标签: MA3832

计算机代写|神经网络代写neural networks代考|Looking at the Weights

如果你也在 怎样代写神经网络neural networks这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

神经网络,也被称为人工神经网络(ANN)或模拟神经网络(SNN),是机器学习的一个子集,是深度学习算法的核心。它们的名称和结构受到人脑的启发,模仿了生物神经元相互之间的信号方式。

statistics-lab™ 为您的留学生涯保驾护航 在代写神经网络neural networks方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写神经网络neural networks代写方面经验极为丰富,各种代写神经网络neural networks相关的作业也就用不着说。

计算机代写|神经网络代写neural networks代考|Looking at the Weights

计算机代写|神经网络代写neural networks代考|Looking at the Weights

In previous chapters, we looked at the weights of a neural network as an array of numbers. You can’t typically glance at a weight array and see any sort of meaningful pattern. However, if the weights are represented graphically, patterns begin to emerge.

One common way to view the weights of a neural network is using a special type of chart called a histogram. You’ve probably seen histograms many times before – a histogram is a chart made up of vertical bars that count the number of occurrences in a population. Figure 6.1 is a histogram showing the popularity of operating systems. The $y$-axis shows the number of occurrences of each of the groups in the x-axis.

We can use a histogram to look at the weights of a neural network. You can typically tell a trained from an untrained neural network by looking at this histogram. Figure 6.2 shows a trained neural network.

A neural network histogram uses the same concept as the operating system histogram shown earlier. The y-axis specifies how many weights fell into the ranges specified by the numbers on the x-axis. This allows you to see the distribution of the weights.

Most trained neural networks will look something like the above chart. Their weights will be very tightly clustered around zero. A trained neural network will typically look like a very narrow Gaussian curve.

计算机代写|神经网络代写neural networks代考|Range Randomization

In the last section, we saw what a trained neural network looks like in a weight histogram. Untrained neural networks can have a variety of appearances. The appearance of the weight histogram will be determined by the weight initialization method used.

Range randomization produces a very simple looking chart. The more weights there are, the flatter the top will be. This is because the random number generator should give you an even distribution of numbers. If you are randomizing to the range of -1 to 1 , you would expect to have approximately the same number of weights above zero as below.

Using Nguyen-Widrow
We will now look at the Nguyen-Widrow weight initialization method. The Nguyen-Widrow method starts out just like the range randomized method. Random values are chosen between -0.5 and +0.5 . However, a special algorithm is employed to modify the weights. The histogram of a NguyenWidrow weight initialization looks like Figure 6.4.

As you can see, the Nguyen-Widrow initialization has a very distinctive pattern. There is a large distribution of weights between -0.5 and 0.5 . It gradually rises and then rapidly falls off to around -3.0 and +3.0 .
Performance of Nguyen-Widrow
You may be wondering how much advantage there is to using NguyenWidrow. Take a look at the average number of training iterations needed to train a neural network initialized by range randomization and Nguyen-Widrow.
Average iterations needed (lower is better)
Range random: 502.86
Nguyen-Widrow: 454,88
As you can see from the above information, the Nguyen-Widrow outperforms the range randomizer.

计算机代写|神经网络代写neural networks代考|Looking at the Weights

神经网络代写

计算机代写|神经网络代写neural networks代考|C alculating th e N o d e D eltas

第一步是为神经网络中的每个节点或神经元计算一个恒定值。我们将从输出节点开始,通过神经网络往回走——这就是反向传播这个术语的由来。我们首先计算输出神经元的误差,并通过神经网络向后传播这些误差。
我们将为每个节点计算的值称为节点增量。术语“层增量”有时也用来描述这个值。层增量描述了这些增量一次计算一层的事实。计算节点增量的方法取决于计算的是输出节点还是内部节点。输出神经元显然是所有的输出节点。隐藏神经元和输入神经元是内部节点。节点delta的计算公式如式4.1所示。
式4.1:计算节点delta
$ $
\delta_i= \begin{cases}-E f_i^{\prime}, &, \text{输出节点}\ f_i^{\prime} \sum_k \omega_{h i} \delta_k &, \text{中间节点}\end{cases}
$ $
我们将计算所有隐藏和无偏差神经元的节点delta。不需要计算输入和偏置神经元的节点delta。尽管使用上述方程可以很容易地计算输入和偏倚神经元的节点delta,但梯度计算不需要这些值。你很快就会看到,权重的梯度计算只关注与该权重相连的神经元。偏差和输入神经元只是连接的起点。它们永远不是终点。

我们将从使用输出神经元的公式开始。您将注意到公式使用了一个值$\mathbf{E}$。这是输出神经元的误差。您可以从公式4.2中看到如何计算$\mathbf{E}$。
式4.2:误差函数
$ $
E =(ⅰ)
$ $
你可能还记得第2章中类似的方程2.1。这是误差函数。这里,我们用实际减去理想。对于图4.2所提供的神经网络,可以这样写:
$ $
E = 0.75 – -1.00 = -0.25
$ $
现在我们有了$\mathbf{E}$,我们可以计算第一个(也是唯一一个)输出节点的节点增量。代入式4.1,可得:
$ $
-(-0.25) * d A(1.1254)=0.185 * 0.25=0.05
$ $

计算机代写|神经网络代写neural networks代考|C alculating the Individual Gradients

现在我们可以计算单个梯度了。与节点delta不同,只使用一个方程来计算实际的梯度。梯度由式4.5计算。
方程4.5:个体梯度
$ $
\压裂{\部分E}{\部分w_ {(k)}} = \ delta_k \ cdot o_j
$ $
上面的方程计算误差(E)相对于每个单独的权重的偏导数。偏导数是梯度。第三章讨论偏导数。为了确定单个梯度,将目标神经元的节点增量乘以源神经元的权重。在上式中,$\mathbf{k}$表示目标神经元,$\mathbf{i}$表示源神经元。

要计算从$\mathbf{H 1}$到$\mathbf{O 1}$的权重梯度,将使用以下值:
$ $
开始{对齐}
& \text {output}(\ mathm {h} 1) * \text {nodeDe1ta (o1)} \
& (0.37 * 0.05)=0.01677
结束{对齐}
$ $

重要的是要注意,在上面的等式中,我们乘以隐藏1的输出,而不是总和。当直接处理导数时,应该给出和。否则,您将间接地应用激活函数两次。在上面的方程中,我们没有直接处理导数,所以我们使用常规的节点输出。节点输出已经应用了激活函数。

一旦计算出梯度,权重的单个位置就不再重要了。我们可以简单地把权重和梯度看作是单维数组。我们将看到的个别训练方法将平等地对待所有权重和梯度。权重是来自输入神经元还是输出神经元并不重要。重要的是,正确的权重与正确的梯度一起使用。这些权重和梯度数组的顺序是任意的。然而,Encog对上述神经网络使用以下顺序:
权重/梯度0:隐藏$1 \右箭头$输出1
权重/梯度1:隐藏$2 \右箭头$输出1
权重/梯度2:偏置$2 \右移$输出1
权重/梯度3:输入$1 \右箭头$隐藏1
权重/梯度4:输入$2 \右箭头$隐藏1
权重/梯度5:偏差$1->$隐藏1
权重/梯度6:输入$1->$ Hidden 2
权重/梯度7:输入$2 \右箭头$隐藏2
权重/梯度$8:$ Bias $1 \右箭头$隐藏2
权重/梯度D:隐藏1 ->输出1
权重/梯度1:隐藏2 ->输出1
权重/梯度2:偏置$2 \右移$输出1
权重/梯度3:输入$1 \右箭头

计算机代写|神经网络代写neural networks代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|神经网络代写neural networks代考|Calculating the Node Deltas

如果你也在 怎样代写神经网络neural networks这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

神经网络,也被称为人工神经网络(ANN)或模拟神经网络(SNN),是机器学习的一个子集,是深度学习算法的核心。它们的名称和结构受到人脑的启发,模仿了生物神经元相互之间的信号方式。

statistics-lab™ 为您的留学生涯保驾护航 在代写神经网络neural networks方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写神经网络neural networks代写方面经验极为丰富,各种代写神经网络neural networks相关的作业也就用不着说。

计算机代写|神经网络代写neural networks代考|C alculating th e N o d e D eltas

计算机代写|神经网络代写neural networks代考|C alculating th e N o d e D eltas

The first step is to calculate a constant value for every node, or neuron, in the neural network. We will start with the output nodes and work our way backwards through the neural network – this is where the term, backpropagation, comes from. We initially calculate the errors for the output neurons and propagate these errors backwards through the neural network.
The value that we will calculate for each node is called the node delta. The term, layer delta, is also sometimes used to describe this value. Layer delta describes the fact that these deltas are calculated one layer at a time. The method for calculating the node deltas differs depending on whether you are calculating for an output or interior node. The output neurons are, obviously, all output nodes. The hidden and input neurons are the interior nodes. The equation to calculate the node delta is provided in Equation 4.1.
Equation 4.1: Calculating the Node Deltas
$$
\delta_i= \begin{cases}-E f_i^{\prime}, & , \text { output nodes } \ f_i^{\prime} \sum_k \omega_{h i} \delta_k & , \text { interier nodes }\end{cases}
$$
We will calculate the node delta for all hidden and non-bias neurons. There is no need to calculate the node delta for the input and bias neurons. Even though the node delta can easily be calculated for input and bias neurons using the above equation, these values are not needed for the gradient calculation. As you will soon see, gradient calculation for a weight only looks at the neuron that the weight is connected to. Bias and input neurons are only the beginning point for a connection. They are never the end point.

We will begin by using the formula for the output neurons. You will notice that the formula uses a value $\mathbf{E}$. This is the error for this output neuron. You can see how to calculate $\mathbf{E}$ from Equation 4.2.
Equation 4.2: The Error Function
$$
E=(a-i)
$$
You may recall a similar equation to Equation 2.1 from Chapter 2. This is the error function. Here, we subtract the ideal from the actual. For the neural network provided in Figure 4.2, this can be written like this:
$$
E=0.75-1.00=-0.25
$$
Now that we have $\mathbf{E}$, we can calculate the node delta for the first (and only) output node. Filling in Equation 4.1, we get the following:
$$
-(-0.25) * d A(1.1254)=0.185 * 0.25=0.05
$$

计算机代写|神经网络代写neural networks代考|C alculating the Individual Gradients

We can now calculate the individual gradients. Unlike the node deltas, only one equation is used to calculate the actual gradient. A gradient is calculated using Equation 4.5.
Equation 4.5: Individual Gradient
$$
\frac{\partial E}{\partial w_{(i k)}}=\delta_k \cdot o_j
$$
The above equation calculates the partial derivative of the error (E) with respect to each individual weight. The partial derivatives are the gradients. Partial derivatives were discussed in Chapter 3. To determine an individual gradient, multiply the node delta for the target neuron by the weight from the source neuron. In the above equation, $\mathbf{k}$ represents the target neuron and $\mathbf{i}$ represents the source neuron.

To calculate the gradient for the weight from $\mathbf{H 1}$ to $\mathbf{O 1}$, the following values would be used:
$$
\begin{aligned}
& \text { output }(\mathrm{h} 1) * \text { nodeDe1ta (o1) } \
& (0.37 * 0.05)=0.01677
\end{aligned}
$$

It is important to note that in the above equation, we are multiplying by the output of hidden 1 , not the sum. When dealing directly with a derivative you should supply the sum. Otherwise, you would be indirectly applying the activation function twice. In the above equation, we are not dealing directly with the derivative, so we use the regular node output. The node output has already had the activation function applied.

Once the gradients are calculated, the individual positions of the weights no longer matter. We can simply think of the weights and gradients as single dimensional arrays. The individual training methods that we will look at will treat all weights and gradients equally. It does not matter if a weight is from an input neuron or an output neuron. It is only important that the correct weight is used with the correct gradient. The ordering of these weight and gradient arrays is arbitrary. However, Encog uses the following order for the above neural network:
Weight/Gradient 0 : Hidden $1 \rightarrow$ Output 1
Weight/Gradient 1 : Hidden $2 \rightarrow$ Output 1
Weight/Gradient 2 : Bias $2 \rightarrow$ Output 1
Weight/Gradient 3 : Input $1 \rightarrow$ Hidden 1
Weight/Gradient 4 : Input $2 \rightarrow$ Hidden 1
Weight/Gradient 5 : Bias $1->$ Hidden 1
Weight/Gradient 6 : Input $1->$ Hidden 2
Weight/Gradient 7 : Input $2 \rightarrow$ Hidden 2
Weight/Gradient $8:$ Bias $1 \rightarrow$ Hidden 2
Weight/Gradient D: Hidden 1 -> Output 1
Weight/Gradient 1: Hidden 2 -> Output 1
Weight/Gradient 2: Bias $2 \rightarrow$ Output 1
Weight/Gradient 3 : Input $1 \rightarrow$ Hidden 1
Weight/Gradient 4 : Input $2 \rightarrow$ Hidden 1
Weight/Gradient 5: Bias 1 Hidden 1
Weight/Gradient 6: Input $1->$ Hidden 2
Weight/Gradient 7: Input $2 \rightarrow$ Hidden 2
Weight/Gradient 8: Bias $1 \rightarrow$ Hidden 2

计算机代写|神经网络代写neural networks代考|C alculating the NodeDeltas

神经网络代写

计算机代写|神经网络代写neural networks代考|C alculating th e N o d e D eltas

第一步是为神经网络中的每个节点或神经元计算一个恒定值。我们将从输出节点开始,通过神经网络往回走——这就是反向传播这个术语的由来。我们首先计算输出神经元的误差,并通过神经网络向后传播这些误差。
我们将为每个节点计算的值称为节点增量。术语“层增量”有时也用来描述这个值。层增量描述了这些增量一次计算一层的事实。计算节点增量的方法取决于计算的是输出节点还是内部节点。输出神经元显然是所有的输出节点。隐藏神经元和输入神经元是内部节点。节点delta的计算公式如式4.1所示。
式4.1:计算节点delta
$ $
\delta_i= \begin{cases}-E f_i^{\prime}, &, \text{输出节点}\ f_i^{\prime} \sum_k \omega_{h i} \delta_k &, \text{中间节点}\end{cases}
$ $
我们将计算所有隐藏和无偏差神经元的节点delta。不需要计算输入和偏置神经元的节点delta。尽管使用上述方程可以很容易地计算输入和偏倚神经元的节点delta,但梯度计算不需要这些值。你很快就会看到,权重的梯度计算只关注与该权重相连的神经元。偏差和输入神经元只是连接的起点。它们永远不是终点。

我们将从使用输出神经元的公式开始。您将注意到公式使用了一个值$\mathbf{E}$。这是输出神经元的误差。您可以从公式4.2中看到如何计算$\mathbf{E}$。
式4.2:误差函数
$ $
E =(ⅰ)
$ $
你可能还记得第2章中类似的方程2.1。这是误差函数。这里,我们用实际减去理想。对于图4.2所提供的神经网络,可以这样写:
$ $
E = 0.75 – -1.00 = -0.25
$ $
现在我们有了$\mathbf{E}$,我们可以计算第一个(也是唯一一个)输出节点的节点增量。代入式4.1,可得:
$ $
-(-0.25) * d A(1.1254)=0.185 * 0.25=0.05
$ $

计算机代写|神经网络代写neural networks代考|C alculating the Individual Gradients

现在我们可以计算单个梯度了。与节点delta不同,只使用一个方程来计算实际的梯度。梯度由式4.5计算。
方程4.5:个体梯度
$ $
\压裂{\部分E}{\部分w_ {(k)}} = \ delta_k \ cdot o_j
$ $
上面的方程计算误差(E)相对于每个单独的权重的偏导数。偏导数是梯度。第三章讨论偏导数。为了确定单个梯度,将目标神经元的节点增量乘以源神经元的权重。在上式中,$\mathbf{k}$表示目标神经元,$\mathbf{i}$表示源神经元。

要计算从$\mathbf{H 1}$到$\mathbf{O 1}$的权重梯度,将使用以下值:
$ $
开始{对齐}
& \text {output}(\ mathm {h} 1) * \text {nodeDe1ta (o1)} \
& (0.37 * 0.05)=0.01677
结束{对齐}
$ $

重要的是要注意,在上面的等式中,我们乘以隐藏1的输出,而不是总和。当直接处理导数时,应该给出和。否则,您将间接地应用激活函数两次。在上面的方程中,我们没有直接处理导数,所以我们使用常规的节点输出。节点输出已经应用了激活函数。

一旦计算出梯度,权重的单个位置就不再重要了。我们可以简单地把权重和梯度看作是单维数组。我们将看到的个别训练方法将平等地对待所有权重和梯度。权重是来自输入神经元还是输出神经元并不重要。重要的是,正确的权重与正确的梯度一起使用。这些权重和梯度数组的顺序是任意的。然而,Encog对上述神经网络使用以下顺序:
权重/梯度0:隐藏$1 \右箭头$输出1
权重/梯度1:隐藏$2 \右箭头$输出1
权重/梯度2:偏置$2 \右移$输出1
权重/梯度3:输入$1 \右箭头$隐藏1
权重/梯度4:输入$2 \右箭头$隐藏1
权重/梯度5:偏差$1->$隐藏1
权重/梯度6:输入$1->$ Hidden 2
权重/梯度7:输入$2 \右箭头$隐藏2
权重/梯度$8:$ Bias $1 \右箭头$隐藏2
权重/梯度D:隐藏1 ->输出1
权重/梯度1:隐藏2 ->输出1
权重/梯度2:偏置$2 \右移$输出1
权重/梯度3:输入$1 \右箭头

计算机代写|神经网络代写neural networks代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|神经网络代写neural networks代考|Other Error Calculation Methods

如果你也在 怎样代写神经网络neural networks这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

神经网络,也被称为人工神经网络(ANN)或模拟神经网络(SNN),是机器学习的一个子集,是深度学习算法的核心。它们的名称和结构受到人脑的启发,模仿了生物神经元相互之间的信号方式。

statistics-lab™ 为您的留学生涯保驾护航 在代写神经网络neural networks方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写神经网络neural networks代写方面经验极为丰富,各种代写神经网络neural networks相关的作业也就用不着说。

计算机代写|神经网络代写neural networks代考|Other Error Calculation Methods

计算机代写|神经网络代写neural networks代考|Other Error Calculation Methods

Though MSE is the most common method of calculating global error, it is not the only method. In this section, we will look at two other global error calculation methods.
Sum of Squares Error
The sum of squares method (ESS) uses a similar formula to the MSE error method. However, ESS does not divide by the number of elements. As a result, the ESS is not a percent. It is simply a number that is larger depending on how severe the error is. Equation 2.3 shows the MSE error formula.
Equation 2.3: Sum of Squares Error
$$
\mathrm{ESS}=\frac{1}{2} \sum_v E^2
$$
As you can see above, the sum is not divided by the number of elements. Rather, the sum is simply divided in half. This results in an error that is not a percent, but instead a total of the errors. Squaring the errors eliminates the effect of positive and negative errors.

Some training methods require that you use ESS. The Levenberg Marquardt Algorithm (LMA) requires that the error calculation method be ESS. LMA will be covered in Chapter 7, “LMA Training”.

计算机代写|神经网络代写neural networks代考|Calculating the Slope of a Line

The slope of a line is a numerical quality of a line that tells you the direction and steepness of a line. In this section, we will see how to calculate the slope of a straight line. In the next section, we will find out how to calculate the slope of a curved line at a single point.

The slope of a line is defined as the “rise” over the “run”, or the change in $\mathbf{y}$ over the change in $\mathbf{x}$. The slope of a line can be written in the form of Equation 3.1.
Equation 3.1: The Slope of a Straight Line
$$
m=\frac{\Delta y}{\Delta r}=\frac{v_2-v_1}{x_2-x_1}
$$
This can be visualized graphically as in Figure 3.1.

We could easily calculate the slope of the above line using Equation 3.1. Filling in the numbers for the two points we have on the line produces the following:
$$
(8-3) /(6-1)=1
$$
The slope of this line is one. This is a positive slope. When a line has a positive slope, it goes up left to right. When a line has a negative slope, it goes down left to right. When a line is horizontal, the slope is 0 , and when the line is vertical, the slope is undefined. Figure 3.2 shows several slopes for comparison.

计算机代写|神经网络代写neural networks代考|Other Error Calculation Methods

神经网络代写

计算机代写|神经网络代写neural networks代考|Other Error Calculation Methods

虽然MSE是计算全局误差最常用的方法,但它并不是唯一的方法。在本节中,我们将研究另外两种全局误差计算方法。
平方和误差
平方和方法(ESS)使用与MSE误差方法相似的公式。但是,ESS不除以元素的数量。因此,ESS不是百分之一。它只是一个数字,根据误差的严重程度而变大。MSE误差公式如式2.3所示。
式2.3:平方和误差
$$
\mathrm{ESS}=\frac{1}{2} \sum_v E^2
$$
如上所示,总和没有除以元素的数量。相反,这笔钱被简单地分成两半。这将导致错误不是百分比,而是错误总数。误差的平方消除了正误差和负误差的影响。

有些培训方法要求您使用ESS。Levenberg Marquardt算法(LMA)要求误差计算方法为ESS。LMA将在第7章“LMA培训”中介绍。

计算机代写|神经网络代写neural networks代考|Calculating the Slope of a Line

一条线的斜率是一条线的数值性质,它告诉你一条线的方向和陡度。在本节中,我们将看到如何计算直线的斜率。在下一节中,我们将了解如何计算曲线在单点处的斜率。

直线的斜率定义为“上升”除以“下降”,或者$\mathbf{y}$的变化量除以$\mathbf{x}$的变化量。直线的斜率可以用公式3.1表示。
方程3.1:直线的斜率
$$
m=\frac{\Delta y}{\Delta r}=\frac{v_2-v_1}{x_2-x_1}
$$
如图3.1所示。

我们可以很容易地用公式3.1计算出上述直线的斜率。将直线上的两个点的数字填上,结果如下:
$$
(8-3) /(6-1)=1
$$
这条线的斜率是1。这是正斜率。当直线斜率为正时,它从左到右向上。当直线斜率为负时,它从左到右向下。当一条线是水平的,斜率为0,当这条线是垂直的,斜率没有定义。图3.2显示了几个斜率进行比较。

计算机代写|神经网络代写neural networks代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|NIT6004

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|NIT6004

计算机代写|深度学习代写deep learning代考|Probability Space

We now start with a formal definition of a probability space and related terms from the measure theory [2].

Definition $1.9$ (Probability Space) A probability space is a triple $(\Omega, \mathcal{F}, \mu)$ consisting of the sample space $\Omega$, an event space $\mathcal{F}$ composed of a subset of $\Omega$ (which is often called $\sigma$-algebra), and the probability measure (or distribution) $\mu: \mathcal{F} \mapsto[0,1]$, a function such that:

  • $\mu$ must satisfy the countable additivity property that for all countable collections $\left{E_i\right}$ of pairwise disjoint sets:
    $$
    \mu\left(\cup_i E_i\right)=\cup_i \mu\left(E_i\right) ;
    $$
  • the measure of the entire sample space is equal to one: $\mu(\Omega)=1$.

In fact, the probability measure is a special case of the general “measure” in measure theory [2]. Specifically, the general term “measure” is defined similarly to the probability measure defined above except that only positivity and the countable additivity property are required. Another important special case of a measure is the counting measure $v(A)$, which is the measure that assigns its value as the number of elements in the set $A$.

To understand the concept of a probability space, we give two examples: one for the discrete case, the other for the continuous one.

计算机代写|深度学习代写deep learning代考|Some Matrix Algebra

In the following, we introduce some matrix algebra that is useful in understanding the materials in this book.

A matrix is a rectangular array of numbers, denoted by an upper case letter, say
A. A matrix with $m$ rows and $n$ columns is called an $m \times n$ matrix given by
$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \
a_{21} & a_{22} & \cdots & a_{2 n} \
\vdots & \vdots & \ddots & \vdots \
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$
The $k$-th column of matrix $\boldsymbol{A}$ is often denoted by $\boldsymbol{a}k$. The maximal number of linearly independent columns of $\boldsymbol{A}$ is called the rank of the matrix $\boldsymbol{A}$. It is easy to show that $$ \operatorname{Rank}(\boldsymbol{A})=\operatorname{dim} \operatorname{span}\left(\left[\boldsymbol{a}_1, \cdots, \boldsymbol{a}_n\right]\right) . $$ The trace of a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, denoted $\operatorname{Tr}(\boldsymbol{A})$ is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of $\boldsymbol{A}$ : $$ \operatorname{Tr}(\boldsymbol{A})=\sum{i=1}^n a_{i i} .
$$
Definition 1.11 (Range Space) The range space of a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{R}(\boldsymbol{A})$, is defined by $\mathcal{R}(\boldsymbol{A}):=\left{\boldsymbol{A} \boldsymbol{x} \mid \forall x \in \mathbb{R}^n\right}$.

Definition $1.12$ (Null Space) The null space of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{N}(\boldsymbol{A})$, is defined by $\mathcal{N}(\boldsymbol{A}):=\left{\boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\right}$.

计算机代写|深度学习代写deep learning代考|NIT6004

深度学习代写

计算机代写|深度学习代写deep learning代考|Probability Space

我们现在从测度论 [2] 中概率空间和相关术语的正式定义开始。
定义1.9 (概率空间) 一个概率空间是一个三元组 $(\Omega, \mathcal{F}, \mu)$ 由样本空间组成 $\Omega$, 活动空间 $\mathcal{F}$ 由 一个子集组成 $\Omega$ (这通常被称为 $\sigma$-代数) 和概率测度 (或分布) $\mu: \mathcal{F} \mapsto[0,1]$ ,这样的函 数:

  • $\mu$ 必须满足所有可数集合的可数可加性左仞 i右 成对不相交的集合:
    $$
    \mu\left(\cup_i E_i\right)=\cup_i \mu\left(E_i\right) ;
    $$
  • 整个样本空间的测度等于 $: \mu(\Omega)=1$.
    事实上,概率测度是测度论中一般“测度”的特例[2]。具体而言,一般术语“测度”的定义类似于 上面定义的概率测度,只是只需要正性和可数加性属性。度量的另一个重要特例是计数度量 $v(A)$ ,这是将其值分配为集合中元素数的度量 $A$.
    为了理解概率空间的概念,我们举两个例子: 一个是离散的,另一个是连续的。

计算机代写|深度学习代写deep learning代考|Some Matrix Algebra

下面,我们介绍一些有助于理解本书内容的矩阵代数。
矩阵是数字的矩形数组,用大写字母表示,比如
A。 $m$ 行和 $n$ 列称为 $m \times n$ 矩阵由
这 $k$-矩阵的第列 $\boldsymbol{A}$ 通常表示为 $\boldsymbol{a} k$. 的线性独立列的最大数量 $\boldsymbol{A}$ 称为矩阵的秩 $\boldsymbol{A}$. 很容易证明
$$
\operatorname{Rank}(\boldsymbol{A})=\operatorname{dim} \operatorname{span}\left(\left[\boldsymbol{a}1, \cdots, \boldsymbol{a}_n\right]\right) . $$ 方阵的迹 $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ ,表示 $\operatorname{Tr}(\boldsymbol{A})$ 被定义为主对角线上 (从左上到右下) 的元素之和 $\boldsymbol{A}$ : $$ \operatorname{Tr}(\boldsymbol{A})=\sum i=1^n a{i i} .
$$
定义 $1.11$ (极差空间) 矩阵的极差空间 $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ ,表示为 $\mathcal{R}(\boldsymbol{A})$, 定义为
定义 1.12(Null Space) 矩阵的零空间 $A \in \mathbb{R}^{m \times n}$, 表示为 $\mathcal{N}(\boldsymbol{A})$, 定义为

计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|COMP5329

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP5329

计算机代写|深度学习代写deep learning代考|Banach and Hilbert Space

An inner product space is defined as a vector space that is equipped with an inner product. A normed space is a vector space on which a norm is defined. An inner product space is always a normed space since we can define a norm as $|f|=$ $\sqrt{\langle\boldsymbol{f}, \boldsymbol{f}\rangle}$, which is often called the induced norm. Among the various forms of the normed space, one of the most useful normed spaces is the Banach space.
Definition 1.7 The Banach space is a complete normed space.
Here, the “completeness” is especially important from the optimization perspective, since most optimization algorithms are implemented in an iterative manner so that the final solution of the iterative method should belong to the underlying space $\mathcal{H}$. Recall that the convergence property is a property of a metric space. Therefore, the Banach space can be regarded as a vector space equipped with desirable properties of a metric space. Similarly, we can define the Hilbert space.
Definition 1.8 The Hilbert space is a complete inner product space.
We can easily see that the Hilbert space is also a Banach space thanks to the induced norm. The inclusion relationship between vector spaces, normed spaces, inner product spaces, Banach spaces and Hilbert spaces is illustrated in Fig. 1.1.
As shown in Fig. 1.1, the Hilbert space has many nice mathematical structures such as inner product, norm, completeness, etc., so it is widely used in the machine learning literature. The following are well-known examples of Hilbert spaces:

  • $l^2(\mathbb{Z})$ : a function space composed of square summable discrete-time signals, i.e.
    $$
    l^2(\mathbb{Z})=\left{x=\left.\left{x_l\right}_{l=-\infty}^{\infty}\left|\sum_{l=-\infty}^{\infty}\right| x_l\right|^2<\infty\right} .
    $$

计算机代写|深度学习代写deep learning代考|Basis and Frames

The set of vectors $\left{x_1, \cdots, x_k\right}$ is said to be linearly independent if a linear combination denoted by
$$
\alpha_1 \boldsymbol{x}_1+\alpha_2 \boldsymbol{x}_2+\cdots+\alpha_k \boldsymbol{x}_k=\mathbf{0}
$$ implies that
$$
\alpha_i=0, \quad i=1, \cdots, k .
$$
The set of all vectors reachable by taking linear combinations of vectors in a set $\mathcal{S}$ is called the span of $\mathcal{S}$. For example, if $\mathcal{S}=\left{\boldsymbol{x}i\right}{i=1}^k$, then we have
$$
\operatorname{span}(\mathcal{S})=\left{\sum_{i=1}^k \alpha_i \boldsymbol{x}i, \forall \alpha_i \in \mathbb{R}\right} . $$ A set $\mathcal{B}=\left{\boldsymbol{b}_i\right}{i=1}^m$ of elements (vectors) in a vector space $\mathcal{V}$ is called a basis, if every element of $\mathcal{V}$ may be written in a unique way as a linear combination of elements of $\mathcal{B}$, that is, for all $\boldsymbol{f} \in \mathcal{V}$, there exists unique coefficients $\left{c_i\right}$ such that
$$
\boldsymbol{f}=\sum_{i=1}^m c_i \boldsymbol{b}_i .
$$
A set $\mathcal{B}$ is a basis of $\mathcal{V}$ if and only if every element of $\mathcal{B}$ is linearly independent and $\operatorname{span}(\mathcal{B})=\mathcal{V}$. The coefficients of this linear combination are referred to as expansion coefficients, or coordinates on $\mathcal{B}$ of the vector. The elements of a basis are called basis vectors. In general, for $m$-dimensional spaces, the number of basis vectors is $m$. For example, when $\mathcal{V}=\mathbb{R}^2$, the following two sets are some examples of a basis:
$$
\left{\left[\begin{array}{l}
1 \
0
\end{array}\right],\left[\begin{array}{l}
0 \
1
\end{array}\right]\right}, \quad\left{\left[\begin{array}{l}
1 \
1
\end{array}\right],\left[\begin{array}{c}
1 \
-1
\end{array}\right]\right} .
$$

计算机代写|深度学习代写deep learning代考|COMP5329

深度学习代写

计算机代写|深度学习代写deep learning代考|Banach and Hilbert Space

内积空间被定义为具有内积的向量空间。范数空间是在其上定义范数的向量空间。内积空间始 终是范数空间,因为我们可以将范数定义为 $|f|=\sqrt{\langle\boldsymbol{f}, \boldsymbol{f}\rangle}$ ,通常称为诱导范数。在赋范空 间的各种形式中,最有用的赋范空间之一是 Banach 空间。
定义 1.7 Banach 空间是完备赋范空间。
在这里,从优化的角度来看,“完整性”尤为重要,因为大多数优化算法都是以迭代的方式实现 的,因此迭代方法的最终解应该属于底层空间 $\mathcal{H}$. 回想一下,收敛性是度量空间的一个特性。 因此,Banach 空间可以看作是一个向量空间,具有度量空间的理想性质。同样,我们可以定 以希尔伯特空间。
定义 $1.8$ 希尔伯特空间是一个完备的内积空间。
由于归纳范数,我们很容易看出希尔伯特空间也是巴拿赫空间。向量空间、赋范空间、内积空 间、Banach空间和Hilbert空间之间的包含关系如图1.1所示。
如图 $1.1$ 所示,希尔伯特空间具有内积、范数、完备性等许多很好的数学结构,因此在机器学 刃文献中得到广泛应用。以下是 Hilbert 空间的著名示例:

  • $l^2(\mathbb{Z})$ : 由平方和离散时间信号组成的函数空间。

计算机代写|深度学习代写deep learning代考|Basis and Frames

$$
\alpha_1 \boldsymbol{x}1+\alpha_2 \boldsymbol{x}_2+\cdots+\alpha_k \boldsymbol{x}_k=\mathbf{0} $$ 暗示 $$ \alpha_i=0, \quad i=1, \cdots, k . $$ 通过对集合中的向量进行线性组合可达到的所有向量的集合 $\mathcal{S}$ 称为跨度 $\mathcal{S}$. 例如,如果 一套 $\backslash m a t h c a l{B}=\backslash$ eft{ ${$ boldsymbol{b}__iright}${{=1} \wedge m$ 向量空间中的元素 (向量) V称为基础, 如果每个元素 $\mathcal{V}$ 可以以独特的方式写成元素的线性组合 $\mathcal{B}$ ,也就是说,对于所有 $\boldsymbol{f} \in \mathcal{V}$ ,存在 唯一系数 $\mid$ 左{C_i 右 $}$ 这样 $$ \boldsymbol{f}=\sum{i=1}^m c_i \boldsymbol{b}_i .
$$
一套 $\mathcal{B}$ 是一个基础 $\mathcal{V}$ 当且仅当 $\mathcal{B}$ 是线性独立的并且 $\operatorname{span}(\mathcal{B})=\mathcal{V}$. 这种线性组合的系数称为展 开系数,或坐标 $\mathcal{B}$ 的向量。基的元素称为基向量。一般来说,对于 $m$ 维空间,基向量的数量是 $m$. 例如,当 $\mathcal{V}=\mathbb{R}^2$ ,以下两组是一个基础的一些例子。

计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|COMP30027

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP30027

计算机代写|深度学习代写deep learning代考|Metric Space

A metric space $(X, d)$ is a set $\mathcal{X}$ together with a metric $d$ on the set. Here, a metric is a function that defines a concept of distance between any two members of the set, which is formally defined as follows.

Definition 1.1 (Metric) A metric on a set $\mathcal{X}$ is a function called the distance $d$ : $\mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}{+}$, where $\mathbb{R}{+}$is the set of non-negative real numbers. For all $x, y, z \in \mathcal{X}$, this function is required to satisfy the following conditions:

  1. $d(x, y) \geq 0$ (non-negativity).
  2. $d(x, y)=0$ if and only if $x=y$.
  3. $d(x, y)=d(y, x)$ (symmetry).
  4. $d(x, z) \leq d(x, y)+d(y, z)$ (triangle inequality).
    A metric on a space induces topological properties like open and closed sets, which lead to the study of more abstract topological spaces. Specifically, about any point $x$ in a metric space $\mathcal{X}$, we define the open ball of radius $r>0$ about $x$ as the set
    $$
    B_r(x)={y \in \mathcal{X}: d(x, y)0$ such that $B_r(x)$ is contained in $U$. The complement of an open set is called closed.

A sequence $\left(x_n\right)$ in a metric space $\mathcal{X}$ is said to converge to the limit $x \in \mathcal{X}$ if and only if for every $\varepsilon>0$, there exists a natural number $N$ such that $d\left(x_n, x\right)<\varepsilon$ for all $n>N$. A subset $\mathcal{S}$ of the metric space $X$ is closed if and only if every sequence in $\mathcal{S}$ that converges to a limit in $X$ has its limit in $\mathcal{S}$. In addition, a sequence of elements $\left(x_n\right)$ is a Cauchy sequence if and only if for every $\varepsilon>0$, there is some $N \geq 1$ such that
$$
d\left(x_n, x_m\right)<\varepsilon, \quad \forall m, n \geq N .
$$
We are now ready to define the important concepts in metric spaces.

计算机代写|深度学习代写deep learning代考|Vector Space

A vector space $\mathcal{V}$ is a set that is closed under finite vector addition and scalar multiplication. In machine learning applications, the scalars are usually members of real or complex values, in which case $\mathcal{V}$ is called a vector space over real numbers, or complex numbers.

For example, the Euclidean $n$-space $\mathbb{R}^n$ is called a real vector space, and $\mathbb{C}^n$ is called a complex vector space. In the $n$-dimensional Euclidean space $\mathbb{R}^n$, every element is represented by a list of $n$ real numbers, addition is component-wise, and scalar multiplication is multiplication on each term separately. More specifically, we define a column $n$-real-valued vector $x$ to be an array of $n$ real numbers, denoted by
$$
\boldsymbol{x}=\left[\begin{array}{c}
x_1 \
x_2 \
\vdots \
x_n
\end{array}\right]=\left[\begin{array}{llll}
x_1 & x_2 & \cdots & x_n
\end{array}\right]^{\top} \in \mathbb{R}^n,
$$

where the superscript ${ }^{\top}$ denotes the adjoint. Note that for a real vector, the adjoint is just a transpose. Then, the sum of the two vectors $\boldsymbol{x}$ and $\boldsymbol{y}$, denoted by $\boldsymbol{x}+\boldsymbol{y}$, is defined by
$$
\boldsymbol{x}+\boldsymbol{y}=\left[x_1+y_1 x_2+y_2 \cdots x_n+y_n\right]^{\top} .
$$
Similarly, the scalar multiplication with a scalar $\alpha \in \mathbb{R}$ is defined by
$$
\alpha \boldsymbol{x}=\left[\alpha x_1 \alpha x_2 \cdots \alpha x_n\right]^{\top} .
$$
In addition, we formally define the inner product and the norm in a vector space as follows.

Definition $1.5$ (Inner Product) Let $\mathcal{V}$ be a vector space over $\mathbb{R}$. A function $(\cdot, \cdot) \cdot \mathcal{V}: \mathcal{V} \times \mathcal{V} \mapsto \mathbb{R}$ is an inner product on $\mathcal{V}$ if:

  1. Linear: $\left\langle\alpha_1 \boldsymbol{f}1+\alpha_2 \boldsymbol{f}_2, \boldsymbol{g}\right\rangle{\mathcal{V}}=\alpha_1\left\langle\boldsymbol{f}1, \boldsymbol{g}\right\rangle{\mathcal{V}}+\alpha_2\left\langle\boldsymbol{f}2, \boldsymbol{g}\right\rangle{\mathcal{V}}$ for all $\alpha_1, \alpha_2 \in \mathbb{R}$ and $f_1, f_2, g \in \mathcal{V}$
  2. Symmetric: $\langle f, g\rangle_{\mathcal{V}}=\langle g, f\rangle_{\mathcal{V}}$.
  3. $\langle\boldsymbol{f}, \boldsymbol{f}\rangle_{\mathcal{V}} \geq 0$ and $\langle\boldsymbol{f}, \boldsymbol{f}\rangle_{\mathcal{V}}=0$ if and only if $\boldsymbol{f}=\mathbf{0}$.
    If the underlying vector space $\mathcal{V}$ is obvious, we usually represent the inner product without the subscript $\mathcal{V}$, i.e. $\langle\boldsymbol{f}, \boldsymbol{g}\rangle$. For example, the inner product of the two vectors $f, g \in \mathbb{R}^n$ is defined as
    $$
    \langle\boldsymbol{f}, \boldsymbol{g}\rangle=\sum_{i=1}^n f_i g_i=\boldsymbol{f}^{\top} \boldsymbol{g} .
    $$
    Two nonzero vectors $\boldsymbol{x}, \boldsymbol{y}$ are called orthogonal when
    $$
    \langle\boldsymbol{x}, \boldsymbol{y}\rangle=0,
    $$
计算机代写|深度学习代写deep learning代考|COMP30027

深度学习代写

计算机代写|深度学习代写deep learning代考|Metric Space

度量空间 $(X, d)$ 是一组 $\mathcal{X}$ 连同一个指标 $d$ 在片场。这里,度量是定义集合中任意两个成员之间 的距离概念的函数,正式定义如下。
定义 $1.1$ (度量) 集合上的度量 $\mathcal{X}$ 是一个叫做距离的函数 $d$ : \$Imathcal{X} Itimes Imathcal{X} Imapsto $\backslash$ mathbb ${R}{+}$, where 1 mathbb ${R}{+}$
isthesetofnon – negativerealnumbers. Forall $\mathrm{x}, \mathrm{y}, \mathrm{z} \backslash$ in $\backslash m a t h c a \mid{X} \$$, 这个函数需 要满足以下条件:

  1. $d(x, y) \geq 0$ (非负性) 。
  2. $d(x, y)=0$ 当且仅当 $x=y$.
  3. $d(x, y)=d(y, x)$ (对称) 。
  4. $d(x, z) \leq d(x, y)+d(y, z)$ (三角不等式) 。
    空间上的度量会引|发诸如开集和闭集之类的拓扑属性,从而导致对更抽象的拓扑空间的 研究。具体来说,关于任何一点 $x$ 在度量空间 $\mathcal{X}$, 我们定义半径为开球 $r>0$ 关于 $x$ 作为 集合
    $\$ \$$
    B_ $r(\mathrm{x})={y \backslash$ in Imathcal{X $} \mathrm{d}(\mathrm{x}, \mathrm{y})$ osuchthat $\mathrm{B} r(\mathrm{x})$ iscontainedin 美元。开集的补集 称为闭集。
    一个序列 $\left(x_n\right)$ 在度量空间 $\mathcal{X}$ 据说收敛到极限 $x \in \mathcal{X}$ 当且仅当对于每一个 $\varepsilon>0$, 存在一个自然 数 $N$ 这样 $d\left(x_n, x\right)<\varepsilon$ 对全部 $n>N$. 一个子集 $\mathcal{S}$ 度量空间的 $X$ 关闭当且仅当每个序列在 $\mathcal{S}$ 收㪉到一个极限 $X$ 有它的极限 $\mathcal{S}$. 此外,元素序列 $\left(x_n\right)$ 是柯西序列当且仅当对于每个 $\varepsilon>0$ , 有一些 $N \geq 1$ 这样
    $$
    d\left(x_n, x_m\right)<\varepsilon, \quad \forall m, n \geq N .
    $$
    我们现在准备定义度量空间中的重要概念。

计算机代写|深度学习代写deep learning代考|Vector Space

向量空间 $\mathcal{V}$ 是在有限向量加法和标量乘法下封闭的集合。在机器学习应用中,标量通常是实数 或复数的成员,在这种情况下V称为实数或复数上的向量空间。
例如,欧几里德 $n$-空间 $\mathbb{R}^n$ 称为实向量空间,并且 $\mathbb{C}^n$ 称为复向量空间。在里面 $n$-维欧几里德空 间 $\mathbb{R}^n$ ,每个元素都由一个列表表示 $n$ 实数,加法是逐分量的,标量乘法是分别对每一项进行 乘去。更具体地说,我们定义一列 $n$-实值向量 $x$ 是一个数组 $n$ 实数,表示为
$$
\boldsymbol{x}=\left[\begin{array}{lll}
x_1 & x_2 & \vdots \
x_n
\end{array}\right]=\left[\begin{array}{llll}
x_1 & x_2 & \cdots & x_n
\end{array}\right]^{\top} \in \mathbb{R}^n,
$$
上标在哪里 ${ }^{\top}$ 表示伴随。请注意,对于实向量,伴随只是一个转置。然后,两个向量的总和 $\boldsymbol{x}$ 和 $\boldsymbol{y}$, 表示为 $\boldsymbol{x}+\boldsymbol{y}$, 定义为
$$
\boldsymbol{x}+\boldsymbol{y}=\left[x_1+y_1 x_2+y_2 \cdots x_n+y_n\right]^{\top} .
$$
同样,标量与标量的乘法 $\alpha \in \mathbb{R}$ 由定义
$$
\alpha \boldsymbol{x}=\left[\alpha x_1 \alpha x_2 \cdots \alpha x_n\right]^{\top} .
$$
此外,我们正式定义向量空间中的内积和范数如下。
定义1.5 (内积) 令 $\mathcal{V}$ 是一个向量空间 $\mathbb{R}$. 一个功能 $(\cdot, \cdot) \cdot \mathcal{V}: \mathcal{V} \times \mathcal{V} \mapsto \mathbb{R}$ 是一个内积 $\mathcal{V}$ 如 果:

  1. 线性: $\$$ Meft 1 anglelalpha_1 $\mathrm{bboldsymbol}{f} 1+\mid a l p h a _2 ~ b$ boldsymbol${f} 2$, |boldsymbol{g}|right|rangle ${\backslash m a t h c a \mid{V}}$ forall $\backslash a l p h a _1$, Ialpha_2 $\backslash$ in $\backslash m a t h b b{R}$ andf_1, f_2,g in Imathcal{V}\$
  2. 对称的: $\langle f, g\rangle_{\mathcal{V}}=\langle g, f\rangle_{\mathcal{V}}$.
  3. $\langle\boldsymbol{f}, \boldsymbol{f}\rangle_{\mathcal{V}} \geq 0$ 和 $\langle\boldsymbol{f}, \boldsymbol{f}\rangle_{\mathcal{V}}=0$ 当且仅当 $\boldsymbol{f}=\mathbf{0}$. 如果底层向量空间 $\mathcal{V}$ 很明显,我们通常表示不带下标的内积 $\mathcal{V} , \mathrm{IE}\langle\boldsymbol{f}, \boldsymbol{g}\rangle$. 例如,两个向 量的内积 $f, g \in \mathbb{R}^n$ 定义为
    $$
    \langle\boldsymbol{f}, \boldsymbol{g}\rangle=\sum_{i=1}^n f_i g_i=\boldsymbol{f}^{\top} \boldsymbol{g} .
    $$
    两个非零向量 $\boldsymbol{x}, \boldsymbol{y}$ 被称为正交时
    $$
    \langle\boldsymbol{x}, \boldsymbol{y}\rangle=0,
    $$
计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|STAT3007

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|STAT3007

计算机代写|深度学习代写deep learning代考|Some Background on Darwin and Evolution

Charles Darwin formed his initial concepts and theory of natural selection based on his voyages around the continent of South America. From Darwin’s work, our thirst for understanding evolution drove our exploration into how life on earth shares and passes on selective traits using genetics.

Taking 2 decades to write in 1859 , Darwin published his most famous work “On the Origin of Species” a seminal work that uprooted the natural sciences. His work challenged the idea of an intelligent creator and formed the basis for much of our natural and biological sciences to this day. The following excerpt is from that book and describes the theory of natural selection in Darwin’s words:

“One general law, leading to the advancement of all organic beings, namely, multiply, vary, let the strongest live and the weakest die.”
Charles Darwin – On the Origin of Species
From this law Darwin constructed his theory of evolution and the need for life to survive by passing on more successful traits to offspring. While he didn’t understand the process of cellular mitosis and genetics, he did observe the selective passing of traits in multiple species. It wasn’t until 1865 that a German monk named Gregor Mendel would outline his theories of gene inheritance by observing 7 traits in pea plants.

Mendel used the term factors or traits to describe what we now understand as genes. It took almost another 3 decades before his work was recognized and the field of genetics was born. Since then, our understanding of genetics has grown from gene therapy and hacking to solving complex problems and evolving code.

计算机代写|深度学习代写deep learning代考|Applying Crossover – Reproduction

After the parents are selected, we can move on to applying crossover or essentially the reproduction process of creating offspring. Not unlike the cellular division process in biology, we simulate the combining of chromosomes through a crossover operation. Where each parent shares a slice of its gene sequence and combines it with the other parents.

Figure $2.9$ shows the crossover operation being applied using 2 parents. In crossover, a point is selected either randomly or using some strategy along the gene sequence. It is at this point the gene sequences of the parents are split and then recombined. In this simple example, we don’t care about what percentage of the gene sequence is shared with each offspring.

For more complex problems requiring thousands or millions of generations we may prefer more balanced crossover strategies rather than this random selection method. We will further cover the strategies we can use to define this operation later in the chapter.

In code the crossover operation first makes a copy of themselves to create the raw children. Then we randomly determine if there is a crossover operation using the variable crossover_rate. If there is a crossover operation then a random point along the gene sequence is generated as the crossover point. This point is used to split the gene sequence and then the children are generated by combining the gene sequences of both parents.

There are several variations and ways in which crossover may be applied to the gene sequence. For this example, selecting a random crossover point and then simply combining the sequences at the split point works. However, in some cases, particular gene sequences may or may not make sense in which case we may need other methods to preserve gene sequences.

计算机代写|深度学习代写deep learning代考|STAT3007

深度学习代写

计算机代写|深度学习代写deep learning代考|Some Background on Darwin and Evolution

查尔斯达尔文根据他在南美洲大陆的航行形成了他最初的自然选择概念和理论。从达尔文的工作中,我们对理解进化的渴望驱使我们探索地球上的生命如何使用遗传学共享和传递选择性特征。

1859 年,达尔文花了 2 年的时间写作,发表了他最著名的著作《物种起源》,这是一部颠覆自然科学的开创性著作。他的工作挑战了智能创造者的想法,并构成了我们今天大部分自然科学和生物科学的基础。以下摘自那本书,用达尔文的话描述了自然选择理论:

“一个普遍的规律,导致所有有机生物的进步,即繁殖,变异,让最强者生存,让最弱者死亡。”
查尔斯·达尔文——论物种起源
达尔文根据这条定律构建了他的进化论以及生命通过将更成功的特征传给后代来生存的必要性。虽然他不了解细胞有丝分裂和遗传学的过程,但他确实观察到了多个物种性状的选择性传递。直到 1865 年,一位名叫格雷戈尔·孟德尔 (Gregor Mendel) 的德国僧侣才通过观察豌豆植物的 7 个性状,概述了他的基因遗传理论。

孟德尔使用术语因子或特征来描述我们现在所理解的基因。又过了将近 3 年,他的工作才得到认可,遗传学领域诞生了。从那时起,我们对遗传学的理解已经从基因治疗和黑客攻击发展到解决复杂问题和进化代码。

计算机代写|深度学习代写deep learning代考|Applying Crossover – Reproduction

选择父母后,我们可以继续应用交叉或本质上创造后代的繁殖过程。与生物学中的细胞分裂过程一样,我们通过交叉操作模拟染色体的组合。每个父母共享其基因序列的一部分并将其与其他父母结合。

数字2.9显示了使用 2 个父代应用的交叉操作。在交叉中,随机选择一个点或使用基因序列中的某种策略。正是在这一点上,父母的基因序列被分裂,然后重新组合。在这个简单的例子中,我们不关心每个后代共享基因序列的百分比。

对于需要数千或数百万代的更复杂的问题,我们可能更喜欢更平衡的交叉策略,而不是这种随机选择方法。我们将在本章后面进一步介绍可用于定义此操作的策略。

在代码中,交叉操作首先复制自己以创建原始子代。然后我们使用变量 crossover_rate 随机确定是否存在交叉操作。如果存在交叉操作,则沿着基因序列生成一个随机点作为交叉点。这个点用来分割基因序列,然后通过结合父母双方的基因序列生成孩子。

有多种变体和方式可以将交叉应用于基因序列。对于这个例子,选择一个随机的交叉点,然后简单地在分割点组合序列就可以了。然而,在某些情况下,特定的基因序列可能有意义也可能没有意义,在这种情况下我们可能需要其他方法来保存基因序列。

计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|COMP5329

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP5329

计算机代写|深度学习代写deep learning代考|Conway’s Game of Life on Google Collaboratory

In this next section we are going to explore the Game of Life by John Horton Conway. This simple cellular automation developed in 1970 is attributed to the birth of the computer simulation. While the rules of the simulation are simple the patterns and manifestations it can produce are an incredible testament to its eloquence.

This next exercise will also help us introduce Google Collaboratory or Colab as it is widely known and the term, we will refer to it by. Colab is an excellent platform for performing all forms of machine learning from evolutionary computation to deep learning. It is based on Jupyter notebooks so should be familiar to most Python developers with a notebook background. Furthermore, it is free and provides both CPU and GPU resources we will heavily use later.

  1. Begin the exercise by loading up the exercise
    EDL_2_1_Conways_Game_of_Life.ipynb in your browser. Please refer to appendix A to get details on how to load the code from the GitHub repository to Colab.
  2. After you open the notebook in Colab you will see several text and code cells. We won’t worry about any of the code in this exercise, just the steps on how to use Colab to execute the notebook and explore the results.
  3. Next, select the first code cell in the notebook and click the Run Cell button in the top left or type Ctrl+Enter or Cmd+Enter to run the cell. This will run the code and setup the show_video function to be use later. We employ this function to demonstrate a real-time visual output of the simulation.

计算机代写|深度学习代写deep learning代考|Life Simulation as Optimization

In this next scenario, we are going to use our previous simple example and elevate it to perform optimization of an attribute defined on the cells. There are many reasons we may develop simulations for all forms of discovery of behavior, optimization, or enlightenment. For most applications of evolutionary algorithms, our end goal will be to optimize a process, parameters, or structure.

For this next notebook, we extend the attributes in each cell from health to include a new parameter called strength. Our goal will be to optimize the cell strength of our entire population. Strength will be representative of any trait in an organism that makes it successful in its environment. That means in our simple example our goal will be to maximize strength across the entire population.

  1. Open the notebook example EDL_2_3_Simulating_Life_part2.ipynb in your browser. Check appendix $\mathrm{A}$ if you require assistance.
  2. We are using a useful real-time plotting library called LivelossPlot for several examples in this book. This library is intended for plotting training losses for machine and deep learning problems. So, the default graphs present terminology we would use in a DL problem but nonetheless, it will work perfectly fine for needs. The code below demonstrates installing the package and importing the PlotLosses class.
  3. The bulk of the code in this example is shared from the previous and as such we will just look at the differences. Starting with the first cell we can see a few changes in the functions that define the life simulation shown below. The big change here is that we now use the new strength parameter to derive the cell’s health.
  4. Likewise, the reproduction and death functions have been modified to not pick random cells to reproduce or die. Instead, the new functions determine if a cell reproduces or dies based on the health attribute. Notice the addition of 2 new parameters, reproduction bounds and death bounds. These new parameters control at what health level a cell can reproduce or when it should die.
计算机代写|深度学习代写deep learning代考|COMP5329

深度学习代写

计算机代写|深度学习代写deep learning代考|Conway’s Game of Life on Google Collaboratory

在下一节中,我们将探索 John Horton Conway 的生命游戏。1970 年开发的这种简单的细胞自动化归功于计算机模拟的诞生。虽然模拟的规则很简单,但它可以产生的模式和表现形式令人难以置信地证明了它的口才。

下一个练习还将帮助我们介绍 Google Collaboratory 或 Colab,因为它广为人知,我们将通过这个术语来引用它。Colab 是执行从进化计算到深度学习的各种形式的机器学习的绝佳平台。它基于 Jupyter 笔记本,因此大多数具有笔记本背景的 Python 开发人员应该很熟悉。此外,它是免费的,并提供我们稍后将大量使用的 CPU 和 GPU 资源。


  1. 通过在浏览器中加载练习 EDL_2_1_Conways_Game_of_Life.ipynb 来开始练习。请参阅附录 A 以获取有关如何将代码从 GitHub 存储库加载到 Colab 的详细信息。
  2. 在 Colab 中打开笔记本后,您将看到几个文本和代码单元格。我们不会担心本练习中的任何代码,只需关注有关如何使用 Colab 执行笔记本并探索结果的步骤。
  3. 接下来,选择笔记本中的第一个代码单元格,然后单击左上角的“运行单元格”按钮或键入 Ctrl+Enter 或 Cmd+Enter 来运行该单元格。这将运行代码并设置 show_video 函数以供稍后使用。我们使用此功能来演示模拟的实时视觉输出。

计算机代写|深度学习代写deep learning代考|Life Simulation as Optimization

在下一个场景中,我们将使用我们之前的简单示例并将其提升以执行对单元格上定义的属性的优化。我们可能会为各种形式的行为发现、优化或启发开发模拟,原因有很多。对于进化算法的大多数应用,我们的最终目标将是优化过程、参数或结构。

对于下一个笔记本,我们将每个单元格中的属性从 health 扩展为包括一个名为 strength 的新参数。我们的目标是优化我们整个人群的细胞强度。力量将代表有机体中使其在其环境中成功的任何特征。这意味着在我们的简单示例中,我们的目标将是最大化整个人口的力量。

  1. 在浏览器中打开笔记本示例 EDL_2_3_Simulating_Life_part2.ipynb。检查附录一种如果您需要帮助。
  2. 对于本书中的几个示例,我们使用了一个名为 LivelossPlot 的有用实时绘图库。该库旨在绘制机器和深度学习问题的训练损失。因此,默认图表提供了我们将在 DL 问题中使用的术语,但尽管如此,它仍然可以很好地满足需要。下面的代码演示了安装包和导入 PlotLosses 类。
  3. 此示例中的大部分代码与之前的代码相同,因此我们将只查看不同之处。从第一个单元格开始,我们可以看到定义如下所示的生命模拟的函数发生了一些变化。这里最大的变化是我们现在使用新的强度参数来推导细胞的健康状况。
  4. 同样,繁殖和死亡功能已被修改为不选择随机细胞进行繁殖或死亡。相反,新函数根据健康属性确定细胞是繁殖还是死亡。注意添加了 2 个新参数,即繁殖界限和死亡界限。这些新参数控制细胞可以在什么健康水平下繁殖或何时死亡。
计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|COMP30027

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP30027

计算机代写|深度学习代写deep learning代考|Optimizing the Network Architecture

As a network becomes more sophisticated with the addition of layers or various node types it puts direct consequences on how the loss/error is backpropagated through it. Figure $1.2$ demonstrates the more common problems we typically encounter when growing more complex and larger DL systems.

Larger networks mean the amount of loss needs to be divided into smaller and smaller components that eventually approach or get close to zero. When these loss components or gradients approach zero we call this a vanishing gradient problem often associated with deep networks. Conversely, components may also get exceptionally large by successively passing through layers that magnify those input signals. Resulting in gradient components getting large or what’s called exploding gradients.

Both gradient problems can be resolved using various techniques like normalizing input data and again through the layers. Special types of layer functions called normalization and dropout are shown in Figure 1.3. These techniques also add to the computational complexity and requirements for the network. They may also overtly smooth over important and characteristic features in data. Thus, requiring larger and more diverse training datasets to develop good network performance.

Normalization may solve the vanishing/exploding gradient problems of deep networks but as models grow these manifest other concerns. As networks grow, they increase the ability to digest larger sets of input, bigger images for example. Yet, this also may cause a side effect known as network memorization which can occur again if the input training set is too small. This occurs because the network is so large that it may start to memorize sets of input chunks or potentially whole images or sets of text.

The cutting-edge DL models that you may have heard about like the GPT-3, a natural language processor from OpenAI, suffer in part from memorization. This is even after feeding billions of documents representing multiple forms of text into such models. Even with such diverse and massive training sets models like GPT-3 have been shown to replay whole paragraphs of remembered text. Which may be an effective feature for a database that doesn’t fit well into a DL model.

There have been workarounds developed for the memorization problem called dropout, a process by which a certain percentage of the nodes within network layers may be deactivated through each training pass. The result of turning off/on nodes within each pass creates a more general network. Yet at a cost of still requiring the network to now be 100 $200 \%$ larger.

计算机代写|深度学习代写deep learning代考|What is Automated Machine Learning, AutoML?

AutoML or automated machine learning is a tool or set of tools used to automate and enhance the building of $\mathrm{AI} / \mathrm{ML}$. It is not a specific technology but a collection of methods and strategies in which evolutionary algorithms or evolutionary optimization methods would be considered a subset. It is a tool that can be used throughout the $\mathrm{AI} / \mathrm{ML}$ workflow as depicted in Figure 1.3.

Figure $1.1$ depicts the typical AI/ML workflow for building a good model used later for confident inference of new data. This workflow is often undertaken manually by various oractitioners of AI/ML but there have been various attempts to automate all steps. Below is a summary of each of these steps in more detail and how they may be automated with AML:

expensive. In general, preparing data Automating this task can dramatically increase the performance of data workflows critical to fine-tuning complex models. AutoML online services often assume that the user has already prepared and cleaned data as required by most ML models. With evolutionary methods, there are several ways to automate the preparation of data and while this task is not specific to EDL, we will cover it in later chapters.

  • Feature Engineering – is the process of extracting relevant features in data using prior domain knowledge. With experts picking and choosing relevant features based on their intuition and experience. Since domain experts are expensive and opinionated, automating this task reduces costs and improves standardization. Depending on the AutoML tool feature engineering may be included in the process.
  • Model Selection – as AI/ML has advanced there are now hundreds of various model types that could be used to solve similar problems. Often data scientists will spend days or weeks just selecting a group of models to further evaluate. Automating this process speeds up model development and helps the data scientist affirm they are using the right model for the job. A good AutoML tool may choose from dozens or hundreds of models including DL variations or model ensembles.
  • Model Architecture – depending on the area of $\mathrm{AI} / \mathrm{ML}$ and deep learning, defining the right model architecture is often critical. Getting this right in an automated way alleviates countless hours of tuning architecture and rerunning models. Depending on the implementation some AutoML systems may vary model architecture, but this is typically limited to well-known variations.
  • Hyperparameter Optimization – the process of fine-tuning a model’s hyperparameters can be time-consuming and error-prone. To overcome this, many practitioners rely on intuition and previous experience. While this has been successful in the past, increasing model complexity now makes this task untenable. By automating HP tuning we not only alleviate work from the builders but also uncover potential flaws in the model selection or architecture.
  • Validation Selection – there are many options for evaluating the performance of a model. From deciding on how much data to use for training and testing to visualizing the output performance of a model. Automating the validation of a model provides a robust means to recharacterize model performance when data changes and makes a model more explainable long term. For online AutoML services, this is a key strength that provides a compelling reason to employ such tools.
计算机代写|深度学习代写deep learning代考|COMP30027

深度学习代写

计算机代写|深度学习代写deep learning代考|Optimizing the Network Architecture

随着网络通过添加层或各种节点类型变得更加复杂,它直接影响了损失/错误如何通过它反向传播。数字1.2展示了我们在开发更复杂和更大的 DL 系统时通常会遇到的更常见的问题。

更大的网络意味着损失量需要被分成越来越小的部分,最终接近或接近于零。当这些损失分量或梯度接近零时,我们称其为通常与深度网络相关的梯度消失问题。相反,组件也可能通过连续穿过放大这些输入信号的层而变得异常大。导致梯度分量变大或所谓的梯度爆炸。

这两个梯度问题都可以使用各种技术来解决,例如标准化输入数据并再次通过层。图 1.3 显示了称为归一化和丢弃的特殊类型的层函数。这些技术还增加了网络的计算复杂性和要求。他们也可能公然掩盖数据中的重要特征和特征。因此,需要更大、更多样化的训练数据集来开发良好的网络性能。

归一化可以解决深层网络的消失/爆炸梯度问题,但随着模型的增长,这些问题会显现出其他问题。随着网络的发展,它们增加了消化更大输入集的能力,例如更大的图像。然而,这也可能导致称为网络记忆的副作用,如果输入训练集太小,这种副作用可能会再次发生。发生这种情况是因为网络太大以至于它可能开始记住输入块集或可能的整个图像或文本集。

您可能听说过的尖端 DL 模型,例如来自 OpenAI 的自然语言处理器 GPT-3,在一定程度上会受到记忆的影响。这甚至是在将代表多种文本形式的数十亿文档输入此类模型之后。即使有如此多样化和庞大的训练集,像 GPT-3 这样的模型也被证明可以重播记忆文本的整个段落。对于不太适合 DL 模型的数据库来说,这可能是一个有效的特性。

已经针对称为 dropout 的记忆问题开发了变通方法,通过该过程,网络层中的一定比例的节点可能会在每次训练过程中停用。在每次传递中关闭/打开节点的结果创建了一个更通用的网络。然而,代价是仍然要求网络现在是 100200%更大。

计算机代写|深度学习代写deep learning代考|What is Automated Machine Learning, AutoML?

AutoML 或自动化机器学习是一种工具或一组工具,用于自动化和增强构建一种我/米大号. 它不是一种特定的技术,而是一种方法和策略的集合,其中进化算法或进化优化方法将被视为一个子集。它是一个可以在整个过程中使用的工具一种我/米大号工作流程如图 1.3 所示。

数字1.1描述了典型的 AI/ML 工作流程,用于构建一个良好的模型,稍后用于对新数据进行自信的推理。此工作流通常由 AI/ML 的各种执行者手动执行,但已经有各种尝试使所有步骤自动化。下面更详细地总结了每个步骤,以及如何使用 AML 将它们自动化:

昂贵的。一般来说,准备数据自动化此任务可以显着提高对微调复杂模型至关重要的数据工作流的性能。AutoML 在线服务通常假设用户已经按照大多数 ML 模型的要求准备和清理了数据。使用进化方法,有几种方法可以自动准备数据,虽然这个任务不是 EDL 特有的,但我们将在后面的章节中介绍它。

  • 特征工程——是使用先验领域知识从数据中提取相关特征的过程。专家根据他们的直觉和经验挑选和选择相关特征。由于领域专家的费用昂贵且固执己见,因此自动化此任务可降低成本并提高标准化程度。根据 AutoML 工具的不同,特征工程可能包含在该过程中。
  • 模型选择——随着 AI/ML 的进步,现在有数百种不同的模型类型可用于解决类似的问题。数据科学家通常会花费数天或数周的时间来选择一组模型进行进一步评估。自动化此过程可加快模型开发并帮助数据科学家确认他们正在使用正确的模型来完成工作。一个好的 AutoML 工具可能会从数十个或数百个模型中进行选择,包括 DL 变体或模型集成。
  • 模型架构——取决于区域一种我/米大号和深度学习,定义正确的模型架构通常是至关重要的。以自动化方式正确完成此操作可以减少无数小时的架构调整和重新运行模型。根据实现的不同,一些 AutoML 系统可能会改变模型架构,但这通常仅限于众所周知的变体。
  • 超参数优化——微调模型超参数的过程可能既耗时又容易出错。为了克服这个问题,许多从业者依靠直觉和以往的经验。虽然这在过去是成功的,但现在增加的模型复杂性使这项任务变得难以维持。通过自动化 HP 调整,我们不仅可以减轻构建者的工作量,还可以发现模型选择或架构中的潜在缺陷。
  • 验证选择——有许多选项可用于评估模型的性能。从决定用于训练和测试的数据量到可视化模型的输出性能。自动验证模型提供了一种强大的方法,可以在数据发生变化时重新表征模型性能,并使模型在长期内更易于解释。对于在线 AutoML 服务,这是一个关键优势,它提供了使用此类工具的令人信服的理由。
计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|神经网络代写neural networks代考|NIT6004

如果你也在 怎样代写神经网络neural networks这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

神经网络,也被称为人工神经网络(ANN)或模拟神经网络(SNN),是机器学习的一个子集,是深度学习算法的核心。它们的名称和结构受到人脑的启发,模仿了生物神经元相互之间的信号方式。

statistics-lab™ 为您的留学生涯保驾护航 在代写神经网络neural networks方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写神经网络neural networks代写方面经验极为丰富,各种代写神经网络neural networks相关的作业也就用不着说。

我们提供的神经网络neural networks及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|神经网络代写neural networks代考|NIT6004

计算机代写|神经网络代写neural networks代考|Traditional Graph Embedding

Traditional graph embedding methods are originally studied as dimension reduction techniques. A graph is usually constructed from a feature represented data set, like image data set. As mentioned before, graph embedding usually has two goals, i.e. reconstructing original graph structures and support graph inference. The objective functions of traditional graph embedding methods mainly target the goal of graph reconstruction.

Specifically, Tenenbaum et al (2000) first constructs a neighborhood graph $G$ using connectivity algorithms such as $K$ nearest neighbors (KNN). Then based on $G$, the shortest path between different data can be computed. Consequently, for all the $N$ data entries in the data set, we have the matrix of graph distances. Finally, the classical multidimensional scaling (MDS) method is applied to the matrix to obtain the coordinate vectors. The representations learned by Isomap approximately preserve the geodesic distances of the entry pairs in the low-dimensional space. The key problem of Isomap is its high complexity due to the computing of pair-wise shortest pathes. Locally linear embedding (LLE) (Roweis and Saul, 2000) is proposed to eliminate the need to estimate the pairwise distances between widely separated entries. LLE assumes that each entry and its neighbors lie on or close to a locally linear patch of a mainfold. To characterize the local geometry, each entry can be reconstructed from its neighbors. Finally, in the low-dimensional space, LLE constructs a neighborhood-preserving mapping based on locally linear reconstruction. Laplacian eigenmaps (LE) (Belkin and Niyogi, 2002) also begins with constructing a graph using $\varepsilon$-neighborhoods or $\mathrm{K}$ nearest neighbors. Then the heat kernel (Berline et al, 2003) is utilized to choose the weight of two nodes in the graph. F1nally, the node representations can be obtained by based on the Laplacian matrix regularization. Furthermore, the locality preserving projection (LPP) (Berline et al, 2003), a linear approximation of the nonlinear LE, is proposed.

计算机代写|神经网络代写neural networks代考|Structure Preserving Graph Representation Learning

Graph structures can be categorized into different groups that present at different granularities. The commonly exploited graph structures in graph representation learning include neighborhood structure, high-order node proximity and graph communities.

How to define the neighborhood structure in a graph is the first challenge. Based on the discovery that the distribution of nodes appearing in short random walks is similar to the distribution of words in natural language, DeepWalk (Perozzi et al, 2014) employs the random walks to capture the neighborhood structure. Then for each walk sequence generated by random walks, following Skip-Gram, DeepWalk aims to maximize the probability of the neighbors of a node in a walk sequence. Node2vec defines a flexible notion of a node’s graph neighborhood and designs a second order random walks strategy to sample the neighborhood nodes, which can smoothly interpolate between breadth-first sampling (BFS) and depth-first sampling (DFS). Besides the neighborhood structure, LINE (Tang et al, 2015b) is proposed for large scale network embedding. which can preserve the first and second order proximities. The first order proximity is the observed pairwise proximity between two nodes. The second order proximity is determined by the similarity of the “contexts” (neighbors) of two nodes. Both are important in measuring the relationships beetween two nodess. Essentially, LINE is based on the shallow model, consequently, the representation ability is limited. SDNE (Wang et al, 2016) proposes a deep model for network embedding, which also aims at capturing the first and second order proximites. SDNE uses the deep auto-encoder architecture with multiple non-linear layers to preserve the second order proximity. To preserve the first-order proximity, the idea of Laplacian eigenmaps (Belkin and Niyogi, 2002) is adopted. Wang et al (2017g) propose a modularized nonnegative matrix factorization (M-NMF) model for graph representation learning, which aims to preserve both the microscopic structure, i.e., the first-order and second-order proximities of nodes, and the mesoscopic community structure (Girvan and Newman, 2002).

计算机代写|神经网络代写neural networks代考|NIT6004

神经网络代写

计算机代写|神经网络代写neural networks代考|Traditional Graph Embedding

传统的图嵌入方法最初是作为降维技术来研究的。图形通常由特征表示的数据集(如图像数据集)构建。如前所述,图嵌入通常有两个目标,即重建原始图结构和支持图推理。传统图嵌入方法的目标函数主要针对图重建的目标。

具体来说,Tenenbaum et al (2000) 首先构建了一个邻域图G使用连接算法,例如ķ最近邻(KNN)。然后根据G,可以计算出不同数据之间的最短路径。因此,对于所有ñ数据集中的数据条目,我们有图距离矩阵。最后,将经典的多维缩放(MDS)方法应用于矩阵以获得坐标向量。Isomap 学习的表示近似地保留了低维空间中条目对的测地线距离。Isomap 的关键问题是由于计算成对最短路径而导致的高复杂性。提出了局部线性嵌入 (LLE) (Roweis 和 Saul, 2000),以消除估计广泛分离的条目之间的成对距离的需要。LLE 假设每个条目及其邻居都位于或靠近主折叠的局部线性补丁。为了表征局部几何,每个条目都可以从它的邻居中重建。最后,在低维空间中,LLE 构建基于局部线性重建的邻域保留映射。拉普拉斯特征图 (LE) (Belkin and Niyogi, 2002) 也是从使用e- 社区或ķ最近的邻居。然后利用热核 (Berline et al, 2003) 来选择图中两个节点的权重。最后,节点表示可以通过基于拉普拉斯矩阵正则化得到。此外,提出了局部保持投影 (LPP) (Berline et al, 2003),它是非线性 LE 的线性近似。

计算机代写|神经网络代写neural networks代考|Structure Preserving Graph Representation Learning

图结构可以分为以不同粒度呈现的不同组。图表示学习中常用的图结构包括邻域结构、高阶节点邻近度和图社区。

如何在图中定义邻域结构是第一个挑战。基于在短随机游走中出现的节点分布与自然语言中的单词分布相似的发现,DeepWalk (Perozzi et al, 2014) 采用随机游走来捕获邻域结构。然后对于随机游走生成的每个游走序列,按照 Skip-Gram,DeepWalk 旨在最大化游走序列中节点的邻居的概率。Node2vec 定义了一个灵活的节点图邻域概念,并设计了一种二阶随机游走策略来对邻域节点进行采样,该策略可以在广度优先采样 (BFS) 和深度优先采样 (DFS) 之间进行平滑插值。除了邻域结构外,还提出了 LINE (Tang et al, 2015b) 用于大规模网络嵌入。它可以保留一阶和二阶近似。一阶接近度是观察到的两个节点之间的成对接近度。二阶接近度由两个节点的“上下文”(邻居)的相似性决定。两者对于测量两个节点之间的关系都很重要。LINE本质上是基于浅层模型的,因此表示能力有限。SDNE (Wang et al, 2016) 提出了一种用于网络嵌入的深度模型,该模型还旨在捕获一阶和二阶近似值。SDNE 使用具有多个非线性层的深度自动编码器架构来保持二阶接近度。为了保持一阶接近,采用了拉普拉斯特征图的思想(Belkin 和 Niyogi,2002)。

计算机代写|神经网络代写neural networks代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写