分类: 现代代数代写

数学代写|现代代数代写Modern Algebra代考|MATH067

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH067

数学代写|现代代数代写Modern Algebra代考|The Field of Quotients of an Integral Domain

The example of an integral domain that is most familiar to us is the set $\mathbf{Z}$ of all integers, and the most familiar example of a field is the set of all rational numbers. There is a very natural and intimate relationship between these two systems. In fact, a rational number is by definition a quotient $a / b$ of integers $a$ and $b$, with $b \neq 0$; that is, the set of rational numbers is the set of all quotients of integers with nonzero denominators. For this reason, the set of rational numbers is frequently referred to as “the quotient field of the integers.” In this section, we shall see that an analogous field of quotients can be constructed for an arbitrary integral domain.

Before we present this construction, let us review the basic definitions of equality, addition, and multiplication in the rational numbers. We recall that for rational numbers $\frac{a}{b}$ and $\frac{c}{d}$,
$$
\begin{aligned}
& \frac{a}{b}=\frac{c}{d} \text { if and only if } a d=b c, \
& \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}, \
& \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} .
\end{aligned}
$$
Note that the definitions of equality, addition, and multiplication for rational numbers are based on the corresponding definitions for the integers. These definitions guide our construction of the quotient field for an arbitrary integral domain $D$.
Our first step in this construction is the following definition.

A Relation on Ordered Pairs
Let $D$ be an integral domain and let $S$ be the set of all ordered pairs $(a, b)$ of elements of $D$ with $b \neq 0$ :
$$
S={(a, b) \mid a, b \in D \text { and } b \neq 0}
$$

The relation $\sim$ is defined on $S$ by
$(a, b) \sim(c, d)$ if and only if $a d=b c$.
The relation $\sim$ is an obvious imitation of the equality of rational numbers, and we can show that it is indeed an equivalence relation on $S$.

数学代写|现代代数代写Modern Algebra代考|The Equivalence Relation

The relation $\sim$ in Definition 5.21 is an equivalence relation on $S$.
Proof We shall show that $\sim$ is reflexive, symmetric, and transitive. Let $(a, b),(c, d)$, and $(f, g)$ be arbitrary elements of $S$.

$(a, b) \sim(a, b)$, since the commutative multiplication in $D$ implies that $a b=b a$.

$(a, b) \sim(c, d) \Rightarrow a d=b c$
by definition of
$\Rightarrow d a=c b$ or $c b=d a$
since multiplication is commutative in $D$
$\Rightarrow(c, d) \sim(a, b)$
by definition of $\sim$.

Assume that $(a, b) \sim(c, d)$ and $(c, d) \sim(f, g)$.
$$
\left.\begin{array}{l}
(a, b) \sim(c, d) \Rightarrow a d=b c \Rightarrow a d g=b c g \
(c, d) \sim(f, g) \Rightarrow c g=d f \Rightarrow b c g=b d f
\end{array}\right} \Rightarrow a d g=b d f
$$
Using the commutative property of multiplication in $D$ once again, we have ${ }^{\dagger}$
$$
d a g=d b f
$$
where $d \neq 0$, and therefore
$$
a g=b f
$$
by Theorem 5.16. According to Definition 5.21, this implies that $(a, b) \sim(f, g)$.
Thus $\sim$ is an equivalence relation on $S$.
The next definition reveals the basic plan for our construction of the quotient field of $D$.

Let $D, S$, and $\sim$ be the same as in Definition 5.21 and Lemma 5.22. For each $(a, b)$ in $S$, let $[a, b]$ denote the equivalence class in $S$ that contains $(a, b)$, and let $Q$ denote the set of all equivalence classes $[a, b]$ :
$$
Q={[a, b] \mid(a, b) \in S} .
$$
The set $Q$ is called the set of quotients for $D$.

We shall at times need the fact that for any $x \neq 0$ in $D$ and any $[a, b]$ in $Q$,
$$
[a, b]=[a x, b x] .
$$
This follows at once from the equality $a(b x)=b(a x)$ in the integral domain $D$.

数学代写|现代代数代写Modern Algebra代考|MATH067

现代代数代考

数学代写|现代代数代写Modern Algebra代考|The Field of Quotients of an Integral Domain

我们最熟悉的一个积分定义域的例子是所有整数的集合$\mathbf{Z}$,最熟悉的一个域的例子是所有有理数的集合。这两个系统之间有着非常自然和密切的关系。事实上,有理数根据定义是整数$a$和$b$的商$a / b$,其中$b \neq 0$;也就是说,有理数的集合是所有分母为非零的整数的商的集合。由于这个原因,有理数的集合经常被称为“整数的商域”。在本节中,我们将看到,对于任意积分域,可以构造一个类似的商域。

在我们介绍这种构造之前,让我们回顾一下有理数中相等、加法和乘法的基本定义。回想一下,对于有理数$\frac{a}{b}$和$\frac{c}{d}$,
$$
\begin{aligned}
& \frac{a}{b}=\frac{c}{d} \text { if and only if } a d=b c, \
& \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}, \
& \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} .
\end{aligned}
$$
请注意,有理数的相等、加法和乘法的定义是基于整数的相应定义。这些定义指导我们构造任意积分域$D$的商域。
这个构造的第一步是下面的定义。

有序对上的关系
设$D$为整域,设$S$为$D$与$b \neq 0$的元素的所有有序对$(a, b)$的集合:
$$
S={(a, b) \mid a, b \in D \text { and } b \neq 0}
$$

关系$\sim$在$S$上由
$(a, b) \sim(c, d)$当且仅当$a d=b c$。
关系$\sim$是有理数等式的明显模仿,我们可以在$S$上证明它确实是一个等价关系。

数学代写|现代代数代写Modern Algebra代考|The Equivalence Relation

定义5.21中的关系$\sim$是$S$上的等价关系。
我们将证明$\sim$是自反的、对称的和可传递的。设$(a, b),(c, d)$和$(f, g)$为$S$的任意元素。

$(a, b) \sim(a, b)$,因为$D$中的交换乘法意味着$a b=b a$。

$(a, b) \sim(c, d) \Rightarrow a d=b c$
根据的定义
$\Rightarrow d a=c b$或$c b=d a$
因为乘法在$D$中是可交换的
$\Rightarrow(c, d) \sim(a, b)$
根据$\sim$的定义。

假设$(a, b) \sim(c, d)$和$(c, d) \sim(f, g)$。
$$
\left.\begin{array}{l}
(a, b) \sim(c, d) \Rightarrow a d=b c \Rightarrow a d g=b c g \
(c, d) \sim(f, g) \Rightarrow c g=d f \Rightarrow b c g=b d f
\end{array}\right} \Rightarrow a d g=b d f
$$
利用$D$的乘法交换性,再一次得到${ }^{\dagger}$
$$
d a g=d b f
$$
哪里$d \neq 0$,因此
$$
a g=b f
$$
根据定理5.16。根据定义5.21,这意味着$(a, b) \sim(f, g)$。
因此$\sim$是$S$上的等价关系。
下一个定义揭示了我们构造$D$的商域的基本计划。

设$D, S$和$\sim$与定义5.21和引理5.22中的相同。对于$S$中的每个$(a, b)$,让$[a, b]$表示$S$中包含$(a, b)$的等价类,让$Q$表示所有等价类的集合$[a, b]$:
$$
Q={[a, b] \mid(a, b) \in S} .
$$
集合$Q$称为$D$的商集。

我们有时需要这样一个事实:对于$D$中的任何$x \neq 0$和$Q$中的任何$[a, b]$,
$$
[a, b]=[a x, b x] .
$$
这是由积分域$D$的等式$a(b x)=b(a x)$得出的。

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MTH350

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MTH350

数学代写|现代代数代写Modern Algebra代考|Integral Domains and Fields

In the preceding section we defined the terms ring with unity, commutative ring, and zero divisors. All three of these terms are used in defining an integral domain.
Integral Domain
Let $D$ be a ring. Then $D$ is an integral domain provided these conditions hold:

  1. $D$ is a commutative ring.
  2. $D$ has a unity $e$, and $e \neq 0$.
  3. $D$ has no zero divisors.
    Note that the requirement $e \neq 0$ means that an integral domain must have at least two elements.

Example 1 The ring $\mathbf{Z}$ of all integers is an integral domain, but the ring $\mathbf{E}$ of all even integers is not an integral domain, because it does not contain a unity. As familiar examples of integral domains, we can list the set of all rational numbers, the set of all real numbers, and the set of all complex numbers-all of these with their usual operations.

Example 2 The ring $\mathbf{Z}{10}$ is a commutative ring with a unity, but the presence of zero divisors such as [2] and [5] prevents $\mathbf{Z}{10}$ from being an integral domain. Considered as a possible integral domain, the ring $M_2(\mathbf{R})$ of all $2 \times 2$ matrices with real numbers as elements fails on two counts: Multiplication is not commutative, and it has zero divisors.

In Example 4 of Section 5.1, we saw that $\mathbf{Z}_n$ is a ring for every value of $n>1$. Moreover, $\mathbf{Z}_n$ is a commutative ring since
$$
[a] \cdot[b]=[a b]=[b a]=[b] \cdot[a]
$$
for all $[a],[b]$ in $\mathbf{Z}_n$. Since $\mathbf{Z}_n$ has $[1]$ as the unity, $\mathbf{Z}_n$ is an integral domain if and only if has no zero divisors. The following theorem characterizes the $\mathbf{Z}_n$ with no zero divisors, providing us with a large class of finite integral domains (that is, integral domains that have a finite number of elements).

数学代写|现代代数代写Modern Algebra代考|The Integral Domain Zn When n Is a Prime

For $n>1, \mathbf{Z}_n$ is an integral domain if and only if $n$ is a prime.
Proof From the previous discussion, it is clear that we need to only prove that $\mathbf{Z}_n$ has no zero divisors if and only if $n$ is a prime.

Suppose first that $n$ is a prime. Let $[a] \neq[0]$ in $\mathbf{Z}_n$, and suppose $[a][b]=[0]$ for some $[b]$ in $\mathbf{Z}_n$. Now $[a][b]=[0]$ implies that $[a b]=[0]$, and therefore, $n \mid a b$. However, $[a] \neq[0]$ means that $n \nmid a$. Thus $n \mid a b$ and $n \nmid a$. Since $n$ is a prime, this implies that $n \mid b$, by Theorem 2.16 (Euclid’s Lemma); that is, $[b]=[0]$. We have shown that if $[a] \neq[0]$, the only way that $[a][b]$ can be $[0]$ is for $[b]$ to be $[0]$. Therefore, $\mathbf{Z}_n$ has no zero divisors and is an integral domain.
Suppose now that $n$ is not a prime. Then $n$ has divisors other than \pm 1 and $\pm n$, so there are integers $a$ and $b$ such that
$$
n=a b \text { where } 1<a<n \text { and } 1<b<n .
$$
This means that $[a] \neq[0],[b] \neq[0]$, but
$$
[a][b]=[a b]=[n]=[0] .
$$
Therefore, $[a]$ is a zero divisor in $\mathbf{Z}_n$, and $\mathbf{Z}_n$ is not an integral domain.
Combining the two cases, we see that $n$ is a prime if and only if $\mathbf{Z}_n$ is an integral domain.

数学代写|现代代数代写Modern Algebra代考|MTH350

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Integral Domains and Fields

在前一节中,我们定义了具有单位环、可交换环和零因子的环。这三个术语都用于定义一个积分域。
积分域
让$D$成为一个戒指。那么$D$是一个整域,只要满足以下条件:

$D$ 是一个交换环。

$D$ 有一个统一的$e$,和$e \neq 0$。

$D$ 没有零因子。
注意,需求$e \neq 0$意味着一个积分域必须至少有两个元素。

例1所有整数的环$\mathbf{Z}$是一个整域,但所有偶数的环$\mathbf{E}$不是一个整域,因为它不包含一个单位。作为熟悉的积分域的例子,我们可以列出所有有理数的集合,所有实数的集合,以及所有复数的集合——所有这些都有它们通常的运算。

例2环$\mathbf{Z}{10}$是一个具有单位的交换环,但是像[2]和[5]这样的零因子的存在使得$\mathbf{Z}{10}$不是一个整域。作为一个可能的积分域,所有以实数为元素的$2 \times 2$矩阵的环$M_2(\mathbf{R})$在两个方面失败:乘法是不可交换的,并且它没有除数。

在第5.1节的例4中,我们看到$\mathbf{Z}_n$是一个对应于$n>1$的每个值的环。而且,$\mathbf{Z}_n$是一个交换环,因为
$$
[a] \cdot[b]=[a b]=[b a]=[b] \cdot[a]
$$
所有的$[a],[b]$都在$\mathbf{Z}_n$中。因为$\mathbf{Z}_n$以$[1]$为单位,所以当且仅当没有零因子时,$\mathbf{Z}_n$是一个整域。下面的定理描述了没有零因子的$\mathbf{Z}_n$,为我们提供了一大类有限积分域(即具有有限个数元素的积分域)。

数学代写|现代代数代写Modern Algebra代考|The Integral Domain Zn When n Is a Prime

因为$n>1, \mathbf{Z}_n$是一个积分域当且仅当$n$是素数。
从前面的讨论,很明显,我们只需要证明$\mathbf{Z}_n$没有零因子当且仅当$n$是素数。

首先假设$n$是质数。在$\mathbf{Z}_n$中设置$[a] \neq[0]$,在$\mathbf{Z}_n$中设置$[a][b]=[0]$表示某些$[b]$。现在$[a][b]=[0]$意味着$[a b]=[0]$,因此是$n \mid a b$。然而,$[a] \neq[0]$表示$n \nmid a$。因此$n \mid a b$和$n \nmid a$。因为$n$是质数,这意味着$n \mid b$,根据定理2.16(欧几里得引理);也就是$[b]=[0]$。我们已经证明,如果$[a] \neq[0]$,那么$[a][b]$可以是$[0]$的唯一方法就是$[b]$可以是$[0]$。因此,$\mathbf{Z}_n$没有零因子,是一个积分域。
假设$n$不是质数。那么$n$有除\pm 1和$\pm n$之外的除数,所以有整数$a$和$b$,使得
$$
n=a b \text { where } 1<a<n \text { and } 1<b<n .
$$
这意味着$[a] \neq[0],[b] \neq[0]$,但是
$$
[a][b]=[a b]=[n]=[0] .
$$
因此,$[a]$在$\mathbf{Z}_n$中是一个零因子,而$\mathbf{Z}_n$不是一个积分域。
结合这两种情况,我们看到$n$是一个素数当且仅当$\mathbf{Z}_n$是一个积分域。

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MATH310

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH310

数学代写|现代代数代写Modern Algebra代考|Sylow p-Subgroup

If $G$ is a finite abelian group and $p$ is a prime such that $p$ divides $|G|$, then $G_p$ is a Sylow $p$-subgroup.

Proof Assume that $G$ is a finite abelian group such that $p^m$ divides $|G|$ but $p^{m+1}$ does not divide $|G|$. Then $|G|=p^m k$, where $p$ and $k$ are relatively prime. We need to prove that $G_p$ has order $p^m$.

We first argue that $\left|G_p\right|$ is a power of $p$. If $\left|G_p\right|$ had a prime factor $q$ different from $p$, then $G_p$ would have to contain an element of order $q$, according to Cauchy’s Theorem. This would contradict the very definition of $G_p$, so we conclude that $\left|G_p\right|$ is a power of $p$. Let $\left|G_p\right|=p^t$.

Suppose now that $\left|G_p\right|<p^m$-that is, that $t<m$. Then the quotient group $G / G_p$ has order $p^m k / p^t=p^{m-t} k$, which is divisible by $p$. Hence $G / G_p$ contains an element $a+G_p$ of order $p$, by Theorem 4.41 . Then
$$
G_p=p\left(a+G_p\right)=p a+G_p,
$$
and this implies that $p a \in G_p$. Thus $p a$ has order that is a power of $p$. This implies that $a$ has order a power of $p$, and therefore $a \in G_p$; that is, $a+G_p=G_p$. This is a contradiction to the fact that $a+G_p$ has order $p$. Therefore, $\left|G_p\right|=p^m$, and $G_p$ is a Sylow $p$-subgroup of $G$.

The next theorem shows the true significance of the Sylow $p$-subgroups in the structure of abelian groups.

Let $G$ be an abelian group of order $n=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$ where the $p_i$ are distinct primes and each $m_i$ is a positive integer. Then
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
where $G_{p_i}$ is the Sylow $p_i$-subgroup of $G$ that corresponds to the prime $p_i$.
Proof Assume the hypothesis of the theorem. For each prime $p_i, G_{p_i}$ is a Sylow $p$-subgroup of $G$ by Theorem 4.42. Suppose an element $a_1 \in G_{p_1}$ is also in the subgroup generated by $G_{p_2}, G_{p_3}, \ldots, G_{p_r}$. Then
$$
a_1=a_2+a_3+\cdots+a_r
$$
where $a_i \in G_{p_i}$. Since $G_{p_i}$ has order $p_i^{m_i}, p_i^{m_i} a_i=0$ for $i=2, \ldots, r$. Hence
$$
p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r} a_1=0 \text {. }
$$
Since the order of any $a_1 \in G_{p_1}$ is a power of $p_1$, and $p_1$ is relatively prime to $p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r}$, this requires that $a_1=0$. A similar argument shows that the intersection of any $G_{p_i}$ with the subgroup generated by the remaining subgroups
$$
G_{p_1}, G_{p_2}, \ldots, G_{p_{i-1}}, G_{p_{i+1}}, \ldots, G_{p_r}
$$
is the identity subgroup ${0}$. Hence the sum
$$
G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
is direct and has order equal to the product of the orders $p_i^{m_i}$ :
$$
\left|G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}\right|=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}=|G| .
$$
Therefore,
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$

数学代写|现代代数代写Modern Algebra代考|Direct Sum of Cyclic Groups

Any finitely generated abelian group $G$ (and therefore any finite abelian group) is a direct sum of cyclic groups.

Proof The proof is by induction on the rank of $G$. If $G$ has rank 1 , then $G$ is cyclic and the theorem is true.

Assume that the theorem is true for any group of rank $k-1$, and let $G$ be a group of rank $k$. We consider two cases.

Case 1 Suppose there exists a minimal generating set $\left{a_1, a_2, \ldots, a_k\right}$ for $G$ such that any relation of the form
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
with $z_i \in \mathbf{Z}$ implies that $z_1 a_1=z_2 a_2=\cdots=z_k a_k=0$. Then
$$
G=\left\langle a_1\right\rangle+\left\langle a_2\right\rangle+\cdots+\left\langle a_k\right\rangle,
$$
and the theorem is true for this case.

Case 2 Suppose that Case 1 does not hold. That is, for any minimal generating set $\left{a_1, a_2, \ldots, a_k\right}$ of $G$, there exists a relation of the form
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
with $z_i \in \mathbf{Z}$ such that some of the $z_i a_i \neq 0$. Among all the minimal generating sets and all the relations of this form, there exists a smallest positive integer $\bar{z}_i$ that occurs as a coefficient in one of these relations. Suppose this $\bar{z}_i$ occurs in a relation with the generating set $\left{b_1, b_2, \ldots, b_k\right}$. If necessary, the elements in $\left{b_1, b_2, \ldots, b_k\right}$ can be rearranged so that this smallest positive coefficient occurs as $\bar{z}_1$ with $b_1$ in
$$
\bar{z}_1 b_1+\bar{z}_2 b_2+\cdots+\bar{z}_k b_k=0 .
$$
Now let $s_1, s_2, \ldots, s_k$ be any set of integers that occur as coefficients in a relation of the form
$$
s_1 b_1+s_2 b_2+\cdots+s_k b_k=0
$$
with these generators $b_i$. We shall show that $\bar{z}_1$ divides $s_1$. By the Division Algorithm, $s_1=\bar{z}_1 q_1+r_1$, where $0 \leq r_1<\bar{z}_1$. Multiplying equation (1) by $q_1$ and subtracting the result from equation (2), we have
$$
r_1 b_1+\left(s_2-\bar{z}_2 q_1\right) b_2+\cdots+\left(s_k-\bar{z}_k q_1\right) b_k=0 .
$$

数学代写|现代代数代写Modern Algebra代考|MATH310

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Sylow p-Subgroup

如果$G$是一个有限阿贝尔群,并且$p$是一个质数,使得$p$可以除$|G|$,那么$G_p$是一个Sylow $p$ -子群。

证明假设$G$是一个有限阿贝尔群,使得$p^m$能除$|G|$,但$p^{m+1}$不能除$|G|$。然后是$|G|=p^m k$,其中$p$和$k$是相对主要的。我们需要证明$G_p$有阶$p^m$。

我们首先论证$\left|G_p\right|$是$p$的一种力量。如果$\left|G_p\right|$有一个不同于$p$的质因数$q$,那么根据柯西定理,$G_p$必须包含一个顺序为$q$的元素。这将与$G_p$的定义相矛盾,因此我们得出结论:$\left|G_p\right|$是$p$的幂。让$\left|G_p\right|=p^t$。

假设现在是$\left|G_p\right|<p^m$,也就是$t<m$。那么商群$G / G_p$的阶为$p^m k / p^t=p^{m-t} k$,能被$p$整除。因此,根据定理4.41,$G / G_p$包含一个阶为$p$的元素$a+G_p$。然后
$$
G_p=p\left(a+G_p\right)=p a+G_p,
$$
这意味着$p a \in G_p$。因此$p a$的秩序是$p$的力量。这意味着$a$有$p$的次幂,因此$a \in G_p$;也就是$a+G_p=G_p$。这与$a+G_p$有秩序这一事实相矛盾$p$。因此,$\left|G_p\right|=p^m$和$G_p$是$G$的Sylow $p$ -子组。

下一个定理说明了Sylow $p$ -子群在阿贝尔群结构中的真正意义。

设$G$是一个阶为$n=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$的阿贝尔群,其中$p_i$是不同的素数,每个$m_i$都是正整数。然后
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
其中$G_{p_i}$是$G$的Sylow $p_i$子组,对应素数$p_i$。
假设定理的假设。根据定理4.42,对于每个质数$p_i, G_{p_i}$都是$G$的一个Sylow $p$ -子群。假设一个元素$a_1 \in G_{p_1}$也在$G_{p_2}, G_{p_3}, \ldots, G_{p_r}$生成的子组中。然后
$$
a_1=a_2+a_3+\cdots+a_r
$$
在哪里$a_i \in G_{p_i}$。因为$G_{p_i}$为$i=2, \ldots, r$订购了$p_i^{m_i}, p_i^{m_i} a_i=0$。因此
$$
p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r} a_1=0 \text {. }
$$
因为任何$a_1 \in G_{p_1}$的阶是$p_1$的幂次,而$p_1$相对于$p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r}$是质数,这就要求$a_1=0$。类似的论证表明,任何$G_{p_i}$与由其余子组生成的子组的交集
$$
G_{p_1}, G_{p_2}, \ldots, G_{p_{i-1}}, G_{p_{i+1}}, \ldots, G_{p_r}
$$
是身份子组${0}$。因此求和
$$
G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
是直接的,阶数等于阶数的乘积$p_i^{m_i}$:
$$
\left|G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}\right|=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}=|G| .
$$
因此,
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$

数学代写|现代代数代写Modern Algebra代考|Direct Sum of Cyclic Groups

任何有限生成的阿贝尔群$G$(因此任何有限阿贝尔群)都是循环群的直接和。

证明是通过归纳法对$G$的秩进行的。如果$G$的秩为1,则$G$是循环的,定理成立。

假设该定理对任何秩为$k-1$的组成立,设$G$为秩为$k$的组。我们考虑两种情况。

假设存在一个最小发电集$\left{a_1, a_2, \ldots, a_k\right}$对于$G$,使得任何形式的关系
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
用$z_i \in \mathbf{Z}$表示$z_1 a_1=z_2 a_2=\cdots=z_k a_k=0$。然后
$$
G=\left\langle a_1\right\rangle+\left\langle a_2\right\rangle+\cdots+\left\langle a_k\right\rangle,
$$
这个定理对这个例子是成立的。

假设情况1不成立。即对于$G$的任何最小发电机组$\left{a_1, a_2, \ldots, a_k\right}$,都存在如下形式的关系
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
有了$z_i \in \mathbf{Z}$这样的一些$z_i a_i \neq 0$。在所有这种形式的最小发电机组和所有这种形式的关系中,存在一个最小的正整数$\bar{z}_i$,它作为系数出现在其中一个关系中。假设这个$\bar{z}_i$发生在与发电集$\left{b_1, b_2, \ldots, b_k\right}$的关系中。如果有必要,可以重新排列$\left{b_1, b_2, \ldots, b_k\right}$中的元素,使最小的正系数变为$\bar{z}_1$和$b_1$ in
$$
\bar{z}_1 b_1+\bar{z}_2 b_2+\cdots+\bar{z}_k b_k=0 .
$$
现在设$s_1, s_2, \ldots, s_k$为任意整数的集合它们作为系数出现在如下形式的关系中
$$
s_1 b_1+s_2 b_2+\cdots+s_k b_k=0
$$
有了这些生成器$b_i$。我们将证明$\bar{z}_1$除$s_1$。按除法算法,$s_1=\bar{z}_1 q_1+r_1$,其中$0 \leq r_1<\bar{z}_1$。将式(1)乘以$q_1$,再减去式(2)的结果,我们得到
$$
r_1 b_1+\left(s_2-\bar{z}_2 q_1\right) b_2+\cdots+\left(s_k-\bar{z}_k q_1\right) b_k=0 .
$$

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MATH611

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH611

数学代写|现代代数代写Modern Algebra代考|Nonzero preservation and the gcd of several polynomials

In this section, we discuss the following problem: Given nonzero polynomials $f_1, \ldots, f_n \in F[x]$ over a field $F$, compute $h=\operatorname{gcd}\left(f_1, \ldots, f_n\right)$. Let $d \in \mathbb{N}$ be such that $\operatorname{deg} f_i \leq d$ for all $i$. We are particularly interested in the case where $d$ is close to $n$. A simple approach is to set $h_1=f_1$ and compute $h_i=\operatorname{gcd}\left(h_{i-1}, f_i\right)$ for $i=2, \ldots, n$. If $\operatorname{deg} h$ is fairly large, say $d / 10$, then this will take $n-1 \operatorname{gcd}$ calculations of polynomials of degree at least $d / 10$.

We now present a more efficient algorithm that uses only one gcd calculation. The basic tool for this probabilistic algorithm is the following useful lemma. It says that a nonzero polynomial is likely to take a nonzero value at a random point. In other words, random evaluations probably preserve nonzeroness.

LEMMA 6.44. Let $R$ be an integral domain, $n \in \mathbb{N}, S \subseteq R$ finite with $s=# S$ elements, and $r \in R\left[x_1, \ldots, x_n\right]$ a polynomial of total degree at most $d \in \mathbb{N}$.
(i) If $r$ is not the zero polynomial, then $r$ has at most $d s^{n-1}$ zeroes in $S^n$.
(ii) If $s>d$ and $r$ vanishes on $S^n$, then $r=0$.
Proof. (i) We prove the claim by induction on $n$. The case $n=1$ is clear, since a nonzero univariate polynomial of degree at most $d$ over an integral domain has at most $d$ zeroes (Lemma 25.4). For the induction step, we write $r$ as a polynomial in $x_n$ with coefficients in $x_1, \ldots, x_{n-1}: r=\sum_{0 \leq i \leq k} r_i x_n^i$ with $r_i \in R\left[x_1, \ldots, x_{n-1}\right]$ for $0 \leq i \leq k$ and $r_k \neq 0$. Then $\operatorname{deg} r_k \leq d-k$, and by the induction hypothesis, $r_k$ has at most $(d-k) s^{n-2}$ zeroes in $S^{n-1}$, so that there are at most $(d-k) s^{n-1}$ common zeroes of $r$ and $r_k$ in $S^n$. Furthermore, for each $a \in S^{n-1}$ with $r_k(a) \neq 0$, the univariate polynomial $r_a=\sum_{0 \leq i \leq k} r_i(a) x_n^i \in R\left[x_n\right]$ of degree $k$ has at most $k$ zeroes, so that the total number of zeroes of $r$ in $S^n$ is bounded by
$$
(d-k) s^{n-1}+k s^{n-1}=d s^{n-1} .
$$
(ii) follows immediately from (i).

In the example $r=\prod_{1 \leq i \leq d}\left(x_n-a_i\right)$, where $a_1, \ldots, a_d \in S$ are distinct, the bound in (i) is achieved. A typical application of (i) is in the analysis of probabilistic algorithms, rewriting it as
$$
\operatorname{prob}\left{r(a)=0: a \in S^n\right} \leq \frac{d}{# S},
$$
where $a$ is chosen in $S^n$ uniformly at random. In the applications, the tricky part is usually to show that $r$ is nonzero. An amazing fact is that this bound on the probability is independent of the number of variables.

数学代写|现代代数代写Modern Algebra代考|Subresultants

In this section, we extend the resultant theory-which governs the gcd-to the subresultants which cover all results of the Extended Euclidean Algorithm. As before, this leads to efficient modular methods, but now for the whole algorithm. The reader only interested in efficient gcd algorithms may skip this and proceed directly to the implementation report in Section 6.13.

So now let $F$ be an arbitrary field, and $f, g \in F[x]$ nonzero of degrees $n \geq m$, respectively. We use the notation for the results of the Extended Euclidean Algorithm, as in (1) on page 141, and $n_i=\operatorname{deg} r_i$ for $0 \leq i \leq \ell+1$, with $r_{\ell+1}=0$ and $\operatorname{deg} r_{\ell+1}=-\infty$.
THEOREM 6.47.
Let $0 \leq k \leq m \leq n$. Then $k$ does not appear in the degree sequence if and only if there exist $s, t \in F[x]$ satisfying
$$
t \neq 0, \quad \operatorname{deg} s<m-k, \quad \operatorname{deg} t<n-k, \quad \operatorname{deg}(s f+t g)<k .
$$
there exists an $i$ with $2 \leq i \leq \ell+1$ such that $n_i<k<n_{i-1}$. We claim that $s=s_i$ and $t=t_i$ do the job. We have $s f+t g=r_i$, and $\operatorname{deg} r_i=n_i<k$. Furthermore, from Lemma 3.15 (b) we have
$$
\begin{aligned}
\operatorname{deg} s & =m-n_{i-1}<m-k, \
0 \leq \operatorname{deg} t & =n-n_{i-1}<n-k .
\end{aligned}
$$

数学代写|现代代数代写Modern Algebra代考|MATH611

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Nonzero preservation and the gcd of several polynomials

在本节中,我们讨论以下问题:给定域$F$上的非零多项式$f_1, \ldots, f_n \in F[x]$,计算$h=\operatorname{gcd}\left(f_1, \ldots, f_n\right)$。让$d \in \mathbb{N}$为所有$i$成为$\operatorname{deg} f_i \leq d$。我们对$d$接近$n$的情况特别感兴趣。一种简单的方法是为$i=2, \ldots, n$设置$h_1=f_1$并计算$h_i=\operatorname{gcd}\left(h_{i-1}, f_i\right)$。如果$\operatorname{deg} h$相当大,比如$d / 10$,那么这将需要$n-1 \operatorname{gcd}$次多项式的计算,次数至少为$d / 10$。

我们现在提出了一个更有效的算法,它只使用一个gcd计算。这个概率算法的基本工具是以下有用的引理。它说一个非零多项式很可能在随机点取一个非零值。换句话说,随机求值可能保持非零性。

引理6.44。设$R$为一个积分域,$n \in \mathbb{N}, S \subseteq R$为包含$s=# S$个元素的有限域,$r \in R\left[x_1, \ldots, x_n\right]$为至多$d \in \mathbb{N}$个总次的多项式。
(i)如果$r$不是零多项式,则$r$在$S^n$中最多有$d s^{n-1}$个零。
(ii)如果$s>d$和$r$在$S^n$上消失,那么$r=0$。
证明。(i)我们通过归纳法在$n$上证明了这一主张。情况$n=1$是清楚的,因为在一个积分域上次数最多为$d$的非零单变量多项式最多有$d$个零(引理25.4)。对于归纳步骤,我们将$r$写成$x_n$中的多项式,其系数为$x_1, \ldots, x_{n-1}: r=\sum_{0 \leq i \leq k} r_i x_n^i$, $0 \leq i \leq k$和$r_k \neq 0$的系数为$r_i \in R\left[x_1, \ldots, x_{n-1}\right]$。然后是$\operatorname{deg} r_k \leq d-k$,根据归纳假设,$r_k$在$S^{n-1}$中最多有$(d-k) s^{n-2}$个零,因此$r$和$r_k$在$S^n$中最多有$(d-k) s^{n-1}$个公共零。更进一步,对于每个含有$r_k(a) \neq 0$的$a \in S^{n-1}$,次为$k$的单变量多项式$r_a=\sum_{0 \leq i \leq k} r_i(a) x_n^i \in R\left[x_n\right]$最多有$k$个零,因此$S^n$中$r$的总零个数为
$$
(d-k) s^{n-1}+k s^{n-1}=d s^{n-1} .
$$
(ii)紧接(i)。

在示例$r=\prod_{1 \leq i \leq d}\left(x_n-a_i\right)$中,$a_1, \ldots, a_d \in S$是不同的,实现了(i)中的边界。(i)的典型应用是在概率算法的分析中,将其重写为
$$
\operatorname{prob}\left{r(a)=0: a \in S^n\right} \leq \frac{d}{# S},
$$
其中$S^n$均匀随机选取$a$。在应用程序中,棘手的部分通常是证明$r$是非零的。一个令人惊奇的事实是概率的界限与变量的数量无关。

数学代写|现代代数代写Modern Algebra代考|Subresultants

在本节中,我们将控制gcd的结果理论扩展到涵盖扩展欧几里得算法的所有结果的子结果。和以前一样,这导致了高效的模块化方法,但现在是整个算法。对高效gcd算法感兴趣的读者可以跳过这里,直接进入6.13节的实现报告。

现在设$F$为任意域,和$f, g \in F[x]$为非零度$n \geq m$。我们对扩展欧几里得算法的结果使用表示法,如第141页(1)所示,对$0 \leq i \leq \ell+1$使用$n_i=\operatorname{deg} r_i$,其中包含$r_{\ell+1}=0$和$\operatorname{deg} r_{\ell+1}=-\infty$。
定理6.47。
让$0 \leq k \leq m \leq n$。则当且仅当存在$s, t \in F[x]$满足时,$k$不出现在度序列中
$$
t \neq 0, \quad \operatorname{deg} s<m-k, \quad \operatorname{deg} t<n-k, \quad \operatorname{deg}(s f+t g)<k .
$$
存在一个与$2 \leq i \leq \ell+1$对应的$i$,使得$n_i<k<n_{i-1}$。我们声称$s=s_i$和$t=t_i$可以完成这项工作。我们有$s f+t g=r_i$和$\operatorname{deg} r_i=n_i<k$。更进一步,由引理3.15 (b)我们得到
$$
\begin{aligned}
\operatorname{deg} s & =m-n_{i-1}<m-k, \
0 \leq \operatorname{deg} t & =n-n_{i-1}<n-k .
\end{aligned}
$$

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MA320

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

Exponential and natural logarithmic function plotted on bright background

数学代写|现代代数代写Modern Algebra代考|Modular ged algorithm in F[x, y]

In Section 6.11, we present a modular algorithm that computes all results of the Extended Euclidean Algorithm, including the gcd and the Bézout coefficients. But if just the gcd is required, there is a better way which we now describe.

In a modular algorithm, say with a big prime $p$, we need two conditions to be satisfied: $p$ has to be large enough so that the coefficients of the gcd can be recovered from their images modulo $p$, and $p$ should not divide the resultant and the leading coefficient of the gcd, so that its degree does not change modulo $p$. When both input polynomials have degree about $n$ and coefficients of length $n$, then the bound for the first condition is $O(n)$, but for the second one it is about $n^2$. The trick now is to choose $p$ randomly so that coefficient recovery is always guaranteed, but the non-divisibility condition only with high probability.

This introduces the important method of probabilistic algorithms. Such an algorithm takes an input, makes some random choices (say, chooses several times a bit, either 0 or 1 , each with equal probability), does some calculations, and returns an output. If one can prove that the probability of returning the correct output is at least some value greater than $1 / 2$, say $2 / 3$, then one can run the algorithm repeatedly, and will obtain the correct answer by a majority vote with probability arbitrarily close to 1 . This is called a Monte Carlo algorithm. In some applications, as in this chapter, one can easily test the output for correctness. Then the error probability becomes zero, and only the running time is a random variable. This is called a Las Vegas algorithm. See Notes 6.5 and Section 25.8 for discussions.

These probabilistic algorithms actually started in computer algebra, with Berlekamp’s polynomial factorization (Section 14.8) and Solovay \& Strassen’s primality test (Section 18.5). Their power and simplicity has made them a ubiquitous tool in many areas of computer science. We have seen examples of probabilistic modular testing in Section 4.1. These methods have an inherent uncertainty, but it can be made arbitrarily small, and thus they are like playing a highly attractive lottery: the stakes are only a tiny fraction of the jackpot (say, polynomial time vs. exponential time), but you are almost guaranteed to win!

数学代写|现代代数代写Modern Algebra代考|Mignotte’s factor bound and a modular gcd algorithm in Z[x]

In order to adapt Algorithm 6.28 to $\mathbb{Z}[x]$, we need an a priori bound on the coefficient size of $h$. Over $F[y]$, the bound
$$
\operatorname{deg}_y h \leq \operatorname{deg}_y f
$$
is trivial and quite sufficient. Over $\mathbb{Z}$, we could use the subresultant bound of Theorem 6.52 below, but we now derive a much better bound. It actually depends only on one argument of the gcd, say $f$, and is valid for all factors of $f$. We will use this again for the factorization of $f$ in Chapter 15 .

We extend the 2-norm to a complex polynomial $f=\sum_{0 \leq i \leq n} f_i x^i \in \mathbb{C}[x]$ by $|f|_2=\left(\sum_{0 \leq i \leq n}\left|f_i\right|^2\right)^{1 / 2} \in \mathbb{R}$, where $|a|=(a \cdot \bar{a})^{1 / 2} \in \mathbb{R}$ is the norm of $a \in \mathbb{C}$ and $\bar{a}$ is the complex conjugate of $a$. We will derive a bound for the norm of factors of $f$ in terms of $|f|_2$, that is, a bound $B \in \mathbb{R}$ such that any factor $h \in \mathbb{Z}[x]$ of $f$ satisfies $|h|_2 \leq B$. One might hope that we can take $B=|f|_2$, but this is not the case. For example, let $f=x^n-1$ and $h=\Phi_n \in \mathbb{Z}[x]$ be the $n$th cyclotomic polynomial (Section 14.10). Thus $\Phi_n$ divides $x^n-1$, and the direct analog of (8) would say that each coefficient of $\Phi_n$ is at most 1 in absolute value, but for example $\Phi_{105}$, of degree 48 , contains the term $-2 x^7$. In fact, the coefficients of $\Phi_n$ are unbounded in absolute value if $n \longrightarrow \infty$, and hence this is also true for $|h|_2$. Worse yet, for infinitely many integers $n, \Phi_n$ has a very large coefficient, namely larger than $\exp (\exp (\ln 2 \cdot \ln n / \ln \ln n))$, where $\ln$ is the logarithm in base $e$; such a coefficient has word length somewhat less than $n$. It is not obvious how to control the coefficients of factors at all, and it is not surprising that we have to work a little bit to establish a good bound.

数学代写|现代代数代写Modern Algebra代考|MA320

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Modular ged algorithm in F[x, y]

在第6.11节中,我们给出了一个模块化算法来计算扩展欧几里得算法的所有结果,包括gcd和bsamzout系数。但如果只需要gcd,我们现在描述的是一种更好的方法。

在一个模块化算法中,比如有一个大质数$p$,我们需要满足两个条件:$p$必须足够大,以便gcd的系数可以从其模$p$的图像中恢复,并且$p$不应该除以gcd的结果系数和前导系数,以便它的度不改变模$p$。当两个输入多项式的度数为$n$,系数长度为$n$时,第一种情况的界是$O(n)$,而第二种情况的界是$n^2$。现在的诀窍是随机选择$p$,这样系数恢复总是有保证的,但不可除性条件只有在高概率下才有保证。

介绍了概率算法的重要方法。这样的算法接受输入,做出一些随机选择(比如,选择几次位,要么0,要么1,每个都有相同的概率),进行一些计算,然后返回一个输出。如果可以证明返回正确输出的概率至少大于$1 / 2$,例如$2 / 3$,那么可以重复运行该算法,并且将通过概率任意接近1的多数投票获得正确答案。这被称为蒙特卡罗算法。在某些应用程序中,如本章所述,可以很容易地测试输出的正确性。此时,错误概率为零,只有运行时间是随机变量。这被称为拉斯维加斯算法。有关讨论,请参见注释6.5和第25.8节。

这些概率算法实际上始于计算机代数,包括Berlekamp的多项式因式分解(第14.8节)和Solovay & Strassen的素数检验(第18.5节)。它们的强大功能和简单性使其成为计算机科学许多领域中无处不在的工具。我们已经在4.1节中看到了概率模块测试的例子。这些方法具有固有的不确定性,但它可以任意小,因此它们就像玩一个非常吸引人的彩票:赌注只是头奖的一小部分(比如,多项式时间vs指数时间),但你几乎保证会赢!

数学代写|现代代数代写Modern Algebra代考|Mignotte’s factor bound and a modular gcd algorithm in Z[x]

为了使算法6.28适应$\mathbb{Z}[x]$,我们需要对$h$的系数大小有一个先验的界。除以$F[y]$,边界
$$
\operatorname{deg}_y h \leq \operatorname{deg}_y f
$$
是微不足道的,而且是足够的。在$\mathbb{Z}$上,我们可以使用下面定理6.52的次结界,但我们现在推导出一个更好的界。它实际上只依赖于gcd的一个参数,比如$f$,并且对$f$的所有因素都有效。我们将在第15章中再次使用它来分解$f$。

我们通过$|f|2=\left(\sum{0 \leq i \leq n}\left|f_i\right|^2\right)^{1 / 2} \in \mathbb{R}$将2范数扩展到一个复多项式$f=\sum_{0 \leq i \leq n} f_i x^i \in \mathbb{C}[x]$,其中$|a|=(a \cdot \bar{a})^{1 / 2} \in \mathbb{R}$是$a \in \mathbb{C}$的范数,$\bar{a}$是$a$的复共轭。我们将用$|f|2$来推导$f$的因子范数的一个界,即,一个界$B \in \mathbb{R}$使得$f$的任何因子$h \in \mathbb{Z}[x]$满足$|h|_2 \leq B$。有人可能希望我们可以采取$B=|f|_2$,但事实并非如此。例如,设$f=x^n-1$和$h=\Phi_n \in \mathbb{Z}[x]$是$n$的第一个分环多项式(第14.10节)。因此$\Phi_n$除$x^n-1$,与(8)的直接类比会说,$\Phi_n$的每个系数的绝对值最多为1,但例如,次为48的$\Phi{105}$包含了$-2 x^7$项。事实上,$\Phi_n$的系数在$n \longrightarrow \infty$的绝对值上是无界的,因此对于$|h|_2$也是如此。更糟糕的是,对于无穷多个整数$n, \Phi_n$有一个非常大的系数,即大于$\exp (\exp (\ln 2 \cdot \ln n / \ln \ln n))$,其中$\ln$是以$e$为底的对数;该系数的字长略小于$n$。如何控制因子的系数一点也不明显,所以我们需要花点功夫来建立一个好的界也就不足为奇了。

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MATH342

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH342

数学代写|现代代数代写Modern Algebra代考|Rational number reconstruction

The integer analog of rational function reconstruction is, given integers $m>g \geq 0$ and $k \in{1, \ldots, m}$, to compute a rational number $r / t \in \mathbb{Q}$, with $r, t \in \mathbb{Z}$, such that
$$
\operatorname{gcd}(t, m)=1 \text { and } r t^{-1} \equiv g \bmod m, \quad|r|<k, \quad 0 \leq t \leq \frac{m}{k},
$$
where $t^{-1}$ is the inverse of $t$ modulo $m$. As in the polynomial case, we will see that the related problem
$$
r \equiv t g \bmod m, \quad|r|<k, \quad 0 \leq t \leq \frac{m}{k},
$$
is always solvable, while (24) need not have a solution. The uniqueness statements are a bit weaker than in the polynomial case, however. The following lemma is the integer analog of the Uniqueness Lemma 5.15.

LeMmA 5.25. Let $f, g \in \mathbb{N}$ and $r, s, t \in \mathbb{Z}$ with $r=s f+t g$, and suppose that
$$
|r|<k \text { and } 0<t \leq \frac{f}{k} \text { for some } k \in{1, \ldots, f}
$$
We let $r_i, s_i, t_i \in \mathbb{Z}$ for $0 \leq i \leq \ell+1$ be the results of the traditional Extended Euclidean Algorithm for $f, g$, with $r_i \geq 0$ for all $i$. Moreover, we define $j \in$ ${1, \ldots, \ell+1}$ by
$$
r_j<k \leq r_{j-1}
$$
and if $j \leq \ell$, we choose $q \in \mathbb{N}{\geq 1}$ such that $$ r{j-1}-q r_j<k \leq r_{j-1}-(q-1) r_j
$$
and let $q=0$ if $j=\ell+1$. Then there exists a nonzero $\alpha \in \mathbb{Z}$ such that
$$
\text { either }(r, s, t)=\left(\alpha r_j, \alpha s_j, \alpha t_j\right) \text { or }(r, s, t)=\left(\alpha r_j^, \alpha s_j^, \alpha t_j^\right), $$ where $r_j^=r_{j-1}-q r_j, s_j^=s_{j-1}-q s_j$, and $t_j^=t_{j-1}-q t_j$.

数学代写|现代代数代写Modern Algebra代考|Partial fraction decomposition

Let $F$ be a field, $f_1, \ldots, f_r \in F[x]$ nonconstant monic and pairwise coprime polynomials, $e_1, \ldots, e_r \in \mathbb{N}$ positive integers, and $f=f_1^{e_1} \cdots f_r^{e_r}$. (We will see in Part III how to factor polynomials over finite fields and over $\mathbb{Q}$ into irreducible factors, but here we do not assume irreducibility of the $f_i$.) For another polynomial $g \in F[x]$ of degree less than $n=\operatorname{deg} f$, the partial fraction decomposition of the rational function $g / f \in F(x)$ with respect to the given factorization of the denominator $f$ is
$$
\frac{g}{f}=\frac{g_{1,1}}{f_1}+\cdots+\frac{g_{1, e_1}}{f_1^{e_1}}+\cdots+\frac{g_{r, 1}}{f_r}+\cdots+\frac{g_{r, e_r}}{f_r^{e_r}},
$$
with $g_{i j} \in F[x]$ of smaller degree than $f_i$, for all $i, j$. If all $f_i$ are linear polynomials, then the $g_{i j}$ are just constants.

EXAMPLE 5.28. Let $F=\mathbb{Q}, f=x^4-x^2$, and $g=x^3+4 x^2-x-2$. The partial fraction decomposition of $g / f$ with respect to the factorization $f=x^2(x-1)(x+1)$ of $f$ into linear polynomials is
$$
\frac{x^3+4 x^2-x-2}{x^4-x^2}=\frac{1}{x}+\frac{2}{x^2}+\frac{1}{x-1}+\frac{-1}{x+1} .
$$
The following questions pose themselves: Does a decomposition as in (31) always exist uniquely, and how can we compute it? The next lemma is a first step towards an answer.

Lemma 5.29. There exist unique polynomials $c_i \in F[x]$ with $\operatorname{deg} c_i<e_i \operatorname{deg} f_i$ for all $i$ such that
$$
\frac{g}{f}=\frac{c_1}{f_1^{e_1}}+\cdots+\frac{c_r}{f_r^{e_r}} .
$$
Proof. We multiply both sides in (33) by $f$ and obtain the linear equation
$$
g=c_1 \prod_{j \neq 1} f_j^{e_j}+\cdots+c_r \prod_{j \neq r} f_j^{e_j}
$$
with “unknowns” $c_1, \ldots, c_r$. (We have already seen in Section 4.5 how to find polynomial solutions of such equations.) For any $i \leq r$, each summand with the possible exception of the $i$ th one is divisible by $f_i^{e_i}$, whence $g \equiv c_i \prod_{j \neq i} f_j^{e_j} \bmod f_i^{e_i}$. Now each $f_j$ is coprime to $f_i$ and hence invertible modulo $f_i^{e_i}$, and we obtain
$$
c_i \equiv g \prod_{j \neq i} f_j^{-e_j} \bmod f_i^{e_i},
$$
which together with $\operatorname{deg} c_i<\operatorname{deg} f_i^{e_i}$ uniquely determines $c_i$.

数学代写|现代代数代写Modern Algebra代考|MATH342

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Rational number reconstruction

有理数函数重构的整数类比是,给定整数$m>g \geq 0$和$k \in{1, \ldots, m}$,用$r, t \in \mathbb{Z}$计算有理数$r / t \in \mathbb{Q}$,使得
$$
\operatorname{gcd}(t, m)=1 \text { and } r t^{-1} \equiv g \bmod m, \quad|r|<k, \quad 0 \leq t \leq \frac{m}{k},
$$
其中$t^{-1}$是$t$模$m$的倒数。在多项式的情况下,我们会看到相关的问题
$$
r \equiv t g \bmod m, \quad|r|<k, \quad 0 \leq t \leq \frac{m}{k},
$$
是永远可解的,而(24)不必有解。然而,唯一性语句比多项式的情况弱一些。下面的引理是唯一性引理5.15的整数类比。

引理5.25。让$f, g \in \mathbb{N}$和$r, s, t \in \mathbb{Z}$等于$r=s f+t g$,假设
$$
|r|<k \text { and } 0<t \leq \frac{f}{k} \text { for some } k \in{1, \ldots, f}
$$
我们设$r_i, s_i, t_i \in \mathbb{Z}$为$0 \leq i \leq \ell+1$的传统扩展欧几里得算法对$f, g$的结果,$r_i \geq 0$为所有$i$。此外,我们通过定义$j \in$${1, \ldots, \ell+1}$
$$
r_j<k \leq r_{j-1}
$$
如果$j \leq \ell$,我们选择$q \in \mathbb{N}{\geq 1}$使得$$ r{j-1}-q r_j<k \leq r_{j-1}-(q-1) r_j
$$
让$q=0$ if $j=\ell+1$。那么存在一个非零$\alpha \in \mathbb{Z}$,使得
$$
\text { either }(r, s, t)=\left(\alpha r_j, \alpha s_j, \alpha t_j\right) \text { or }(r, s, t)=\left(\alpha r_j^, \alpha s_j^, \alpha t_j^\right), $$,其中$r_j^=r_{j-1}-q r_j, s_j^=s_{j-1}-q s_j$和$t_j^=t_{j-1}-q t_j$。

数学代写|现代代数代写Modern Algebra代考|Partial fraction decomposition

设$F$为一个域,$f_1, \ldots, f_r \in F[x]$为非常一元多项式和对素数多项式,$e_1, \ldots, e_r \in \mathbb{N}$为正整数,$f=f_1^{e_1} \cdots f_r^{e_r}$为正整数。(我们将在第三部分看到如何将有限域和$\mathbb{Q}$上的多项式分解为不可约因子,但在这里我们不假设$f_i$不可约。)对于另一个次小于$n=\operatorname{deg} f$的多项式$g \in F[x]$,有理函数$g / f \in F(x)$相对于给定的分母$f$的因式分解的部分分式分解为
$$
\frac{g}{f}=\frac{g_{1,1}}{f_1}+\cdots+\frac{g_{1, e_1}}{f_1^{e_1}}+\cdots+\frac{g_{r, 1}}{f_r}+\cdots+\frac{g_{r, e_r}}{f_r^{e_r}},
$$
对于所有$i, j$, $g_{i j} \in F[x]$的度数小于$f_i$。如果所有的$f_i$都是线性多项式,那么$g_{i j}$就是常数。

例5.28。设$F=\mathbb{Q}, f=x^4-x^2$和$g=x^3+4 x^2-x-2$。$g / f$对于$f$的因式分解$f=x^2(x-1)(x+1)$的部分分式分解为线性多项式为
$$
\frac{x^3+4 x^2-x-2}{x^4-x^2}=\frac{1}{x}+\frac{2}{x^2}+\frac{1}{x-1}+\frac{-1}{x+1} .
$$
下面的问题提出了:(31)中的分解是否总是唯一存在,我们如何计算它?下一个引理是找到答案的第一步。

引理5.29。对于所有$i$存在唯一的多项式$c_i \in F[x]$和$\operatorname{deg} c_i<e_i \operatorname{deg} f_i$,使得
$$
\frac{g}{f}=\frac{c_1}{f_1^{e_1}}+\cdots+\frac{c_r}{f_r^{e_r}} .
$$
证明。我们在(33)两边乘以$f$得到线性方程
$$
g=c_1 \prod_{j \neq 1} f_j^{e_j}+\cdots+c_r \prod_{j \neq r} f_j^{e_j}
$$
与“未知”$c_1, \ldots, c_r$。(我们已经在第4.5节看到了如何找到这些方程的多项式解。)对于任何$i \leq r$,除$i$外,每个求和都可以被$f_i^{e_i}$整除,因此$g \equiv c_i \prod_{j \neq i} f_j^{e_j} \bmod f_i^{e_i}$。现在每个$f_j$都是$f_i$的互素数因此对$f_i^{e_i}$取可逆模,我们得到
$$
c_i \equiv g \prod_{j \neq i} f_j^{-e_j} \bmod f_i^{e_i},
$$
它和$\operatorname{deg} c_i<\operatorname{deg} f_i^{e_i}$一起决定了$c_i$。

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MATH611

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH611

数学代写|现代代数代写Modern Algebra代考|Quotient Group

If $H$ is a normal subgroup of $G$, the group $G / H$ that consists of the cosets of $H$ in $G$ is called the quotient group or factor group of $G$ by $H$.

If the group $G$ is abelian, then so is the quotient group $G / H$. Let $a$ and $b$ be elements of $G$, then
$$
\begin{aligned}
a H b H & =a b H & & \text { since } H \text { is normal } \
& =b a H & & \text { since } G \text { is abelian } \
& =b H a H & & \text { since } H \text { is normal }
\end{aligned}
$$
and $G / H$ is abelian.
Suppose the group $G$ has finite order $n$ and the normal subgroup $H$ has order $m$. Then by Lagrange’s Theorem, we have
$$
|G|=|H| \cdot|G / H|
$$
or
$$
n=m \cdot|G / H|,
$$
and the order of the quotient group is $|G / H|=n / m$.
Example 1 Let $G$ be the octic group as given in Example 3 of Section 4.5:
$$
D_4=\left{e, \alpha, \alpha^2, \alpha^3, \beta, \gamma, \Delta, \theta\right} .
$$
It can be readily verified that $H=\left{e, \gamma, \theta, \alpha^2\right}$ is a normal subgroup of $D_4$. The distinct cosets of $\mathrm{H}$ in $\mathrm{D}_4$ are
$$
H=e H=\gamma H=\theta H=\alpha^2 H=\left{e, \gamma, \theta, \alpha^2\right}
$$
and
$$
\alpha H=\alpha^3 H=\beta H=\Delta H=\left{\alpha, \alpha^3, \beta, \Delta\right} .
$$
Thus $D_4 / H={H, \alpha H}$, and a multiplication table for $D_4 / H$ is as follows.

数学代写|现代代数代写Modern Algebra代考|Quotient Group => Homomorphic Image

Let $G$ be a group, and let $H$ be a normal subgroup of $G$. The mapping $\phi: G \rightarrow G / H$ defined by
$$
\phi(a)=a H
$$
is an epimorphism from $G$ to $G / H$.
Proof The rule $\phi(a)=a H$ clearly defines a mapping from $G$ to $G / H$. For any $a$ and $b$ in $G$,
$$
\begin{aligned}
\phi(a) \cdot \phi(b) & =(a H)(b H) \
& =a b H \quad \text { since } H \text { is normal in } G \
& =\phi(a b) .
\end{aligned}
$$
Thus $\phi$ is a homomorphism. Every element of $G / H$ is a coset of $H$ in $G$ that has the form $a H$ for some $a$ in $G$. For any such $a$, we have $\phi(a)=a H$. Therefore, $\phi$ is an epimorphism.
Example 2 Consider the octic group
$$
D_4=\left{e, \alpha, \alpha^2, \alpha^3, \beta, \gamma, \Delta, \theta\right}
$$
and its normal subgroup
$$
H=\left{e, \gamma, \theta, \alpha^2\right} .
$$
We saw in Example 1 that $D_4 / H={H, \alpha H}$. Theorem 4.25 assures us that the mapping $\phi: D_4 \rightarrow D_4 / H$ defined by
$$
\phi(a)=a H
$$
is an epimorphism. The values of $\phi$ are given in this case by
$$
\begin{gathered}
\phi(e)=\phi(\gamma)=\phi(\theta)=\phi\left(\alpha^2\right)=H \
\phi(\alpha)=\phi\left(\alpha^3\right)=\phi(\beta)=\phi(\Delta)=\alpha H .
\end{gathered}
$$

数学代写|现代代数代写Modern Algebra代考|MATH611

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Quotient Group

如果$H$是$G$的正常子组,则由$G$中$H$的余集组成的组$G / H$被$H$称为$G$的商组或因子组。

如果群$G$是阿贝尔,那么商群$G / H$也是阿贝尔。那么,让$a$和$b$成为$G$的元素
$$
\begin{aligned}
a H b H & =a b H & & \text { since } H \text { is normal } \
& =b a H & & \text { since } G \text { is abelian } \
& =b H a H & & \text { since } H \text { is normal }
\end{aligned}
$$
$G / H$是阿贝尔的。
假设群$G$有有限阶$n$,正规子群$H$有阶$m$。根据拉格朗日定理,我们有
$$
|G|=|H| \cdot|G / H|
$$

$$
n=m \cdot|G / H|,
$$
商群的阶是$|G / H|=n / m$。
设$G$为第4.5节例3中给出的octic组:
$$
D_4=\left{e, \alpha, \alpha^2, \alpha^3, \beta, \gamma, \Delta, \theta\right} .
$$
可以很容易地验证$H=\left{e, \gamma, \theta, \alpha^2\right}$是$D_4$的正常子组。$\mathrm{D}_4$中$\mathrm{H}$的不同的集是
$$
H=e H=\gamma H=\theta H=\alpha^2 H=\left{e, \gamma, \theta, \alpha^2\right}
$$

$$
\alpha H=\alpha^3 H=\beta H=\Delta H=\left{\alpha, \alpha^3, \beta, \Delta\right} .
$$
因此是$D_4 / H={H, \alpha H}$,下面是$D_4 / H$的乘法表。

数学代写|现代代数代写Modern Algebra代考|Quotient Group => Homomorphic Image

设$G$为一个组,设$H$为$G$的正常子组。定义的映射$\phi: G \rightarrow G / H$
$$
\phi(a)=a H
$$
是从$G$到$G / H$的表属关系。
证明规则$\phi(a)=a H$明确定义了$G$到$G / H$的映射关系。有关$G$中的$a$和$b$,
$$
\begin{aligned}
\phi(a) \cdot \phi(b) & =(a H)(b H) \
& =a b H \quad \text { since } H \text { is normal in } G \
& =\phi(a b) .
\end{aligned}
$$
因此$\phi$是一个同态。$G / H$的每个元素都是$G$中的$H$的协集,对于$G$中的某些$a$具有$a H$的形式。对于任何这样的$a$,我们有$\phi(a)=a H$。因此,$\phi$是一个外胚。
例2考虑octic组
$$
D_4=\left{e, \alpha, \alpha^2, \alpha^3, \beta, \gamma, \Delta, \theta\right}
$$
和它的正规子群
$$
H=\left{e, \gamma, \theta, \alpha^2\right} .
$$
我们在例1中看到$D_4 / H={H, \alpha H}$。定理4.25保证由。定义的映射$\phi: D_4 \rightarrow D_4 / H$
$$
\phi(a)=a H
$$
是一个外属词。在本例中,$\phi$的值由
$$
\begin{gathered}
\phi(e)=\phi(\gamma)=\phi(\theta)=\phi\left(\alpha^2\right)=H \
\phi(\alpha)=\phi\left(\alpha^3\right)=\phi(\beta)=\phi(\Delta)=\alpha H .
\end{gathered}
$$

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MATH3230

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH3230

数学代写|现代代数代写Modern Algebra代考|Left Coset Partition

Let $H$ be a subgroup of the group $G$. The distinct left cosets of $H$ in $G$ form a partition of $G$; that is, they separate the elements of $G$ into mutually disjoint subsets.

Proof It is sufficient to show that any two left cosets of $H$ that are not disjoint must be the same left coset.

Suppose $a H$ and $b H$ have at least one element in common-say, $z \in a H \cap b H$. Then $z=a h_1$ for some $h_1 \in H$, and $z=b h_2$ for some $h_2 \in H$. This means that $a h_1=b h_2$ and $a=b h_2 h_1^{-1}$. We have that $h_2 h_1^{-1}$ is in $H$ since $H$ is a subgroup, so $a=b h_3$ where $h_3=h_2 h_1^{-1} \in H$. Now, for every $h \in H$,
$$
\begin{aligned}
a h & =b h_3 h \
& =b h_4
\end{aligned}
$$
where $h_4=h_3 \cdot h$ is in $H$. That is, $a h \in b H$ for all $h \in H$. This proves that $a H \subseteq b H$. A similar argument shows that $b H \subseteq a H$, and thus $a H=b H$.

The distinct right cosets of a subgroup $H$ of a group $G$ also form a partition of $G$. That is, Lemma 4.13 can be restated in terms of right cosets (see Exercise 13).
Example 4 Consider again the subgroup
$$
K={(1),(1,2)}
$$
of
$$
G=S_3={(1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3)} .
$$
In Example 3 of this section, we saw that
$$
(1,2,3) K={(1,2,3),(1,3)} .
$$
Since $(1,3)$ is in this left coset, it follows from Lemma 4.13 that
$$
(1,3) K=(1,2,3) K={(1,2,3),(1,3)} .
$$
Straightforward computations show that
$$
(1) K=(1,2) K={(1),(1,2)}=K
$$
and
$$
(2,3) K=(1,3,2) K={(1,3,2),(2,3)} .
$$
Thus the distinct left cosets of $K$ in $G$ are given by
$$
K,(1,2,3) K,(1,3,2) K
$$
and a partition of $G$ is
$$
G=K \cup(1,2,3) K \cup(1,3,2) K \text {. }
$$

数学代写|现代代数代写Modern Algebra代考|Normal Subgroup

Let $H$ be a subgroup of $G$. Then $H$ is a normal (or invariant) subgroup of $G$ if $x H=H x$ for all $x \in G$.

Note that the condition $x H=H x$ is an equality of sets, and it does not require that $x h=h x$ for all $h$ in $H$.
Example 1 Let
$$
H=A_3={(1),(1,2,3),(1,3,2)}=\langle(1,2,3)\rangle
$$
and
$$
G=S_3={(1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3)} .
$$
For $x=(1,2)$ we have
$$
\begin{aligned}
x H & ={(1,2)(1),(1,2)(1,2,3),(1,2)(1,3,2)} \
& ={(1,2),(2,3),(1,3)}
\end{aligned}
$$
and
$$
\begin{aligned}
H x & ={(1)(1,2),(1,2,3)(1,2),(1,3,2)(1,2)} \
& ={(1,2),(1,3),(2,3)} .
\end{aligned}
$$
We have $x H=H x$, but $x h \neq h x$ when $h=(1,2,3) \in H$. Similar computations show that
$$
\begin{aligned}
(1) H=(1,2,3) H=(1,3,2) H & ={(1),(1,2,3),(1,3,2)}=H \
H(1)=H(1,2,3)=H(1,3,2) & ={(1),(1,2,3),(1,3,2)}=H \
(1,2) H=(1,3) H=(2,3) H & ={(1,2),(1,3),(2,3)} \
H(1,2)=H(1,3)=H(2,3) & ={(1,2),(1,3),(2,3)} .
\end{aligned}
$$
Thus $H$ is a normal subgroup of $G$. Additionally, we note that $G$ can be expressed as
$$
G=H \cup(1,2) H .
$$

数学代写|现代代数代写Modern Algebra代考|MATH3230

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Left Coset Partition

设$H$为组$G$的子组。$G$中$H$的不同左余集形成了$G$的一个分区;也就是说,它们将$G$的元素分离为互不相交的子集。

证明$H$的任意两个不相交的左余集必定是相同的左余集。

假设$a H$和$b H$至少有一个共同的元素,比如$z \in a H \cap b H$。然后$z=a h_1$表示一些$h_1 \in H$, $z=b h_2$表示一些$h_2 \in H$。这意味着$a h_1=b h_2$和$a=b h_2 h_1^{-1}$。我们知道$h_2 h_1^{-1}$在$H$中,因为$H$是子组,所以$a=b h_3$在$h_3=h_2 h_1^{-1} \in H$中。对于每个$h \in H$,
$$
\begin{aligned}
a h & =b h_3 h \
& =b h_4
\end{aligned}
$$
$h_4=h_3 \cdot h$在$H$中。也就是说,所有$h \in H$都是$a h \in b H$。这证明了$a H \subseteq b H$。类似的论点表明$b H \subseteq a H$,因此$a H=b H$。

群$G$的子群$H$的不同的右余集也形成了$G$的一个分区。也就是说,引理4.13可以用右集来重述(参见练习13)。
再次考虑子组
$$
K={(1),(1,2)}
$$

$$
G=S_3={(1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3)} .
$$
在本节的示例3中,我们看到了这一点
$$
(1,2,3) K={(1,2,3),(1,3)} .
$$
因为$(1,3)$在这个左余集,从引理4.13可以得出
$$
(1,3) K=(1,2,3) K={(1,2,3),(1,3)} .
$$
简单的计算表明了这一点
$$
(1) K=(1,2) K={(1),(1,2)}=K
$$

$$
(2,3) K=(1,3,2) K={(1,3,2),(2,3)} .
$$
因此,$G$中$K$的不同左余集由式给出
$$
K,(1,2,3) K,(1,3,2) K
$$
$G$的分区是
$$
G=K \cup(1,2,3) K \cup(1,3,2) K \text {. }
$$

数学代写|现代代数代写Modern Algebra代考|Normal Subgroup

设$H$为$G$的子组。那么$H$是$G$的正常(或不变)子组,如果$x H=H x$适用于所有$x \in G$。

注意,条件$x H=H x$是集合的等式,它不要求$H$中的所有$h$都是$x h=h x$。
例1
$$
H=A_3={(1),(1,2,3),(1,3,2)}=\langle(1,2,3)\rangle
$$

$$
G=S_3={(1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3)} .
$$
对于$x=(1,2)$我们有
$$
\begin{aligned}
x H & ={(1,2)(1),(1,2)(1,2,3),(1,2)(1,3,2)} \
& ={(1,2),(2,3),(1,3)}
\end{aligned}
$$

$$
\begin{aligned}
H x & ={(1)(1,2),(1,2,3)(1,2),(1,3,2)(1,2)} \
& ={(1,2),(1,3),(2,3)} .
\end{aligned}
$$
我们有$x H=H x$,但$x h \neq h x$当$h=(1,2,3) \in H$。类似的计算表明
$$
\begin{aligned}
(1) H=(1,2,3) H=(1,3,2) H & ={(1),(1,2,3),(1,3,2)}=H \
H(1)=H(1,2,3)=H(1,3,2) & ={(1),(1,2,3),(1,3,2)}=H \
(1,2) H=(1,3) H=(2,3) H & ={(1,2),(1,3),(2,3)} \
H(1,2)=H(1,3)=H(2,3) & ={(1,2),(1,3),(2,3)} .
\end{aligned}
$$
因此$H$是$G$的正常子组。另外,我们注意到$G$可以表示为
$$
G=H \cup(1,2) H .
$$

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|MATH612

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH612

数学代写|现代代数代写Modern Algebra代考|Finite Permutation Groups

An appreciation of the importance of permutation groups must be based to some extent on a knowledge of their structures. The basic facts about finite permutation groups are presented in this section, and their importance is revealed in the next two sections.
Suppose $A$ is a finite set of $n$ elements-say,
$$
A=\left{a_1, a_2, \ldots, a_n\right} .
$$
Any permutation $f$ on $A$ is determined by the choices for the $n$ values
$$
f\left(a_1\right), f\left(a_2\right), \ldots, f\left(a_n\right) .
$$
In assigning these values, there are $n$ choices for $f\left(a_1\right)$, then $n-1$ choices of $f\left(a_2\right)$, then $n-2$ choices of $f\left(a_3\right)$, and so on. Thus, there are $n(n-1) \cdots(2)(1)=n$ ! different ways in which $f$ can be defined, and $\mathcal{S}(A)$ has $n$ ! elements. Each element $f$ in $\mathcal{S}(A)$ can be represented by a matrix (rectangular array) in which the image of $a_i$ is written under $a_i$ :
$$
f=\left[\begin{array}{cccc}
a_1 & a_2 & \cdots & a_n \
f\left(a_1\right) & f\left(a_2\right) & \cdots & f\left(a_n\right)
\end{array}\right] .
$$
Each permutation $f$ on $A$ can be made to correspond to a permutation $f^{\prime}$ on $B=$ ${1,2, \ldots, n}$ by replacing $a_k$ with $k$ for $k=1,2, \ldots, n$ :
$$
f^{\prime}=\left[\begin{array}{cccc}
1 & 2 & \cdots & n \
f^{\prime}(1) & f^{\prime}(2) & \cdots & f^{\prime}(n)
\end{array}\right] .
$$

数学代写|现代代数代写Modern Algebra代考|Products of Transpositions

If a certain permutation $f$ is expressed as a product of $p$ transpositions and also as a product of $q$ transpositions, then either $p$ and $q$ are both even or $p$ and $q$ are both odd.
$$
\begin{aligned}
& (u \wedge v) \
\Rightarrow & (r \vee s)
\end{aligned} \quad \text { Proof Suppose } \quad f=t_1 t_2 \cdots t_p \text { and } f=t_1^{\prime} t_2^{\prime} \cdots t_q^{\prime}
$$
where each $t_i$ and each $t_j^{\prime}$ are transpositions. With the first factorization, the result of applying $f$ to
$$
P=\prod_{i<j}^n\left(x_i-x_j\right)
$$
can be obtained by successive application of the transpositions $t_p, t_{p-1}, \ldots, t_2, t_1$. By Lemma 4.4, each $t_i$ changes the sign of $P$, so
$$
f(P)=(-1)^p P .
$$
Repeating this same line of reasoning with the second factorization, we obtain
$$
f(P)=(-1)^q P .
$$
This means that
$$
(-1)^p P=(-1)^q P,
$$
and consequently,
$$
(-1)^p=(-1)^q .
$$
Therefore, either $p$ or $q$ are both even or $p$ and $q$ are both odd.

数学代写|现代代数代写Modern Algebra代考|MATH612

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Finite Permutation Groups

对置换群重要性的认识必须在一定程度上基于对其结构的了解。有限置换群的基本事实将在本节中介绍,它们的重要性将在接下来的两节中揭示。
假设 $A$ 一个有限的集合是 $n$ 元素,比如说,
$$
A=\left{a_1, a_2, \ldots, a_n\right} .
$$
任意排列 $f$ 在 $A$ 是由选择来决定的 $n$ 价值
$$
f\left(a_1\right), f\left(a_2\right), \ldots, f\left(a_n\right) .
$$
在赋值时,有 $n$ 选择 $f\left(a_1\right)$那么, $n-1$ 选择 $f\left(a_2\right)$那么, $n-2$ 选择 $f\left(a_3\right)$等等。因此,有 $n(n-1) \cdots(2)(1)=n$ ! 不同的方式 $f$ 可以定义,并且 $\mathcal{S}(A)$ 有 $n$ ! 元素。每个元素 $f$ 在 $\mathcal{S}(A)$ 可以用一个矩阵(矩形数组)来表示其中的图像吗 $a_i$ 写在 $a_i$ :
$$
f=\left[\begin{array}{cccc}
a_1 & a_2 & \cdots & a_n \
f\left(a_1\right) & f\left(a_2\right) & \cdots & f\left(a_n\right)
\end{array}\right] .
$$
每种排列 $f$ 在 $A$ 能与排列相对应吗 $f^{\prime}$ 在 $B=$ ${1,2, \ldots, n}$ 通过替换 $a_k$ 有 $k$ 为了 $k=1,2, \ldots, n$ :
$$
f^{\prime}=\left[\begin{array}{cccc}
1 & 2 & \cdots & n \
f^{\prime}(1) & f^{\prime}(2) & \cdots & f^{\prime}(n)
\end{array}\right] .
$$

数学代写|现代代数代写Modern Algebra代考|Products of Transpositions

如果某个排列$f$表示为$p$调换的乘积和$q$调换的乘积,则$p$和$q$都是偶数,或者$p$和$q$都是奇数。
$$
\begin{aligned}
& (u \wedge v) \
\Rightarrow & (r \vee s)
\end{aligned} \quad \text { Proof Suppose } \quad f=t_1 t_2 \cdots t_p \text { and } f=t_1^{\prime} t_2^{\prime} \cdots t_q^{\prime}
$$
其中每个$t_i$和$t_j^{\prime}$都是换位。对于第一次因式分解,将$f$应用于
$$
P=\prod_{i<j}^n\left(x_i-x_j\right)
$$
可以通过连续应用换位得到$t_p, t_{p-1}, \ldots, t_2, t_1$。根据引理4.4,每个$t_i$都会改变$P$的符号,所以
$$
f(P)=(-1)^p P .
$$
对第二次因式分解重复同样的推理,我们得到
$$
f(P)=(-1)^q P .
$$
这意味着
$$
(-1)^p P=(-1)^q P,
$$
因此,
$$
(-1)^p=(-1)^q .
$$
因此,$p$和$q$都是偶数,或者$p$和$q$都是奇数。

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|现代代数代写Modern Algebra代考|Definition of a Group

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra有时被称为代数结构或抽象代数,或者仅仅在高等数学的背景下被称为代数。虽然这个名字可能只是暗示了一种新的方式来表示微积分之前的代数,但实际上它比微积分更广泛、更深入。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|Definition of a Group

数学代写|现代代数代写Modern Algebra代考|Definition of a Group

The fundamental notions of set, mapping, binary operation, and binary relation were presented in Chapter 1. These notions are essential for the study of an algebraic system. An algebraic structure, or algebraic system, is a nonempty set in which at least one equivalence relation (equality) and one or more binary operations are defined. The simplest structures occur when there is only one binary operation, as is the case with the algebraic system known as a group.
An introduction to the theory of groups is presented in this chapter, and it is appropriate to point out that this is only an introduction. Entire books have been devoted to the theory of groups; the group concept is extremely useful in both pure and applied mathematics.
A group may be defined as follows.
Group
Suppose the binary operation * is defined for elements of the set $G$. Then $G$ is a group with respect to * provided the following four conditions hold:

  1. $G$ is closed under *. That is, $x \in G$ and $y \in G$ imply that $x * y$ is in $G$.
  2. * is associative. For all $x, y, z$ in $G, x *(y * z)=(x * y) * z$.
  3. $G$ has an identity element $e$. There is an $e$ in $G$ such that $x * e=e * x=x$ for all $x \in G$.
  4. $G$ contains inverses. For each $a \in G$, there exists $b \in G$ such that $a * b=b * a=e$.

The phrase “with respect to *” should be noted. For example, the set $\mathbf{Z}$ of all integers is a group with respect to addition but not with respect to multiplication (it has no inverses for elements other than \pm 1 ). Similarly, the set $G={1,-1}$ is a group with respect to multiplication but not with respect to addition. In most instances, however, only one binary operation is under consideration, and we say simply that ” $G$ is a group.” If the binary operation is unspecified, we adopt the multiplicative notation and use the juxtaposition $x y$ to indicate the result of combining $x$ and $y$. Keep in mind, though, that the binary operation is not necessarily multiplication.

数学代写|现代代数代写Modern Algebra代考|Properties of Group Elements

Several consequences of the definition of a group are recorded in Theorem 3.4.
Parts $\mathbf{a}$ and $\mathbf{b}$ of the next theorem are statements about uniqueness, and they can be proved by the standard type of uniqueness proof: Assume that two such quantities exist, and then prove the two to be equal.
Properties of Group Elements
Let $G$ be a group with respect to a binary operation that is written as multiplication.
a. The identity element $e$ in $G$ is unique.
b. For each $x \in G$, the inverse $x^{-1}$ in $G$ is unique.
c. For each $x \in G,\left(x^{-1}\right)^{-1}=x$.
d. Reverse order law. For any $x$ and $y$ in $G,(x y)^{-1}=y^{-1} x^{-1}$.
e. Cancellation laws. If $a, x$, and $y$ are in $G$, then either of the equations $a x=a y$ or $x a=y a$ implies that $x=y$.

Proof We prove parts $\mathbf{b}$ and $\mathbf{d}$ and leave the others as exercises. To prove part $\mathbf{b}$, let $x \in G$, and suppose that each of $y$ and $z$ is an inverse of $x$. That is,
$$
x y=e=y x \text { and } x z=e=z x .
$$
Then
$$
\begin{aligned}
y & =e y & & \text { since } e \text { is an identity } \
& =(z x) y & & \text { since } z x=e \
& =z(x y) & & \text { by associativity } \
& =z(e) & & \text { since } x y=e \
& =z & & \text { since } e \text { is an identity. }
\end{aligned}
$$
Thus $y=z$, and this justifies the notation $x^{-1}$ as the unique inverse of $x$ in $G$.
We shall use part $\mathbf{b}$ in the proof of part $\mathbf{d}$. Specifically, we shall use the fact that the inverse $(x y)^{-1}$ is unique. This means that in order to show that $y^{-1} x^{-1}=(x y)^{-1}$, we only need to verify that $(x y)\left(y^{-1} x^{-1}\right)=e=\left(y^{-1} x^{-1}\right)(x y)$. These calculations are straightforward:
$$
\left(y^{-1} x^{-1}\right)(x y)=y^{-1}\left(x^{-1} x\right) y=y^{-1} e y=y^{-1} y=e
$$
and
$$
(x y)\left(y^{-1} x^{-1}\right)=x\left(y y^{-1}\right) x^{-1}=x e x^{-1}=x x^{-1}=e .
$$

数学代写|现代代数代写Modern Algebra代考|Definition of a Group

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Definition of a Group

第一章给出了集合、映射、二元运算和二元关系的基本概念。这些概念对于代数系统的研究是必不可少的。代数结构或代数系统是定义了至少一个等价关系(等式)和一个或多个二元操作的非空集合。最简单的结构出现在只有一个二进制运算的时候,就像被称为群的代数系统一样。
在本章中介绍了群的理论,并适当地指出,这只是一个介绍。整本整本的书都致力于群体理论;群的概念在纯数学和应用数学中都非常有用。
组可以定义如下。
集团
假设为集合$G$中的元素定义了二元操作。则$G$是关于的群,只要满足以下四个条件:

$G$在*下关闭。也就是说,$x \在G$中,$y \在G$中意味着$x * y$在G$中。

*是结合律。对于$G中的所有$x, y, z$, x *(y * z)=(x * y) * z$。

$G$有一个单位元$e$。在$G$中有一个$e$使得$x * e=e * x=x$对于G$中的所有$x \。

$G$包含逆。对于G$中的每一个$a \,在G$中存在$b \使得$a * b=b * a=e$。

应该注意短语“相对于”。例如,所有整数的集合$\mathbf{Z}$是一个关于加法而不是关于乘法的群(除了\pm 1之外,它没有其他元素的逆)。同样,集合$G={1,-1}$是一个关于乘法而不是关于加法的群。然而,在大多数情况下,只考虑一个二进制操作,我们简单地说“$G$是一个组”。如果未指定二进制操作,则采用乘法表示法,并使用并列式$x y$来表示$x$和$y$组合的结果。但是请记住,二进制操作不一定是乘法。

数学代写|现代代数代写Modern Algebra代考|Properties of Group Elements

群定义的几个结果记录在定理3.4中。
下一个定理的$\mathbf{a}$和$\mathbf{b}$部分是关于唯一性的陈述,它们可以用标准类型的唯一性证明来证明:假设存在两个这样的量,然后证明这两个量相等。
群元素的性质
设$G$是一个关于二进制运算的组,它被写成乘法。
a.“$G$”中的“$e$”是唯一的标识元素。
b.对于每个$x \in G$, $G$的倒数$x^{-1}$是唯一的。
c.对于每个$x \in G,\left(x^{-1}\right)^{-1}=x$。
d.逆序定律。有关任何$x$和$y$,请参阅$G,(x y)^{-1}=y^{-1} x^{-1}$。
e.取消法。如果$a, x$和$y$在$G$中,则公式$a x=a y$或$x a=y a$中的任何一个都意味着$x=y$。

我们证明了$\mathbf{b}$和$\mathbf{d}$部分,其余部分作为练习。为了证明部分$\mathbf{b}$,设$x \in G$,并假设$y$和$z$都是$x$的逆。也就是说,
$$
x y=e=y x \text { and } x z=e=z x .
$$
然后
$$
\begin{aligned}
y & =e y & & \text { since } e \text { is an identity } \
& =(z x) y & & \text { since } z x=e \
& =z(x y) & & \text { by associativity } \
& =z(e) & & \text { since } x y=e \
& =z & & \text { since } e \text { is an identity. }
\end{aligned}
$$
因此是$y=z$,这证明了将$x^{-1}$标记为$G$中$x$的唯一逆表示。
我们将在$\mathbf{d}$的证明中使用$\mathbf{b}$部分。具体来说,我们将利用逆$(x y)^{-1}$是唯一的这一事实。这意味着为了证明$y^{-1} x^{-1}=(x y)^{-1}$,我们只需要验证$(x y)\left(y^{-1} x^{-1}\right)=e=\left(y^{-1} x^{-1}\right)(x y)$。这些计算很简单:
$$
\left(y^{-1} x^{-1}\right)(x y)=y^{-1}\left(x^{-1} x\right) y=y^{-1} e y=y^{-1} y=e
$$

$$
(x y)\left(y^{-1} x^{-1}\right)=x\left(y y^{-1}\right) x^{-1}=x e x^{-1}=x x^{-1}=e .
$$

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写