标签: Math310

数学代写|现代代数代写Modern Algebra代考|MATH310

如果你也在 怎样代写现代代数Modern Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。现代代数Modern Algebra就像数学的其他分支一样——只有从最基本的思想和例子中仔细地推导才能掌握。但这需要时间,而且有些目标在你实现之前是不明确的。

现代代数Modern Algebra这门学科的思想和方法几乎渗透到现代数学的每一个部分。此外,没有一门学科更适合培养处理抽象概念的能力,即理解和处理问题或学科的基本要素。这包括阅读数学的能力,提出正确的问题,解决问题,运用演绎推理,以及写出正确、切中要害、清晰的数学。

statistics-lab™ 为您的留学生涯保驾护航 在代写现代代数Modern Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写现代代数Modern Algebra代写方面经验极为丰富,各种代写现代代数Modern Algebra相关的作业也就用不着说。

数学代写|现代代数代写Modern Algebra代考|MATH310

数学代写|现代代数代写Modern Algebra代考|Sylow p-Subgroup

If $G$ is a finite abelian group and $p$ is a prime such that $p$ divides $|G|$, then $G_p$ is a Sylow $p$-subgroup.

Proof Assume that $G$ is a finite abelian group such that $p^m$ divides $|G|$ but $p^{m+1}$ does not divide $|G|$. Then $|G|=p^m k$, where $p$ and $k$ are relatively prime. We need to prove that $G_p$ has order $p^m$.

We first argue that $\left|G_p\right|$ is a power of $p$. If $\left|G_p\right|$ had a prime factor $q$ different from $p$, then $G_p$ would have to contain an element of order $q$, according to Cauchy’s Theorem. This would contradict the very definition of $G_p$, so we conclude that $\left|G_p\right|$ is a power of $p$. Let $\left|G_p\right|=p^t$.

Suppose now that $\left|G_p\right|<p^m$-that is, that $t<m$. Then the quotient group $G / G_p$ has order $p^m k / p^t=p^{m-t} k$, which is divisible by $p$. Hence $G / G_p$ contains an element $a+G_p$ of order $p$, by Theorem 4.41 . Then
$$
G_p=p\left(a+G_p\right)=p a+G_p,
$$
and this implies that $p a \in G_p$. Thus $p a$ has order that is a power of $p$. This implies that $a$ has order a power of $p$, and therefore $a \in G_p$; that is, $a+G_p=G_p$. This is a contradiction to the fact that $a+G_p$ has order $p$. Therefore, $\left|G_p\right|=p^m$, and $G_p$ is a Sylow $p$-subgroup of $G$.

The next theorem shows the true significance of the Sylow $p$-subgroups in the structure of abelian groups.

Let $G$ be an abelian group of order $n=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$ where the $p_i$ are distinct primes and each $m_i$ is a positive integer. Then
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
where $G_{p_i}$ is the Sylow $p_i$-subgroup of $G$ that corresponds to the prime $p_i$.
Proof Assume the hypothesis of the theorem. For each prime $p_i, G_{p_i}$ is a Sylow $p$-subgroup of $G$ by Theorem 4.42. Suppose an element $a_1 \in G_{p_1}$ is also in the subgroup generated by $G_{p_2}, G_{p_3}, \ldots, G_{p_r}$. Then
$$
a_1=a_2+a_3+\cdots+a_r
$$
where $a_i \in G_{p_i}$. Since $G_{p_i}$ has order $p_i^{m_i}, p_i^{m_i} a_i=0$ for $i=2, \ldots, r$. Hence
$$
p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r} a_1=0 \text {. }
$$
Since the order of any $a_1 \in G_{p_1}$ is a power of $p_1$, and $p_1$ is relatively prime to $p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r}$, this requires that $a_1=0$. A similar argument shows that the intersection of any $G_{p_i}$ with the subgroup generated by the remaining subgroups
$$
G_{p_1}, G_{p_2}, \ldots, G_{p_{i-1}}, G_{p_{i+1}}, \ldots, G_{p_r}
$$
is the identity subgroup ${0}$. Hence the sum
$$
G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
is direct and has order equal to the product of the orders $p_i^{m_i}$ :
$$
\left|G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}\right|=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}=|G| .
$$
Therefore,
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$

数学代写|现代代数代写Modern Algebra代考|Direct Sum of Cyclic Groups

Any finitely generated abelian group $G$ (and therefore any finite abelian group) is a direct sum of cyclic groups.

Proof The proof is by induction on the rank of $G$. If $G$ has rank 1 , then $G$ is cyclic and the theorem is true.

Assume that the theorem is true for any group of rank $k-1$, and let $G$ be a group of rank $k$. We consider two cases.

Case 1 Suppose there exists a minimal generating set $\left{a_1, a_2, \ldots, a_k\right}$ for $G$ such that any relation of the form
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
with $z_i \in \mathbf{Z}$ implies that $z_1 a_1=z_2 a_2=\cdots=z_k a_k=0$. Then
$$
G=\left\langle a_1\right\rangle+\left\langle a_2\right\rangle+\cdots+\left\langle a_k\right\rangle,
$$
and the theorem is true for this case.

Case 2 Suppose that Case 1 does not hold. That is, for any minimal generating set $\left{a_1, a_2, \ldots, a_k\right}$ of $G$, there exists a relation of the form
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
with $z_i \in \mathbf{Z}$ such that some of the $z_i a_i \neq 0$. Among all the minimal generating sets and all the relations of this form, there exists a smallest positive integer $\bar{z}_i$ that occurs as a coefficient in one of these relations. Suppose this $\bar{z}_i$ occurs in a relation with the generating set $\left{b_1, b_2, \ldots, b_k\right}$. If necessary, the elements in $\left{b_1, b_2, \ldots, b_k\right}$ can be rearranged so that this smallest positive coefficient occurs as $\bar{z}_1$ with $b_1$ in
$$
\bar{z}_1 b_1+\bar{z}_2 b_2+\cdots+\bar{z}_k b_k=0 .
$$
Now let $s_1, s_2, \ldots, s_k$ be any set of integers that occur as coefficients in a relation of the form
$$
s_1 b_1+s_2 b_2+\cdots+s_k b_k=0
$$
with these generators $b_i$. We shall show that $\bar{z}_1$ divides $s_1$. By the Division Algorithm, $s_1=\bar{z}_1 q_1+r_1$, where $0 \leq r_1<\bar{z}_1$. Multiplying equation (1) by $q_1$ and subtracting the result from equation (2), we have
$$
r_1 b_1+\left(s_2-\bar{z}_2 q_1\right) b_2+\cdots+\left(s_k-\bar{z}_k q_1\right) b_k=0 .
$$

数学代写|现代代数代写Modern Algebra代考|MATH310

现代代数代考

数学代写|现代代数代写Modern Algebra代考|Sylow p-Subgroup

如果$G$是一个有限阿贝尔群,并且$p$是一个质数,使得$p$可以除$|G|$,那么$G_p$是一个Sylow $p$ -子群。

证明假设$G$是一个有限阿贝尔群,使得$p^m$能除$|G|$,但$p^{m+1}$不能除$|G|$。然后是$|G|=p^m k$,其中$p$和$k$是相对主要的。我们需要证明$G_p$有阶$p^m$。

我们首先论证$\left|G_p\right|$是$p$的一种力量。如果$\left|G_p\right|$有一个不同于$p$的质因数$q$,那么根据柯西定理,$G_p$必须包含一个顺序为$q$的元素。这将与$G_p$的定义相矛盾,因此我们得出结论:$\left|G_p\right|$是$p$的幂。让$\left|G_p\right|=p^t$。

假设现在是$\left|G_p\right|<p^m$,也就是$t<m$。那么商群$G / G_p$的阶为$p^m k / p^t=p^{m-t} k$,能被$p$整除。因此,根据定理4.41,$G / G_p$包含一个阶为$p$的元素$a+G_p$。然后
$$
G_p=p\left(a+G_p\right)=p a+G_p,
$$
这意味着$p a \in G_p$。因此$p a$的秩序是$p$的力量。这意味着$a$有$p$的次幂,因此$a \in G_p$;也就是$a+G_p=G_p$。这与$a+G_p$有秩序这一事实相矛盾$p$。因此,$\left|G_p\right|=p^m$和$G_p$是$G$的Sylow $p$ -子组。

下一个定理说明了Sylow $p$ -子群在阿贝尔群结构中的真正意义。

设$G$是一个阶为$n=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$的阿贝尔群,其中$p_i$是不同的素数,每个$m_i$都是正整数。然后
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
其中$G_{p_i}$是$G$的Sylow $p_i$子组,对应素数$p_i$。
假设定理的假设。根据定理4.42,对于每个质数$p_i, G_{p_i}$都是$G$的一个Sylow $p$ -子群。假设一个元素$a_1 \in G_{p_1}$也在$G_{p_2}, G_{p_3}, \ldots, G_{p_r}$生成的子组中。然后
$$
a_1=a_2+a_3+\cdots+a_r
$$
在哪里$a_i \in G_{p_i}$。因为$G_{p_i}$为$i=2, \ldots, r$订购了$p_i^{m_i}, p_i^{m_i} a_i=0$。因此
$$
p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r} a_1=0 \text {. }
$$
因为任何$a_1 \in G_{p_1}$的阶是$p_1$的幂次,而$p_1$相对于$p_2^{m_2} p_3^{m_3} \cdots p_r^{m_r}$是质数,这就要求$a_1=0$。类似的论证表明,任何$G_{p_i}$与由其余子组生成的子组的交集
$$
G_{p_1}, G_{p_2}, \ldots, G_{p_{i-1}}, G_{p_{i+1}}, \ldots, G_{p_r}
$$
是身份子组${0}$。因此求和
$$
G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$
是直接的,阶数等于阶数的乘积$p_i^{m_i}$:
$$
\left|G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}\right|=p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}=|G| .
$$
因此,
$$
G=G_{p_1} \oplus G_{p_2} \oplus \cdots \oplus G_{p_r}
$$

数学代写|现代代数代写Modern Algebra代考|Direct Sum of Cyclic Groups

任何有限生成的阿贝尔群$G$(因此任何有限阿贝尔群)都是循环群的直接和。

证明是通过归纳法对$G$的秩进行的。如果$G$的秩为1,则$G$是循环的,定理成立。

假设该定理对任何秩为$k-1$的组成立,设$G$为秩为$k$的组。我们考虑两种情况。

假设存在一个最小发电集$\left{a_1, a_2, \ldots, a_k\right}$对于$G$,使得任何形式的关系
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
用$z_i \in \mathbf{Z}$表示$z_1 a_1=z_2 a_2=\cdots=z_k a_k=0$。然后
$$
G=\left\langle a_1\right\rangle+\left\langle a_2\right\rangle+\cdots+\left\langle a_k\right\rangle,
$$
这个定理对这个例子是成立的。

假设情况1不成立。即对于$G$的任何最小发电机组$\left{a_1, a_2, \ldots, a_k\right}$,都存在如下形式的关系
$$
z_1 a_1+z_2 a_2+\cdots+z_k a_k=0
$$
有了$z_i \in \mathbf{Z}$这样的一些$z_i a_i \neq 0$。在所有这种形式的最小发电机组和所有这种形式的关系中,存在一个最小的正整数$\bar{z}_i$,它作为系数出现在其中一个关系中。假设这个$\bar{z}_i$发生在与发电集$\left{b_1, b_2, \ldots, b_k\right}$的关系中。如果有必要,可以重新排列$\left{b_1, b_2, \ldots, b_k\right}$中的元素,使最小的正系数变为$\bar{z}_1$和$b_1$ in
$$
\bar{z}_1 b_1+\bar{z}_2 b_2+\cdots+\bar{z}_k b_k=0 .
$$
现在设$s_1, s_2, \ldots, s_k$为任意整数的集合它们作为系数出现在如下形式的关系中
$$
s_1 b_1+s_2 b_2+\cdots+s_k b_k=0
$$
有了这些生成器$b_i$。我们将证明$\bar{z}_1$除$s_1$。按除法算法,$s_1=\bar{z}_1 q_1+r_1$,其中$0 \leq r_1<\bar{z}_1$。将式(1)乘以$q_1$,再减去式(2)的结果,我们得到
$$
r_1 b_1+\left(s_2-\bar{z}_2 q_1\right) b_2+\cdots+\left(s_k-\bar{z}_k q_1\right) b_k=0 .
$$

数学代写|现代代数代写Modern Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|MTH230 Linear Algebra

Statistics-lab™可以为您提供monroecc.edu MTH230 Linear Algebra线性代数的代写代考辅导服务!

MTH230 Linear Algebra课程简介

Topics include systems of linear equations, vectors and matrices, determinants, vector spaces, linear transformations, eigenvectors and eigenvalues, and inner product spaces. Four class hours. Course offered Fall, Spring, and Summer.

MTH 212 with a grade of $\mathrm{C}$ or better, or both MTH 211 and MTH 220 with a grade of $\mathrm{C}$ or better in each, or permission of instructor.

PREREQUISITES 

  1. Solve a system of linear equations
  2. Identify whether a system of linear equations has none, one or infinitely many solutions
  3. Solve a system of linear equations using row-reduction and backsubstitution
  4. Perform arithmetic operations with vectors
  5. Discuss the span of a set of vectors
  6. Solve the matrix equation $A x=b$
  7. Decide whether a set of vectors is linearly independent
  8. Discuss linear transformations from one Euclidean space to another
  9. Identify whether a transformation is one-to-one
  10. Perform operations on matrices
  11. Compute a linear combination of matrices
  12. Computer the product of two matrices, if it exists
  13. Write the transpose of a matrix
  14. Find the inverse of a matrix, if it exists
  15. Perform arithmetic operations on partitioned matrices
  16. Discuss various Euclidean spaces
  17. Define what a Euclidean space is
  18. Find the dimension of a given space
  19. Define what a subspace is and state conditions for its existence
  20. Find the column space of a matrix
  21. Find the row space of a matrix
    6 . Find the nullspace of a matrix
  22. State the rank of a matrix and relate it to the column and row spaces of the matrix

MTH230 Linear Algebra HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

Let $S: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the clockwise rotation around the origin by an angle $\theta=\frac{\pi}{2}$, and let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation such that
$$
[T]_{\mathcal{E}_2, \mathcal{E}_2}=\left[\begin{array}{cc}
-1 & 1 \
1 & -1
\end{array}\right]
$$
Find the null space and the image of the composite linear transformation $T S$. Verify that the Rank-nullity Theorem holds. Is this transformation an isomorphism?

We have $S\left(\begin{bmatrix}x\y\end{bmatrix}\right) = \begin{bmatrix}-y\x\end{bmatrix}$ and $[T]_{\mathcal{E}_2,\mathcal{E}_2} = \begin{bmatrix}-1 & 1\1 & -1\end{bmatrix}$. Therefore, $TS\left(\begin{bmatrix}x\y\end{bmatrix}\right) = T\left(\begin{bmatrix}-y\x\end{bmatrix}\right) = \begin{bmatrix}-y-x\y-x\end{bmatrix} = -\begin{bmatrix}1 & 1\-1 & 1\end{bmatrix}\begin{bmatrix}x\y\end{bmatrix}$.

Hence, the matrix of $TS$ with respect to the standard basis is $\begin{bmatrix}-1 & 1\-1 & -1\end{bmatrix}$, and we can find its null space and image as follows:

The null space of $TS$ is the set of all solutions to the homogeneous system of equations $\begin{bmatrix}-1 & 1\-1 & -1\end{bmatrix}\begin{bmatrix}x\y\end{bmatrix} = \begin{bmatrix}0\0\end{bmatrix}$. This is equivalent to the system of equations $\begin{aligned} -x + y &= 0 \ -x – y &= 0 \end{aligned}$, which has the unique solution $x = 0$, $y = 0$. Therefore, the null space of $TS$ is the zero vector.

The image of $TS$ is the set of all vectors of the form $\begin{bmatrix}-x-y\y-x\end{bmatrix}$. To find a basis for this set, we can solve for $x$ and $y$ in terms of the components of a generic vector $\begin{bmatrix}a\b\end{bmatrix}$:

\begin{align*} -x-y &= a \ y-x &= b \ \end{align*}

Adding the two equations gives $-x = a+b$, so $x = -a-b$. Substituting into the second equation gives $y – (-a-b) = b$, so $y = 2b + a$. Therefore, the set of all vectors of the form $\begin{bmatrix}-x-y\y-x\end{bmatrix}$ is the span of $\begin{bmatrix}-1\2\end{bmatrix}$ and $\begin{bmatrix}-1\-2\end{bmatrix}$, and this set has dimension 2. Thus, the image of $TS$ has dimension 2.

Since the null space of $TS$ is 0 and the image of $TS$ has dimension 2, the Rank-Nullity Theorem holds for this transformation.

To determine whether $TS$ is an isomorphism, we need to check whether it is invertible. The determinant of the matrix $\begin{bmatrix}-1 & 1\-1 & -1\end{bmatrix}$ is $(-1)(-1) – (1)(-1) = 0$, so the transformation is not invertible. Therefore, $TS$ is not an isomorphism.

问题 2.

Let $T: V \rightarrow \mathbb{R}^2$ be the linear transformation defined by $T(x, y)=$ $(-9 x,-6 x)$, where $V$ is the straight line $2 x=y$ in $\mathbb{R}^2$. Find a matrix representing $T$ relative to basis of your choice. Find the null space and the image of $T$. Is $T$ injective or surjective?

First, let’s choose a basis for $V$. Since $V$ is a straight line, we only need one vector to span it. Let’s choose $(1, 2)$ as a basis for $V$.

To find the matrix representing $T$ relative to this basis, we apply $T$ to the basis vector:

T(1, 2) = (-9, -6).T(1,2)=(−9,−6).

So the matrix representing $T$ relative to the basis ${(1, 2)}$ is:

[T]_{\{(1,2)\},\mathbb{R}^2} = \begin{bmatrix} -9 \\ -6 \end{bmatrix}.[T]{(1,2)},R2​=[−9−6​].

To find the null space of $T$, we need to find all vectors in $V$ that get mapped to $\mathbf{0}$ in $\mathbb{R}^2$. We have:

T(x, 2x) = (-9x, -6x) = \mathbf{0}T(x,2x)=(−9x,−6x)=0

if and only if $x=0$. Therefore, the null space of $T$ is ${(0,0)}$.

To find the image of $T$, we need to find all possible outputs of $T$ for vectors in $V$. Since $T$ is a linear transformation, the image of $T$ is the span of the column vector representing $T$. Thus, the image of $T$ is:

\operatorname{im}(T) = \operatorname{span}\left\{\begin{bmatrix} -9 \\ -6 \end{bmatrix}\right\}.im(T)=span{[−9−6​]}.

Since the null space of $T$ is ${(0,0)}$ and the dimension of $V$ is $1$, we have

\operatorname{null}(T) = \{(0,0)\} \quad \text{and} \quad \operatorname{rank}(T) = 1.null(T)={(0,0)}andrank(T)=1.

By the Rank-nullity Theorem, we have

\dim V = \dim \operatorname{null}(T) + \operatorname{rank}(T),dimV=dimnull(T)+rank(T),

which gives us $\dim \operatorname{null}(T) = 0$ and $\dim \operatorname{im}(T) = 1$. Therefore, $T$ is not injective, but it is surjective.

Textbooks


• An Introduction to Stochastic Modeling, Fourth Edition by Pinsky and Karlin (freely
available through the university library here)
• Essentials of Stochastic Processes, Third Edition by Durrett (freely available through
the university library here)
To reiterate, the textbooks are freely available through the university library. Note that
you must be connected to the university Wi-Fi or VPN to access the ebooks from the library
links. Furthermore, the library links take some time to populate, so do not be alarmed if
the webpage looks bare for a few seconds.

此图像的alt属性为空;文件名为%E7%B2%89%E7%AC%94%E5%AD%97%E6%B5%B7%E6%8A%A5-1024x575-10.png
数学代写|MTH230 Linear Algebra

Statistics-lab™可以为您提供monroecc.edu MTH230 Linear Algebra线性代数的代写代考辅导服务! 请认准Statistics-lab™. Statistics-lab™为您的留学生涯保驾护航。