### 物理代写|宇宙学代写cosmology代考| Special relativity — Minkowski geometry

statistics-lab™ 为您的留学生涯保驾护航 在代写宇宙学cosmology方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写宇宙学cosmology代写方面经验极为丰富，各种代写宇宙学cosmology相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|宇宙学代写cosmology代考|Geometry

The simplest example of a Riemannian geometry is Minkowski flat space-time. The basic geometric invariant in this space is the interval between two arbitrary points – events. There is a class of preferable coordinates (the Minkowski coordinates) $x^{\mu}$, and their each possible choice corresponds to a certain inertial reference frame (IRF). The summed force applied to a body at rest in a certain IRF is equal to zero, or, in other words, such a body moves by inertia, uniformly and straightly with respect to any other IRF. In any IRF, the squared four-dimensional “distance” (interval) between the events $1\left[x_{1}^{\mu}=\right.$ $\left.\left(c t_{1}, \vec{x}{1}\right)\right]$ and $2\left[x{2}^{\mu}=\left(c t_{2}, \vec{x}{2}\right)\right]$ is written in the form $$s^{2}(1,2)=c^{2}\left(t{2}-t_{1}\right)^{2}-\left(\vec{x}{2}-\vec{x}{1}\right)^{2},$$
where $c$ is a universal constant coinciding with the propagation velocity of electromagnetic waves (light, in particular) in vacuum and called the speed of light. For close events 1 and 2, the interval (2.1) can be written as
$$d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}, \quad \mu=0,1,2,3,$$
where the tensor with the covariant components
$$\eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$$
is called the Minkowski metric tensor (the Minkowski metric). As usual, summing is assumed over repeated indices if one of them is covariant and the other contravariant. The matrix (2.3), together with its inverse matrix
$$\eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$$
of the contravariant components of the Minkowski tensor are used for raising and lowering vector and tensor indices, so that, e.g., for an arbitrary vector $a=\left(a^{\mu}\right)$ we have $a^{\mu}=\eta^{\mu \nu} a_{\nu}, a_{\mu}=\eta_{\mu \nu} a^{\nu}$. The Minkowski tensor defines a scalar product $(a b)$ of two arbitrary 4 -vectors $a^{\mu}$ and $b^{\mu}$ as follows:
$$(a b)=\eta_{\mu \nu} a^{\mu} b^{\nu}=\eta^{\mu \nu} a_{\mu} b_{\nu}=a_{\mu} b^{\mu}=a^{\mu} b_{\mu} .$$

## 物理代写|宇宙学代写cosmology代考|Coordinate transformations

A transition from one IRF to another is described in the simplest way if the velocity $\vec{v}$ of the system $S^{\prime}$ with respect to the system $S$ is directed along one of the coordinate axes of the latter, for instance, along the axis $O x$, i.e., in the system $S$ the origin of the system $S^{\prime}$ moves according to the law $x=v t$. In this case, the coordinate transformation (the special Lorentz transformation) that leaves the interval (2.1) invariant, has the form
$$x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}}, \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\frac{t-v x / c^{2}}{\sqrt{1-v^{2} / c^{2}}}$$
where the primed coordinates belong to the IRF $S^{\prime}$.
A general Lorentz transformation, connecting any two IRFs, includes a boost (a transition of the type (2.7) with a vector $\vec{v}$ of arbitrary direction) and an arbitrary rotation of the spatial coordinate axes. All Lorentz transformations form a six-parameter group called the Lorentz group. In addition to general Lorentz transformations, the interval (2.1) is invariant under space and time translations
$$x^{\prime \mu}=x^{\mu}+a^{\mu}, \quad a^{\mu}=\text { const }$$
forming the four-parameter group of translations. Thus the complete group of isometries (coordinate transformations leaving invariant the metric tensor contains ten parameters. It is called the Poincaré group.
The matrix of an arbitrary Lorentz transformation $A=\left(A_{\mu}^{\nu}\right)$ has the definitive property of pseudo-orthogonality. It is this property that expresses the invariance of the Minkowski metric under such transformations. Namely, let the coordinates $x^{\mu}$ of the system $S$ and the coordinates $y^{\mu}$ of the system $S^{\prime}$ be connected by the linear transformation
$$x^{\mu}=A_{\alpha}^{\mu} y^{\alpha}+a^{\mu}, \quad A_{\alpha}^{\mu}, a^{\mu}=\text { const. }$$
According to $(2.9), A_{\alpha}^{\mu}=\partial x^{\mu} / \partial y^{\alpha}$. Substituting $(2.9)$ to the expression for the interval $(2.2)$, we obtain
$$d s^{2}=\eta_{\mu \nu} A_{\alpha}^{\mu} A_{\beta}^{\nu} d y^{\alpha} d y^{\beta}$$

## 物理代写|宇宙学代写cosmology代考|Kinematic effects

An analysis of the Lorentz transformations leads to the most important kinematic effects of SR. Thus, any motion of a point particle at any fixed time instant can be considered to be approximately inertial, so one can introduce an IRF $S^{\prime}$ in which the particle is at rest at this time instant. Assuming, without loss of generality, that the motion occurs along the axis $O x$, it is easy to find that the time increment $d t^{\prime}$ by a clock connected with the particle (and equal to $d s / c$ ) is related to the time increment $d t$ by the clock of the “laboratory” IRF $S$ according to
$$d t^{\prime}=d t \sqrt{1-v^{2} / c^{2}}$$
Due to arbitrariness of choosing the axes, this formula is valid for a velocity of any direction, $\vec{v}=d \vec{x} / d t$. Consequently, for an arbitrary trajectory of motion $\vec{x}(t)$, the proper time interval $\tau$ of the particle (that is, the time elapsed according to a clock connected with the particle or any object whose size is insignificant) is determined by the relation
$$\tau\left(t_{1}, t_{2}\right)=\frac{1}{c} \int_{t_{1}}^{t_{2}} d s=\int_{t_{1}}^{t_{2}} d t \sqrt{1-v^{2}(t) / c^{2}},$$
if the time $t_{1}$ to $t_{2}$ has elapsed at the clock of an observer at rest.
From (2.12) and (2.13) it follows that the proper time interval of a moving object is always smaller than the time between the same events from the viewpoint of an observer at rest. It is the so-called Lorentzian time slowing-down; it leads, in particular, to the famous twin paradox. If one of the twins is at rest (or moves slowly) in a certain IRF while the other travels with relativistic velocities and, having completed his closed trajectory, meets his brother, then, at their meeting, their ages will be different: the traveler will be younger than the home-sitter. It could seem that if one considers the situation in the RF where the traveler is at rest, the result should be the opposite. However, a careful analysis, taking into account the fact that the traveler must have changed his IRF at least three times (at acceleration, at turning back and at final deceleration) shows that his calculated age will be smaller than that of his brother. The paradox is explained by the asymmetry of the situation: the integral (2.13) turns out to be smaller for an object (or subject in the present case) that has carried out noninertial motion.

## 物理代写|宇宙学代写cosmology代考|Geometry

s2(1,2)=C2(吨2−吨1)2−(X→2−X→1)2,

ds2=这μνdXμdXν,μ=0,1,2,3,

Minkowski 张量的逆变分量的一部分用于提高和降低向量和张量索引，因此，例如，对于任意向量一个=(一个μ)我们有一个μ=这μν一个ν,一个μ=这μν一个ν. Minkowski 张量定义了一个标量积(一个b)两个任意 4 向量的一个μ和bμ如下：

(一个b)=这μν一个μbν=这μν一个μbν=一个μbμ=一个μbμ.

## 物理代写|宇宙学代写cosmology代考|Coordinate transformations

X′=X−在吨1−在2/C2,是′=是,和′=和,吨′=吨−在X/C21−在2/C2

X′μ=Xμ+一个μ,一个μ= 常量

Xμ=一个一个μ是一个+一个μ,一个一个μ,一个μ= 常量。

ds2=这μν一个一个μ一个bνd是一个d是b

## 物理代写|宇宙学代写cosmology代考|Kinematic effects

d吨′=d吨1−在2/C2

τ(吨1,吨2)=1C∫吨1吨2ds=∫吨1吨2d吨1−在2(吨)/C2,

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。