有任何精确的定义;1854 年,黎曼在他著名的 Habilitations 演讲中介绍了拓扑流形 的概念,人们可以在该流形上进行微分和积分。
拓扑流形 $\mathcal{M}$ 称为光滑(或可微) 流形,如果 $\mathcal{M}$ 连续可微分到任意阶。所有光滑流形都是拓扑流形,但反过来不 一定正确。(注:作者经常对“平滑”流形的精确定义存在分歧。)
我们现在为可微流形定义同胚的类比。考虑两个开集, $U \in \Re^{r}$ 和 $V \in \Re^{s}$ ,然后让 $g: U \rightarrow V$ 所以对于 $\mathbf{x} \in U$ 和 $\mathbf{y} \in V, g(\mathbf{x})=$ 是的。如果函数 $g$ 具有有限的一阶偏导数, $\partial y_{j} / \partial x_{i}$ ,对所有人 $i=1,2, \ldots, r$ ,和 所有 $j=1,2, \ldots, s$ ,然后 $g$ 据说是一个平滑的 (或可微的) 映射 $U$. 我们也说 $g$ 是一个 $\mathcal{C}^{1}$ – 功能开启 $U$ 如果所有 一阶偏导数都是连续的。更一般地说,如果 $g$ 具有连续的高阶偏导数, $\partial^{k_{1}+\cdots+k_{r}} y_{j} / \partial x_{1}^{k_{1}} \cdots \partial x_{r}^{k_{r}}$ ,对所有人 $j=1,2, \ldots, s$ 和所有非负整数 $k_{1}, k_{2}, \ldots, k_{r}$ 这样 $k_{1}+k_{2}+\cdots+k_{r} \leq r$ ,那么我们说 $g$ 是一个 $\mathcal{C}^{\top}$-功能,
如果 $g$ 是开集的同胚 $U$ 对开集 $V$ ,则称其为 $\mathcal{C}^{r}$-微分同胚如果 $g$ 和它的逆 $g^{-1}$ 都是 $\mathcal{C}^{r}$-功能。一个 $-$ 溦分同胚简称 为微分同胚。我们说 $U$ 和 $V$ 如果它们之间存在微分同胚,则它们是微分同胚的。这些定义以直接的方式扩展到流 形。例如,如果 $\mathcal{X}$ 和 $\mathcal{Y}$ 都是光滑流形,函数 $g: \mathcal{X} \rightarrow \mathcal{Y}$ 如果它是同胚,则它是微分同胚 $\mathcal{X}$ 至 $\mathcal{Y}$ 和两者 $g$ 和 $g^{-1}$ 光 滑。此外, $\mathcal{X}$ 和 $\mathcal{Y}$ 如果它们之间存在微分同胚,则它们是微分同胚的,在这种情况下, $\mathcal{X}$ 和 $\mathcal{Y}$ 本质上是无法区分 的。

机器学习代写|流形学习代写manifold data learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

机器学习代写|流形学习代写manifold data learning代考|EECS 559a

如果你也在 怎样代写流形学习manifold data learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

流形学习是机器学习的一个流行且快速发展的子领域,它基于一个假设,即一个人的观察数据位于嵌入高维空间的低维流形上。本文介绍了流形学习的数学观点,深入探讨了核学习、谱图理论和微分几何的交叉点。重点放在图和流形之间的显著相互作用上,这构成了流形正则化技术的广泛使用的基础。

statistics-lab™ 为您的留学生涯保驾护航 在代写流形学习manifold data learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写流形学习manifold data learning代写方面经验极为丰富,各种代写流形学习manifold data learning相关的作业也就用不着说。

我们提供的流形学习manifold data learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|流形学习代写manifold data learning代考|EECS 559a

机器学习代写|流形学习代写manifold data learning代考|Spectral Embedding Methods for Manifold Learning

Manifold learning encompasses much of the disciplines of geometry, computation, and statistics, and has become an important research topic in data mining and statistical learning. The simplest description of manifold learning is that it is a class of algorithms for recovering a low-dimensional manifold embedded in a high-dimensional ambient space. Major breakthroughs on methods for recovering low-dimensional nonlinear embeddings of highdimensional data (Tenenbaum, de Silva, and Langford, 2000; Roweis and Saul, 2000) led to the construction of a number of other algorithms for carrying out nonlinear manifold learning and its close relative, nonlinear dimensionality reduction. The primary tool of all embedding algorithms is the set of eigenvectors associated with the top few or bottom few eigenvalues of an appropriate random matrix. We refer to these algorithms as spectral embedding methods. Spectral embedding methods are designed to recover linear or nonlinear manifolds, usually in high-dimensional spaces.

Linear methods, which have long been considered part-and-parcel of the statistician’s toolbox, include PRINCIPAL COMPONENT ANALYSIS (PCA) and MULTIDIMENSIONAL SCALING (MDS). PCA has been used successfully in many different disciplines and applications. In computer vision, for example, PCA is used to study abstract notions of shape, appearance, and motion to help solve problems in facial and object recognition, surveillance, person tracking, security, and image compression where data are of high dimensionality (Turk and Pentland, 1991; De la Torre and Black, 2001). In astronomy, where very large digital sky surveys have become the norm, PCA has been used to analyze and classify stellar spectra, carry out morphological and spectral classification of galaxies and quasars, and analyze images of supernova remnants (Steiner, Menezes, Ricci, and Oliveira, 2009). In bioinformatics, PCA has been used to study high-dimensional data generated by genome-wide, gene-expression experiments on a variety of tissue sources, where scatterplots of the top principal components in such studies often show specific classes of genes that are expressed by different clusters of distinctive biological characteristics (Yeung and Ruzzo, 2001; ZhengBradley, Rung, Parkinson, and Brazma, 2010). PCA has also been used to select an optimal subset of single nucleotide polymorphisms (SNPs) (Lin and Altman, 2004). PCA is also used to derive approximations to more complicated nonlinear subspaces, including problems involving data interpolation, compression, denoising, and visualization.

机器学习代写|流形学习代写manifold data learning代考|Spaces and Manifolds

Manifold learning involves concepts from general topology and differential geometry. Good introductions to topological spaces include Kelley (1955), Willard (1970), Bourbaki (1989), Mendelson (1990), Steen (1995), James (1999), and several of these have since been reprinted. Books on differential geometry include Spivak (1965), Kreyszig (1991), Kühnel (2000), Lee (2002), and Pressley (2010).

Manifolds generalize the notions of curves and surfaces in two and three dimensions to higher dimensions. Before we give a formal description of a manifold, it will be helpful to visualize the notion of a manifold. Imagine an ant at a picnic, where there are all sorts of items from cups to doughnuts. The ant crawls all over the picnic items, but because of its tiny size, the ant sees everything on a very small scale as flat and featureless. Similarly, a human, looking around at the immediate vicinity, would not see the curvature of the earth. A manifold (also referred to as a topological manifold) can be thought of in similar terms, as a topological space that locally looks flat and featureless and behaves like Euclidean space. Unlike a metric space, a topological space has no concept of distance. In this Section, we review specific definitions and ideas from topology and differential geometry that enable us to provide a useful definition of a manifold.

机器学习代写|流形学习代写manifold data learning代考|EECS 559a

流形学习代写

机器学习代写|流形学习代写manifold data learning代考|Spectral Embedding Methods for Manifold Learning

流形学习涵盖了几何、计算和统计学的大部分学科,已成为数据挖掘和统计学习的重要研究课题。流形学习最简单的描述是它是一类用于恢复嵌入在高维环境空间中的低维流形的算法。恢复高维数据的低维非线性嵌入方法的重大突破(Tenenbaum、de Silva 和 Langford,2000;Roweis 和 Saul,2000)导致构建了许多其他用于执行非线性流形学习的算法及其关闭相对的,非线性的降维。所有嵌入算法的主要工具是与适当随机矩阵的顶部几个或底部几个特征值相关联的特征向量集。我们将这些算法称为谱嵌入方法。谱嵌入方法旨在恢复线性或非线性流形,通常在高维空间中。

长期以来,线性方法一直被认为是统计学家工具箱的重要组成部分,包括主成分分析 (PCA) 和多维缩放 (MDS)。PCA 已成功用于许多不同的学科和应用。例如,在计算机视觉中,PCA 用于研究形状、外观和运动的抽象概念,以帮助解决面部和物体识别、监视、人员跟踪、安全和图像压缩中的高维数据问题(Turk 和彭特兰,1991 年;德拉托雷和布莱克,2001 年)。在天文学中,超大型数字巡天已成为常态,PCA 已被用于分析和分类恒星光谱,对星系和类星体进行形态和光谱分类,以及分析超新星遗迹的图像(Steiner、Menezes、Ricci 和奥利维拉,2009)。在生物信息学中,PCA 已被用于研究由对各种组织来源的全基因组基因表达实验产生的高维数据,其中此类研究中主要主要成分的散点图通常显示特定类别的基因,这些基因由不同的具有独特生物学特征的集群(Yeung 和 Ruzzo,2001;ZhengBradley、Rung、Parkinson 和 Brazma,2010)。PCA 还被用于选择单核苷酸多态性 (SNP) 的最佳子集 (Lin and Altman, 2004)。PCA 还用于推导更复杂的非线性子空间的近似值,包括涉及数据插值、压缩、去噪和可视化的问题。对各种组织来源的基因表达实验,其中此类研究中主要主要成分的散点图通常显示特定类别的基因,这些基因由不同的独特生物学特征簇表达(Yeung 和 Ruzzo,2001;ZhengBradley,Rung,Parkinson,和布拉兹马,2010)。PCA 还被用于选择单核苷酸多态性 (SNP) 的最佳子集 (Lin and Altman, 2004)。PCA 还用于推导更复杂的非线性子空间的近似值,包括涉及数据插值、压缩、去噪和可视化的问题。对各种组织来源的基因表达实验,其中此类研究中主要主要成分的散点图通常显示特定类别的基因,这些基因由不同的独特生物学特征簇表达(Yeung 和 Ruzzo,2001;ZhengBradley,Rung,Parkinson,和布拉兹马,2010)。PCA 还被用于选择单核苷酸多态性 (SNP) 的最佳子集 (Lin and Altman, 2004)。PCA 还用于推导更复杂的非线性子空间的近似值,包括涉及数据插值、压缩、去噪和可视化的问题。帕金森和布拉兹马,2010)。PCA 还被用于选择单核苷酸多态性 (SNP) 的最佳子集 (Lin and Altman, 2004)。PCA 还用于推导更复杂的非线性子空间的近似值,包括涉及数据插值、压缩、去噪和可视化的问题。帕金森和布拉兹马,2010)。PCA 还被用于选择单核苷酸多态性 (SNP) 的最佳子集 (Lin and Altman, 2004)。PCA 还用于推导更复杂的非线性子空间的近似值,包括涉及数据插值、压缩、去噪和可视化的问题。

机器学习代写|流形学习代写manifold data learning代考|Spaces and Manifolds

流形学习涉及来自一般拓扑和微分几何的概念。对拓扑空间的良好介绍包括 Kelley (1955)、Willard (1970)、Bourbaki (1989)、Mendelson (1990)、Steen (1995)、James (1999),其中一些已被重印。有关微分几何的书籍包括 Spivak (1965)、Kreyszig (1991)、Kühnel (2000)、Lee (2002) 和 Pressley (2010)。

流形将二维和三维曲线和曲面的概念推广到更高维度。在我们正式描述流形之前,可视化流形的概念会很有帮助。想象一只蚂蚁在野餐,那里有各种各样的物品,从杯子到甜甜圈。蚂蚁在野餐物品上爬来爬去,但由于它的体积很小,蚂蚁在非常小的尺度上看到的一切都是平坦的、毫无特色的。同样,一个人环顾四周,看不到地球的曲率。流形(也称为拓扑流形)可以用类似的术语来理解,即局部看起来平坦且无特征的拓扑空间,其行为类似于欧几里得空间。与度量空间不同,拓扑空间没有距离的概念。

机器学习代写|流形学习代写manifold data learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写