分类: 机器学习/统计学习代写

计算机代写|机器学习代写machine learning代考|COMP4702

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP4702

计算机代写|机器学习代写machine learning代考|Intuition and Main Results

Consider first the training error $E_{\text {train }}$ defined in (5.3). Since
$$
\operatorname{tr} \mathbf{Y} \mathbf{Q}^2(\gamma) \mathbf{Y}^{\boldsymbol{\top}}=-\frac{\partial}{\partial \gamma} \operatorname{tr} \mathbf{Y} \mathbf{Q}(\gamma) \mathbf{Y}^{\top},
$$
a deterministic equivalent for the resolvent $\mathbf{Q}(\gamma)$ is sufficient to acceess the asymptotic behavior of $E_{\text {train }}$.
With a linear activation $\sigma(t)=t$, the resolvent of interest
$$
\mathbf{Q}(\gamma)=\left(\frac{1}{n} \sigma(\mathbf{W X})^{\top} \sigma(\mathbf{W} \mathbf{X})+\gamma \mathbf{I}n\right)^{-1} $$ is the same as in Theorem 2.6. In a sense, the evaluation of $\mathbf{Q}(\gamma)$ (and subsequently $\left.E{\text {train }}\right)$ calls for an extension of Theorem $2.6$ to handle the case of nonlinear activations. Recall now that the main ingredients to derive a deterministic equivalent for (the linear case) $\mathbf{Q}=\left(\mathbf{X}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{X} / n+\gamma \mathbf{I}n\right)^{-1}$ are (i) $\mathbf{X}^{\top} \mathbf{W}^{\top}$ has i.i.d. columns and (ii) its $i$ th column $\left[\mathbf{W}^{\top}\right]_i$ has i.i.d. (or linearly dependent) entries so that the key Lemma $2.11$ applies. These hold, in the linear case, due to the i.i.d. property of the entries of $\mathbf{W}$. However, while for Item (i), the nonlinear $\Sigma^{\top}=\sigma(\mathbf{W X})^{\top}$ still has i.i.d. columns, and for Item (ii), its $i$ th column $\sigma\left(\left[\mathbf{X}^{\top} \mathbf{W}^{\top}\right]{. i}\right)$ no longer has i.i.d. or linearly dependent entries. Therefore, the main technical difficulty here is to obtain a nonlinear version of the trace lemma, Lemma 2.11. That is, we expect that the concentration of quadratic forms around their expectation remains valid despite the application of the entry-wise nonlinear $\sigma$. This naturally falls into the concentration of measure theory discussed in Section $2.7$ and is given by the following lemma.

Lemma 5.1 (Concentration of nonlinear quadratic form, Louart et al. [2018, Lemma 1]). For $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$, 1-Lipschitz $\sigma(\cdot)$, and $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{X} \in \mathbb{R}^{p \times n}$ such that $|\mathbf{A}| \leq 1$ and $|\mathbf{X}|$ bounded with respect to $p, n$, then,
$$
\mathbb{P}\left(\left|\frac{1}{n} \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right) \mathbf{A} \sigma\left(\mathbf{X}^{\top} \mathbf{w}\right)-\frac{1}{n} \operatorname{tr} \mathbf{A} \mathbf{K}\right|>t\right) \leq C e^{-c n \min \left(t, t^2\right)}
$$ for some $C, c>0, p / n \in(0, \infty)$ with ${ }^2$
$$
\mathbf{K} \equiv \mathbf{K}{\mathbf{X X}} \equiv \mathbb{E}{\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)}\left[\sigma\left(\mathbf{X}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\boldsymbol{\top}} \mathbf{X}\right)\right] \in \mathbb{R}^{n \times n}
$$

计算机代写|机器学习代写machine learning代考|Consequences for Learning with Large Neural Networks

To validate the asymptotic analysis in Theorem $5.1$ and Corollary $5.1$ on real-world data, Figures $5.2$ and $5.3$ compare the empirical MSEs with their limiting behavior predicted in Corollary 5.1, for a random network of $N=512$ neurons and various types of Lipschitz and non-Lipschitz activations $\sigma(\cdot)$, respectively. The regressor $\boldsymbol{\beta} \in \mathbb{R}^p$ maps the vectorized images from the Fashion-MNIST dataset (classes 1 and 2) [Xiao et al., 2017] to their corresponding uni-dimensional ( $d=1$ ) output labels $\mathbf{Y}{1 i}, \hat{\mathbf{Y}}{1 j} \in$ ${\pm 1}$. For $n, p, N$ of order a few hundreds (so not very large when compared to typical modern neural network dimensions), a close match between theory and practice is observed for the Lipschitz activations in Figure 5.2. The precision is less accurate but still quite good for the case of non-Lipschitz activations in Figure 5.3, which, we recall, are formally not supported by the theorem statement – here for $\sigma(t)=1-t^2 / 2$, $\sigma(t)=1_{t>0}$, and $\sigma(t)=\operatorname{sign}(t)$. For all activations, the deviation from theory is more acute for small values of regularization $\gamma$.

Figures $5.2$ and $5.3$ confirm that while the training error is a monotonically increasing function of the regularization parameter $\gamma$, there always exists an optimal value for $\gamma$ which minimizes the test error. In particular, the theoretical formulas derived in Corollary $5.1$ allow for a (data-dependent) fast offline tuning of the hyperparameter $\gamma$ of the network, in the setting where $n, p, N$ are not too small and comparable. In terms of activation functions (those listed here), we observe that, on the Fashion-MNIST dataset, the ReLU nonlinearity $\sigma(t)=\max (t, 0)$ is optimal and achieves the minimum test error, while the quadratic activation $\sigma(t)=1-t^2 / 2$ is the worst and produces much higher training and test errors compared to others. This observation will be theoretically explained through a deeper analysis of the corresponding kernel matrix $\mathbf{K}$, as performed in Section 5.1.2. Lastly, although not immediate at first sight, the training and test error curves of $\sigma(t)=1_{t>0}$ and $\sigma(t)=\operatorname{sign}(t)$ are indeed the same, up to a shift in $\gamma$, as a consequence of the fact that $\operatorname{sign}(t)=2 \cdot 1_{t>0}-1$.

计算机代写|机器学习代写machine learning代考|COMP4702

机器学习代考

计算机代写|机器学习代写machine learning代考|Intuition and Main Results

首先考虑训练误差 $E_{\text {train }}$ 在 (5.3) 中定义。自从
$$
\operatorname{tr} \mathbf{Y} \mathbf{Q}^2(\gamma) \mathbf{Y}^{\top}=-\frac{\partial}{\partial \gamma} \operatorname{tr} \mathbf{Y} \mathbf{Q}(\gamma) \mathbf{Y}^{\top}
$$
解决方案的确定性等价物 $\mathbf{Q}(\gamma)$ 足以访问的渐近行为 $E_{\text {train }}$.
线性激活 $\sigma(t)=t$ ,感兴趣的溶剂
$$
\mathbf{Q}(\gamma)=\left(\frac{1}{n} \sigma(\mathbf{W X})^{\top} \sigma(\mathbf{W X})+\gamma \mathbf{I} n\right)^{-1}
$$
与定理 $2.6$ 相同。从某种意义上说,评价 $\mathbf{Q}(\gamma)$ (随后 $E \operatorname{train}$ )要求扩展定理 $2.6$ 处理非线性激活的情 况。现在回想一下,推导出 (线性情况) 的确定性等价物的主要成分
$\mathbf{Q}=\left(\mathbf{X}^{\top} \mathbf{W}^{\top} \mathbf{W X} / n+\gamma \mathbf{I} n\right)^{-1}$ 是我) $\mathbf{X}^{\top} \mathbf{W}^{\top}$ 有 iid 列和 (ii) 它的 $i$ 第 列 $\left[\mathbf{W}^{\top}\right]_i$ 具有独立同分布 (或线性相关) 条目,因此密钥引理 $2.11$ 适用。在线性情况下,由于条目的 iid 属性,这些成立 W. 然 而,对于项目 (i),非线性 $\Sigma^{\top}=\sigma(\mathbf{W X})^{\top}$ 仍然有 iid 列,对于项目 (ii),其 $i$ 第列 $\sigma\left(\left[\mathbf{X}^{\top} \mathbf{W}^{\top}\right] . i\right)$ 不 再具有 iid 或线性相关条目。因此,这里的主要技术难点是获得非线性版本的迹引理,引理 2.11。也就是 说,我们预计尽管应用了逐项非线性 $\sigma$. 这自然落入第 节讨论的测度论的集中 $2.7$ 并由以下引理给出。
引理 $5.1$ (非线性二次型的集中,Louart 等人 [2018,引理 1])。为了 $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$, 1-利普㹷茨 $\sigma(\cdot)$ ,和 $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{X} \in \mathbb{R}^{p \times n}$ 这样 $|\mathbf{A}| \leq 1$ 和 $|\mathbf{X}|$ 有界于 $p, n$ ,然后,
$$
\mathbb{P}\left(\left|\frac{1}{n} \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right) \mathbf{A} \sigma\left(\mathbf{X}^{\top} \mathbf{w}\right)-\frac{1}{n} \operatorname{tr} \mathbf{A K}\right|>t\right) \leq C e^{-c n \min \left(t, t^2\right)}
$$
对于一些 $C, c>0, p / n \in(0, \infty)$ 和 $^2$
$$
\mathbf{K} \equiv \mathbf{K X X} \equiv \mathbb{E} \mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)\left[\sigma\left(\mathbf{X}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right)\right] \in \mathbb{R}^{n \times n}
$$

计算机代写|机器学习代写machine learning代考|Consequences for Learning with Large Neural Networks

验证定理中的渐近分析5.1和推论 $5.1$ 关于真实世界的数据,数字 $5.2$ 和 $5.3$ 对于一个随机网络,将经验 MSE 与推论 $5.1$ 中预测的限制行为进行比较 $N=512$ 神经元和各种类型的 Lipschitz 和非 Lipschitz 激活 $\sigma(\cdot)$ ,分别。回归者 $\beta \in \mathbb{R}^p$ 将来自 Fashion-MNIST 数据集(第 1 类和第 2 类) [Xiao et al.,2017] 的矢 量化图像映射到它们相应的单维 $(d=1$ ) 输出标签 $\mathbf{Y} 1 i, \hat{\mathbf{Y}} 1 j \in \pm 1$. 为了 $n, p, N$ 数百个数量级 (因此 与典型的现代神经网络维度相比不是很大),在图 $5.2$ 中观察到 Lipschitz 激活的理论与实践之间的紧密 匹配。精度不太准确,但对于图 $5.3$ 中非 Lipschitz 激活的情况仍然相当不错,我们记得,定理陈述正式 不支持这种情况一一这里是为了 $\sigma(t)=1-t^2 / 2 , \sigma(t)=1_{t>0}$ ,和 $\sigma(t)=\operatorname{sign}(t)$. 对于所有激活, 正则化的小值与理论的偏差更为严重 $\gamma$.
数字 $5.2$ 和 $5.3$ 确认虽然训练误差是正则化参数的单调递增函数 $\gamma$ ,总是存在一个最优值 $\gamma$ 从而最小化测试误 差。特别是推论中推导出的理论公式5.1允许对超参数进行 (依赖于数据的) 快速离线调整 $\gamma$ 网络的设置 $n, p, N$ 不是太小且具有可比性。就激活函数(此处列出的那些) 而言,我们观察到,在 Fashion-MNIST 数据集上, $\operatorname{ReLU}$ 非线性 $\sigma(t)=\max (t, 0)$ 是最优的并达到最小测试误差,而二次激活 $\sigma(t)=1-t^2 / 2$ 是最差的,与其他人相比会产生更高的训练和测试错误。将通过对相应核矩阵的更深 入分析从理论上解释这一观察结果 $\mathbf{K}$ ,如第 5.1.2 节中所述。最后,虽然乍一看不是立即的,但训练和测试误差曲线 $\sigma(t)=1_{t>0}$ 和 $\sigma(t)=\operatorname{sign}(t)$ 确实是一样的,直到一个转变 $\gamma$ ,由于这样的事实 $\operatorname{sign}(t)=2 \cdot 1_{t>0}-1$

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP30027

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP30027

计算机代写|机器学习代写machine learning代考|Random Neural Networks

Although much less popular than modern deep neural networks, neural networks with random fixed weights are simpler to analyze. Such networks have frequently arisen in the past decades as an appropriate solution to handle the possibly restricted number of training data, to reduce the computational and memory complexity and, from another viewpoint, can be seen as efficient random feature extractors. These neural networks in fact find their roots in Rosenblatt’s perceptron [Rosenblatt, 1958] and have then been many times revisited, rediscovered, and analyzed in a number of works, both in their feedforward [Schmidt et al., 1992] and recurrent [Gelenbe, 1993] versions. The simplest modern versions of these random networks are the so-called extreme learning machine [Huang et al., 2012] for the feedforward case, which one may seem as a mere linear regression method on nonlinear random features, and the echo state network [Jaeger, 2001] for the recurrent case. Also see Scardapane and Wang [2017] for a more exhaustive overview of randomness in neural networks.

It is also to be noted that deep neural networks are initialized at random and that random operations (such as random node deletions or voluntarily not-learning a large proportion of randomly initialized neural network weights, that is, random dropout) are common and efficient in neural network learning [Srivastava et al., 2014, Frankle and Carbin, 2019]. We may also point the recent endeavor toward neural network “learning without backpropagation,” which, inspired by biological neural networks (which naturally do not operate backpropagation learning), proposes learning mechanisms with fixed random backward weights and asymmetric forward learning procedures [Lillicrap et al., 2016, Nøkland, 2016, Baldi et al., 2018, Frenkel et al., 2019, Han et al., 2019]. As such, the study of random neural network structures may be instrumental to future improved understanding and designs of advanced neural network structures.

As shall be seen subsequently, the simple models of random neural networks are to a large extent connected to kernel matrices. More specifically, the classification or regression performance at the output of these random neural networks are functionals of random matrices that fall into the wide class of kernel random matrices, yet of a slightly different form than those studied in Section 4. Perhaps more surprisingly, this connection still exists for deep neural networks which are (i) randomly initialized and (ii) then trained with gradient descent, via the so-called neural tangent kernel [Jacot et al., 2018] by considering the “infinitely many neurons” limit, that is, the limit where the network widths of all layers go to infinity simultaneously. This close connection between neural networks and kernels has triggered a renewed interest for the theoretical investigation of deep neural networks from various perspectives including optimization [Du et al., 2019, Chizat et al., 2019], generalization [Allen-Zhu et al., 2019, Arora et al., 2019a, Bietti and Mairal, 2019], and learning dynamics [Lee et al., 2020, Advani et al., 2020, Liao and Couillet, 2018a]. These works shed new light on our theoretical understanding of deep neural network models and specifically demonstrate the significance of studying simple networks with random weights and their associated kernels to assess the intrinsic mechanisms of more elaborate and practical deep networks.

计算机代写|机器学习代写machine learning代考|Regression with Random Neural Networks

Throughout this section, we consider a feedforward single-hidden-layer neural network, as illustrated in Figure $5.1$ (displayed, for notational convenience, from right to left). A similar class of single-hidden-layer neural network models, however with a recurrent structure, will be discussed later in Section 5.3.

Given input data $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right] \in \mathbb{R}^{p \times n}$, we denote $\Sigma \equiv \sigma(\mathbf{W} \mathbf{X}) \in \mathbb{R}^{N \times n}$ the output of the first layer comprising $N$ neurons. This output arises from the premultiplication of $\mathbf{X}$ by some random weight matrix $\mathbf{W} \in \mathbb{R}^{N \times p}$ with i.i.d. (say standard Gaussian) entries and the entry-wise application of the nonlinear activation function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$. As such, the columns $\sigma\left(\mathbf{W x}_i\right)$ of $\Sigma$ can be seen as random nonlinear features of $\mathbf{x}_i$. The second layer weight $\boldsymbol{\beta} \in \mathbb{R}^{N \times d}$ is then learned to adapt the feature matrix $\Sigma$ to some associated target $\mathbf{Y}=\left[\mathbf{y}_1, \ldots, \mathbf{y}_n\right] \in \mathbb{R}^{d \times n}$, for instance, by minimizing the Frobenius norm $\left|\mathbf{Y}-\boldsymbol{\beta}^{\top} \Sigma\right|_F^2$.

Remark 5.1 (Random neural networks, random feature maps and random kernels). The columns of $\Sigma$ may be seen as the output of the $\mathbb{R}^p \rightarrow \mathbb{R}^N$ random feature map $\phi: \mathbf{x}i \mapsto \sigma\left(\mathbf{W} \mathbf{x}_i\right)$ for some given $\mathbf{W} \in \mathbb{R}^{N \times p}$. In Rahimi and Recht [2008], it is shown that, for every nonnegative definite “shift-invariant” kernel of the form $(\mathbf{x}, \mathbf{y}) \mapsto f\left(|\mathbf{x}-\mathbf{y}|^2\right)$, there exist appropriate choices for $\sigma$ and the law of the entries of $\mathbf{W}$ so that as the number of neurons or random features $N \rightarrow \infty$, $$ \sigma\left(\mathbf{W} \mathbf{x}_i\right)^{\top} \sigma\left(\mathbf{W} \mathbf{x}_j\right) \stackrel{\text { a.s. }}{\longrightarrow} f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right) . $$ As such, for large enough $N$ (that in general must scale with $n, p$ ), the bivariate function $(\mathbf{x}, \mathbf{y}) \mapsto \sigma(\mathbf{W} \mathbf{x})^{\top} \sigma(\mathbf{W y})$ approximates a kernel function of the type $f\left(|\mathbf{x}-\mathbf{y}|^2\right)$ studied in Chapter 4. This result is then generalized, in subsequent works, to a larger family of kernels including inner-product kernels [Kar and Karnick, 2012], additive homogeneous kernels [Vedaldi and Zisserman, 2012], etc. Another, possibly more marginal, connection with the previous sections is that $\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)$ can be interpreted as a “properly scaling” inner-product kernel function applied to the “data” pair $\mathbf{w}, \mathbf{x} \in \mathbb{R}^p$. This technically induces another strong relation between the study of kernels and that of neural networks. Again, similar to the concentration of (Euclidean) distance extensively explored in this chapter, the entry-wise convergence in (5.1) does not imply convergence in the operator norm sense, which, as we shall see, leads directly to the so-called “double descent” test curve in random feature/neural network models. If the network output weight matrix $\boldsymbol{\beta}$ is designed to minimize the regularized MSE $L(\boldsymbol{\beta})=\frac{1}{n} \sum{i=1}^n\left|\mathbf{y}_i-\boldsymbol{\beta}^{\top} \sigma\left(\mathbf{W x}_i\right)\right|^2+\gamma|\boldsymbol{\beta}|_F^2$, for some regularization parameter $\gamma>0$, then $\beta$ takes the explicit form of a ridge-regressor ${ }^1$
$$
\beta \equiv \frac{1}{n} \Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1} \mathbf{Y}^{\top},
$$
which follows from differentiating $L(\boldsymbol{\beta})$ with respect to $\boldsymbol{\beta}$ to obtain $0=\gamma \boldsymbol{\beta}+$ $\frac{1}{n} \Sigma\left(\Sigma^{\top} \boldsymbol{\beta}-\mathbf{Y}^{\top}\right)$ so that $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\gamma \mathbf{I}_N\right) \boldsymbol{\beta}=\frac{1}{n} \Sigma \mathbf{Y}^{\top}$ which, along with $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\right.$ $\left.\gamma \mathbf{I}_N\right)^{-1} \Sigma=\Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1}$ for $\gamma>0$, gives the result.

计算机代写|机器学习代写machine learning代考|COMP30027

机器学习代考

计算机代写|机器学习代写machine learning代考|Random Neural Networks

尽管远不如现代深度神经网络流行,但具有随机固定权重的神经网络更易于分析。这种网络在过去几十年中频繁出现,作为处理可能有限数量的训练数据、降低计算和内存复杂性的适当解决方案,并且从另一个角度来看,可以将其视为高效的随机特征提取器。这些神经网络实际上在 Rosenblatt 的感知器 [Rosenblatt, 1958] 中找到了它们的根源,然后在许多作品中被多次重新审视、重新发现和分析,包括它们的前馈 [Schmidt et al., 1992] 和循环 [Gelenbe] , 1993] 版本。这些随机网络的最简单的现代版本是所谓的极限学习机 [H​​uang et al., 2012] 对于前馈情况,其中一个可能看起来只是非线性随机特征的线性回归方法,而回声状态网络 [Jaeger, 2001] 则用于重复出现的情况。另请参阅 Scardapane 和 Wang [2017],以更详尽地概述神经网络中的随机性。

还需要注意的是,深度神经网络是随机初始化的,随机操作(例如随机节点删除或自愿不学习大部分随机初始化的神经网络权重,即随机丢失)在神经网络学习 [Srivastava 等人,2014 年,Frankle 和 Carbin,2019 年]。我们还可以指出最近对神经网络“无反向传播学习”的努力,它受生物神经网络(自然不进行反向传播学习)的启发,提出了具有固定随机反向权重和非对称正向学习程序的学习机制 [Lillicrap 等人., 2016, Nøkland, 2016, Baldi 等, 2018, Frenkel 等, 2019, Han 等, 2019]。像这样,

正如随后将看到的,随机神经网络的简单模型在很大程度上与内核矩阵相关联。更具体地说,这些随机神经网络输出的分类或回归性能是随机矩阵的函数,属于核随机矩阵的广泛类别,但与第 4 节中研究的形式略有不同。也许更令人惊讶的是,这个深层神经网络仍然存在连接,这些神经网络 (i) 随机初始化和 (ii) 然后通过所谓的神经正切核 [Jacot et al., 2018] 考虑“无限多个神经元”限制,使用梯度下降进行训练,即所有层的网络宽度同时趋于无穷大的极限。神经网络和内核之间的这种紧密联系引发了人们对从优化 [Du et al., 2019, Chizat et al., 2019]、泛化 [Allen-Zhu et al. , 2019, Arora 等人, 2019a, Bietti 和 Mairal, 2019],以及学习动态 [Lee 等人, 2020, Advani 等人, 2020, Liao 和 Couillet, 2018a]。这些工作为我们对深度神经网络模型的理论理解提供了新的思路,并具体说明了研究具有随机权重的简单网络及其相关核的重要性,以评估更精细和实用的深度网络的内在机制。泛化 [Allen-Zhu et al., 2019, Arora et al., 2019a, Bietti and Mairal, 2019] 和学习动态 [Lee et al., 2020, Advani et al., 2020, Liao and Couillet, 2018a]。这些工作为我们对深度神经网络模型的理论理解提供了新的思路,并具体说明了研究具有随机权重的简单网络及其相关核的重要性,以评估更精细和实用的深度网络的内在机制。泛化 [Allen-Zhu et al., 2019, Arora et al., 2019a, Bietti and Mairal, 2019] 和学习动态 [Lee et al., 2020, Advani et al., 2020, Liao and Couillet, 2018a]。这些工作为我们对深度神经网络模型的理论理解提供了新的思路,并具体说明了研究具有随机权重的简单网络及其相关核的重要性,以评估更精细和实用的深度网络的内在机制。

计算机代写|机器学习代写machine learning代考|Regression with Random Neural Networks

在本节中,我们考虑前馈单隐藏层神经网络,如图所示 $5.1$ (为了标记方便,从右到左显示)。稍后将在 第 $5.3$ 节中讨论一类类似的单隐藏层神经网络模型,但具有递归结构。
给定输入数据 $\mathbf{X}=\left[\mathbf{x}1, \ldots, \mathbf{x}_n\right] \in \mathbb{R}^{p \times n}$ ,我们表示 $\Sigma \equiv \sigma(\mathbf{W X}) \in \mathbb{R}^{N \times n}$ 第一层的输出包括 $N$ 神 经元。此输出来自预乘 $\mathbf{X}$ 通过一些随机权重矩阵 $\mathbf{W} \in \mathbb{R}^{N \times p}$ 具有 iid (比如标准高斯) 条目和非线性激 活函数的条目式应用 $\sigma: \mathbb{R} \rightarrow \mathbb{R}$. 因此,列 $\sigma\left(\mathbf{W} \mathbf{x}_i\right)$ 的 $\Sigma$ 可以看作是的随机非线性特征 $\mathbf{x}_i$. 第二层重量 化 Frobenius 范数 $\left|\mathbf{Y}-\boldsymbol{\beta}^{\top} \Sigma\right|_F^2$. 备注 $5.1$ (随机神经网络、随机特征图和随机内核)。列的 $\Sigma$ 可以看作是的输出 $\mathbb{R}^p \rightarrow \mathbb{R}^N$ 随机特征图 $\phi: \mathbf{x} i \mapsto \sigma\left(\mathbf{W} \mathbf{x}_i\right)$ 对于一些给定的 $\mathbf{W} \in \mathbb{R}^{N \times p}$. 在 Rahimi 和 Recht [2008] 中,表明对于以下形式的 每个非负定”移位不变”内核 $(\mathbf{x}, \mathbf{y}) \mapsto f\left(|\mathbf{x}-\mathbf{y}|^2\right)$ ,存在适当的选择 $\sigma$ 和条目的法律 $\mathbf{W}$ 这样作为神经 元或随机特征的数量 $N \rightarrow \infty$ , $$ \sigma\left(\mathbf{W} \mathbf{x}_i\right)^{\top} \sigma\left(\mathbf{W} \mathbf{x}_j\right) \stackrel{\text { a.s. }}{\longrightarrow} f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right) . $$ 因此,对于足够大的 $N$ (通常必须与 $n, p$ ),双变量函数 $(\mathbf{x}, \mathbf{y}) \mapsto \sigma(\mathbf{W} \mathbf{x})^{\top} \sigma(\mathbf{W y})$ 逼近该类型的核函 数 $f\left(|\mathbf{x}-\mathbf{y}|^2\right)$ 在第 4 章中进行了研究。然后在随后的工作中将这一结果推广到更大的内核系列,包括 内积内核 [Kar 和 Karnick,2012 年]、加性均质内核 [Vedaldi 和Zisserman,2012 年] 等。另一个,可 能更边缘的,与前面部分的联系是 $\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)$ 可以解释为应用于“数据”对的“适当缩放”的内积核函数 $\mathbf{w}, \mathbf{x} \in \mathbb{R}^p$. 这在技术上引发了内核研究与神经网络研究之间的另一种密切关系。同样,类似于本章广泛 探讨的 (欧几里得) 距离的集中,(5.1) 中的逐项收敛并不意味看算子范数意义上的收敛,正如我们将 看到的,这直接导致所谓的随机特征/神经网络模型中的“双下降”测试曲线。如果网络输出权重矩阵 $\beta$ 旨在 最小化正则化 $\operatorname{MSE} L(\boldsymbol{\beta})=\frac{1}{n} \sum i=1^n\left|\mathbf{y}_i-\boldsymbol{\beta}^{\top} \sigma\left(\mathbf{W} \mathbf{x}_i\right)\right|^2+\gamma|\boldsymbol{\beta}|{F^{\prime}}^2$, 对于一些正则化参数 $\gamma>0$ ,然后 $\beta$ 采用岭回归量的显式形式 ${ }^1$
$$
\beta \equiv \frac{1}{n} \Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1} \mathbf{Y}^{\top},
$$
由微分得出 $L(\boldsymbol{\beta})$ 关于 $\boldsymbol{\beta}$ 获得 $0=\gamma \boldsymbol{\beta}+\frac{1}{n} \Sigma\left(\Sigma^{\top} \boldsymbol{\beta}-\mathbf{Y}^{\top}\right)$ 以便 $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\gamma \mathbf{I}_N\right) \boldsymbol{\beta}=\frac{1}{n} \Sigma \mathbf{Y}^{\top}$ 其 中,连同 $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\gamma \mathbf{I}_N\right)^{-1} \Sigma=\Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1}$ 为了 $\gamma>0$, 给出结果。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP5318

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP5318

计算机代写|机器学习代写machine learning代考|Concluding Remarks

Before the present chapter, the first part of the book was mostly concerned with the sample covariance matrix model $\mathbf{X} \mathbf{X}^{\top} / n$ (and more marginally with the Wigner model $\mathbf{X} / \sqrt{n}$ for symmetric $\mathbf{X}$ ), where the columns of $\mathbf{X}$ are independent and the entries of each column are independent or linearly dependent. Historically, this model and its numerous variations (with a variance profile, with right-side correlation, summed up to other independent matrices of the same form, etc.) have covered most of the mathematical and applied interest of the first two decades (since the early nineties) of intense random matrix advances. The main drivers for these early developments were statistics, signal processing, and wireless communications. The present chapter leaped much further in considering now random matrix models with possibly highly correlated entries, with a specific focus on kernel matrices. When (moderately) largedimensional data are considered, the intuition and theoretical understanding of kernel matrices in small-dimensional setting being no longer accurate, random matrix theory provides accurate (and asymptotically exact) performance assessment along with the possibility to largely improve the performance of kernel-based machine learning methods. This, in effect, creates a small revolution in our understanding of machine learning on realistic large datasets.

A first important finding of the analysis of large-dimensional kernel statistics reported here is the ubiquitous character of the Marčenko-Pastur and the semi-circular laws. As a matter of fact, all random matrix models studied in this chapter, and in particular the kernel regimes $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / p\right)$ (which concentrate around $f(0)$ ) and $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / \sqrt{p}\right.$ ) (which tends to $f(\mathcal{N}(0,1))$ ), have a limiting eigenvalue distribution akin to a combination of the two laws. This combination may vary from case to case (compare for instance the results of Practical Lecture 3 to Theorem 4.4), but is often parametrized in a such way that the Marčenko-Pastur and semicircle laws appear as limiting cases (in the context of Practical Lecture 3, they correspond to the limiting cases of dense versus sparse kernels, and in Theorem $4.4$ to the limiting cases of linear versus “purely” nonlinear kernels).

计算机代写|机器学习代写machine learning代考|Practical Course Material

In this section, Practical Lecture 3 (that evaluates the spectral behavior of uniformly sparsified kernels) related to the present Chapter 4 is discussed, where we shall see, as for $\alpha-\beta$ and properly scaling kernels in Sections $4.2 .4$ and $4.3$ that, depending on the “level of sparsity,” a combination of Marčenko-Pastur and semicircle laws is observed.
Practical Lecture Material 3 (Complexity-performance trade-off in spectral clustering with sparse kernel, Zarrouk et al. [2020]). In this exercise, we study the spectrum of a “punctured” version $\mathbf{K}=\mathbf{B} \odot\left(\mathbf{X}^{\top} \mathbf{X} / p\right.$ ) (with the Hadamard product $[\mathbf{A} \odot \mathbf{B}]{i j}=[\mathbf{A}]{i j}[\mathbf{B}]{i j}$ of the linear kernel $\mathbf{X}^{\top} \mathbf{X} / p$, with data matrix $\mathbf{X} \in \mathbb{R}^{p \times n}$ and a symmetric random mask-matrix $\mathbf{B} \in{0,1}^{n \times n}$ having independent $[\mathbf{B}]{i j} \sim \operatorname{Bern}(\boldsymbol{\epsilon})$ entries for $i \neq j$ (up to symmetry) and $[\mathbf{B}]_{i i}=b \in{0,1}$ fixed, in the limit $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$. This matrix mimics the computation of only a proportion $\epsilon \in(0,1)$ of the entries of $\mathbf{X}^{\top} \mathbf{X} / n$, and its impact on spectral clustering. Letting $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right]$ with $\mathbf{x}_i$ independently and uniformly drawn from the following symmetric two-class Gaussian mixture
$$
\mathcal{C}_1: \mathbf{x}_i \sim \mathcal{N}\left(-\boldsymbol{\mu}, \mathbf{I}_p\right), \quad \mathcal{C}_2: \mathbf{x}_i \sim \mathcal{N}\left(+\boldsymbol{\mu}, \mathbf{I}_p\right)
$$
for $\boldsymbol{\mu} \in \mathbb{R}^p$ such that $|\boldsymbol{\mu}|=O(1)$ with respect to $n, p$, we wish to study the effect of a uniform “zeroing out” of the entries of $\mathbf{X}^{\top} \mathbf{X}$ on the presence of an isolated spike in the spectrum of $\mathbf{K}$, and thus on the spectral clustering performance.

We will study the spectrum of $\mathbf{K}$ using Stein’s lemma and the Gaussian method discussed in Section 2.2.2. Let $\mathbf{Z}=\left[\mathbf{z}1, \ldots, \mathbf{z}_n\right] \in \mathbb{R}^{p \times n}$ for $\mathbf{z}_i=\mathbf{x}_i-(-1)^a \boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$ with $\mathbf{x}_i \in \mathcal{C}_a$ and $\mathbf{M}=\mu \mathbf{j}^{\top}$ with $\mathbf{j}=\left[-\mathbf{1}{n / 2}, \mathbf{1}_{n / 2}\right]^{\top} \in \mathbb{R}^n$ so that $\mathbf{X}=\mathbf{M}+\mathbf{Z}$. First show that, for $\mathbf{Q} \equiv \mathbf{Q}(z)=\left(\mathbf{K}-z \mathbf{I}_n\right)^{-1}$,
$$
\begin{aligned}
\mathbf{Q}= & -\frac{1}{z} \mathbf{I}_n+\frac{1}{z}\left(\frac{\mathbf{Z}^{\boldsymbol{}} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{Z}^{\boldsymbol{T}} \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} \
& +\frac{1}{z}\left(\frac{\mathbf{M}^{\boldsymbol{\top}} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{M}^{\boldsymbol{T}} \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} .
\end{aligned}
$$
To proceed, we need to go slightly beyond the study of these four terms.

计算机代写|机器学习代写machine learning代考|COMP5318

机器学习代考

计算机代写|机器学习代写machine learning代考|Concluding Remarks

在本章之前,本书的第一部分主要关注样本协方差矩阵模型 $\mathbf{X} \mathbf{X}^{\top} / n$ (以及更边缘的 Wigner 模型 $\mathbf{X} / \sqrt{n}$ 对于对称 $\mathbf{X}$ ), 其中列 $\mathbf{X}$ 是独立的,每列的条目是独立的或线性相关的。从历史上看,这个模型及 其众多变体 (具有方差曲线、右侧相关、总结为相同形式的其他独立矩阵等) 已经涵盖了头二十年的大部 分数学和应用兴趣 (自九十年代初期) 的强烈随机矩阵进步。这些早期发展的主要驱动力是统计、信号处 理和无线通信。本章更进一步地考虑了现在可能具有高度相关条目的随机矩阵模型,并特别关注核矩阵。 当考虑 (适度) 大维数据时,对小维设置中核矩阵的直觉和理论理解不再准确,随机矩阵理论提供了准确 (和渐近精确) 的性能评估,并有可能大大提高基于内核的机器学习方法的性能。实际上,这在我们对现 实大型数据集上的机器学习的理解方面产生了一场小革命。
此处报告的大维核统计分析的第一个重要发现是 Marčenko-Pastur 和半圆定律的普遍特征。事实上,本 章研究的所有随机矩阵模型,尤其是内核状态 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / p\right)$ (集中在 $\left.f(0)\right)$ 和 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / \sqrt{p}\right.$ ) (倾向 于 $f(\mathcal{N}(0,1))$ ), 具有类似于这两个定律的组合的特征值极限分布。这种组合可能因情况而异 (例如比较 实践讲座 3 与定理 $4.4$ 的结果) ,但通常以 Marčenko-Pastur 和半圆定律作为极限情况出现的方式进行 参数化(在实践讲座的上下文中3,它们对应于密集核与稀疏核的极限情况,并且在定理中 $4.4$ 线性与”纯” 非线性内核的极限情况)。

计算机代写|机器学习代写machine learning代考|Practical Course Material

在本节中,将讨论与当前第 4 章相关的实践讲座 3 (评估均匀稀疏核的光谱行为),我们将在其中看到, 至于 $\alpha-\beta$ 并在部分中适当缩放内核 $4.2 .4$ 和 $4.3$ 也就是说,根据“稀疏程度”,观察到 Marčenko-Pastur 和半圆定律的组合。
实用讲座材料 3 (Complexity-performance trade-off in spectral clustering with sparse kernel, Zarrouk 等人 [2020])。在本练习中,我们研究了“打孔”版本的频谱 $\mathbf{K}=\mathbf{B} \odot\left(\mathbf{X}^{\top} \mathbf{X} / p\right)$ (与阿达玛产 品 $[\mathbf{A} \odot \mathbf{B}] i j=[\mathbf{A}] i j[\mathbf{B}] i j$ 线性内核 $\mathbf{X}^{\top} \mathbf{X} / p$ ,有数据矩阵 $\mathbf{X} \in \mathbb{R}^{p \times n}$ 和一个对称的随机掩码矩阵 $\mathbf{B} \in 0,1^{n \times n}$ 有独立的 $[\mathbf{B}] i j \sim \operatorname{Bern}(\boldsymbol{\epsilon})$ 条目 $i \neq j$ (直到对称) 和 $[\mathbf{B}]{i i}=b \in 0,1$ 固定的,在极限 $p, n \rightarrow \infty$ 和 $p / n \rightarrow c \in(0, \infty)$. 该矩阵模拟仅计算一个比例 $\epsilon \in(0,1)$ 条目的 $\mathbf{X}^{\top} \mathbf{X} / n$ ,及其对谱 聚类的影响。出租 $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right]$ 和 $\mathbf{x}_i$ 从以下对称二类高斯混合中独立均匀地抽取 $$ \mathcal{C}_1: \mathbf{x}_i \sim \mathcal{N}\left(-\boldsymbol{\mu}, \mathbf{I}_p\right), \quad \mathcal{C}_2: \mathbf{x}_i \sim \mathcal{N}\left(+\boldsymbol{\mu}, \mathbf{I}_p\right) $$ 为了 $\boldsymbol{\mu} \in \mathbb{R}^p$ 这样 $|\boldsymbol{\mu}|=O(1)$ 关于 $n, p$ ,我们布望研究统一”归零”条目的效果 $\mathbf{X}^{\top} \mathbf{X}{\text {在频谱中存在孤立 }}$ 的尖峰K,从而影响谱聚类性能。
我们将研究频谱K使用 Stein 引理和 $2.2 .2$ 节中讨论的高斯方法。让 $\mathbf{Z}=\left[\mathbf{z} 1, \ldots, \mathbf{z}n\right] \in \mathbb{R}^{p \times n}$ 为了 $\mathbf{z}_i=\mathbf{x}_i-(-1)^a \boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$ 和 $\mathbf{x}_i \in \mathcal{C}_a$ 和 $\mathbf{M}=\mu \mathbf{j}^{\top}$ 和 $\mathbf{j}=\left[-\mathbf{1} n / 2, \mathbf{1}{n / 2}\right]^{\top} \in \mathbb{R}^n$ 以便 $\mathbf{X}=\mathbf{M}+\mathbf{Z}$. 首先表明,对于 $\mathbf{Q} \equiv \mathbf{Q}(z)=\left(\mathbf{K}-z \mathbf{I}_n\right)^{-1}$ ,
$$
\mathbf{Q}=-\frac{1}{z} \mathbf{I}_n+\frac{1}{z}\left(\frac{\mathbf{Z Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{Z}^T \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} \quad+\frac{1}{z}\left(\frac{\mathbf{M}^{\top} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{M}^T}{p}\right.
$$
为了继续,我们需要略微超出对这四个术语的研究。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP4702

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP4702

计算机代写|机器学习代写machine learning代考|Distance and Inner-Product Random Kernel Matrices

The most widely used kernel model in machine learning applications is the heat kernel $\mathbf{K}=\left{\exp \left(-\left|\mathbf{x}i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)\right}{i, j=1}^n$, for some $\sigma>0$. It is thus natural to start the large-dimensional analysis of kernel random matrices by focusing on this model.
As mentioned in the previous sections, for the Gaussian mixture model above, as the dimension $p$ increases, $\sigma^2$ needs to scale as $O(p)$, so say $\sigma^2=\tilde{\sigma}^2 p$ for some $\tilde{\sigma}^2=O(1)$, to avoid evaluating the exponential at increasingly large values for $p$ large. As such, the prototypical kernel of present interest is
$$
\mathbf{K}=\left{f\left(\frac{1}{p}\left|\mathbf{x}i-\mathbf{x}_j\right|^2\right)\right}{i, j-1}^n,
$$
for $f$ a sufficiently smooth function (specifically, $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ for the heat kernel). As we will see though, it is much desirable not to restrict ourselves to $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ so to better appreciate the impact of the nonlinear kernel function $f$ on the (asymptotic) structural behavior of the kernel matrix $\mathbf{K}$.

计算机代写|机器学习代写machine learning代考|Euclidean Random Matrices with Equal Covariances

In order to get a first picture of the large-dimensional behavior of $\mathbf{K}$, let us first develop the distance $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ for $\mathbf{x}_i \in \mathcal{C}_a$ and $\mathbf{x}_j \in \mathcal{C}_b$, with $i \neq j$.

For simplicity, let us assume for the moment $\mathbf{C}_1=\cdots=\mathbf{C}_k=\mathbf{I}_p$ and recall the notation $\mathbf{x}_i=\boldsymbol{\mu}_a+\mathbf{z}_i$. We have, for $i \neq j$ that “entry-wise,”
$$
\begin{aligned}
\frac{1}{p}\left|\mathbf{x}_i-\mathbf{x}_j\right|^2= & \frac{1}{p}\left|\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right|^2+\frac{2}{p}\left(\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) \
& +\frac{1}{p}\left|\mathbf{z}_i\right|^2+\frac{1}{p}\left|\mathbf{z}_j\right|^2-\frac{2}{p} \mathbf{z}_i^{\top} \mathbf{z}_j .
\end{aligned}
$$
For $\left|\mathbf{x}_i\right|$ of order $O(\sqrt{p})$, if $\left|\mu_a\right|=O(\sqrt{p})$ for all $a \in{1, \ldots, k}$ (which would be natural), then $\left|\mu_a-\mu_b\right|^2 / p$ is a priori of order $O(1)$ while, by the central limit theorem, $\left|\mathbf{z}_i\right|^2 / p=1+O\left(p^{-1 / 2}\right)$. Also, again by the central limit theorem, $\mathbf{z}_i^{\top} \mathbf{z}_j / p=$ $O\left(p^{-1 / 2}\right)$ and $\left(\mu_a-\mu_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) / p=O\left(p^{-1 / 2}\right)$

As a consequence, for $p$ large, the distance $\left|\mathbf{x}i-\mathbf{x}_j\right|^2 / p$ is dominated by $| \boldsymbol{\mu}_a-$ $\boldsymbol{\mu}_b |^2 / p+2$ and easily discriminates classes from the pairwise observations of $\mathbf{x}_i, \mathbf{x}_j$, making the classification asymptotically trivial (without having to resort to any kernel method). It is thus of interest consider the situations where the class distances are less significant to understand how the choices of kernel come into play in such more practical scenario. To this end, we now demand that $$ \left|\mu_a-\mu_b\right|=O(1), $$ which is also the minimal distance rate that can be discriminated from a mere Bayesian inference analysis, as thoroughly discussed in Section 1.1.3. Since the kernel function $f(\cdot)$ operates only on the distances $\left|\mathbf{x}_i-\mathbf{x}_j\right|$, we may even request (up to centering all data by, say, the constant vector $\frac{1}{n} \sum{a=1}^k n_a \mu_a$ ) for simplicity that $\left|\mu_a\right|=O(1)$ for each $a$.

计算机代写|机器学习代写machine learning代考|COMP4702

机器学习代考

计算机代写|机器学习代写machine learning代考|Distance and Inner-Product Random Kernel Matrices

机器学习应用中使用最广泛的内核模型是热内核 于一些 $\sigma>0$. 因此,通过关注该模型来开始核随机矩阵的大维分析是很自然的。
前面章节提到,对于上面的高斯混合模型,作为维度 $p$ 增加, $\sigma^2$ 需要缩放为 $O(p)$ ,所以说 $\sigma^2=\tilde{\sigma}^2 p$ 对于 一些 $\tilde{\sigma}^2=O(1)$ ,以避免在越来越大的值下评估指数 $p$ 大。因此,目前感兴趣的原型内核是
为了 $f$ 一个足够平滑的函数(具体来说, $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ 为热内核)。正如我们将要看到的,最 好不要将自己限制在 $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ 以便更好地理解非线性核函数的影响 $f$ 关于内核矩阵的 (渐 近) 结构行为 $\mathbf{K}$.

计算机代写|机器学习代写machine learning代考|Euclidean Random Matrices with Equal Covariances

为了获得大维行为的第一张图片 $\mathbf{K}$ ,让我们先发展距离 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ 为了 $\mathbf{x}_i \in \mathcal{C}_a$ 和 $\mathbf{x}_j \in \mathcal{C}_b$ ,和 $i \neq j$
为简单起见,让我们暂时假设 $\mathbf{C}_1=\cdots=\mathbf{C}_k=\mathbf{I}_p$ 并回忆一下符号 $\mathbf{x}_i=\boldsymbol{\mu}_a+\mathbf{z}_i$. 我们有,为了 $i \neq j$ 那个”入门级”,
$$
\frac{1}{p}\left|\mathbf{x}_i-\mathbf{x}_j\right|^2=\frac{1}{p}\left|\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right|^2+\frac{2}{p}\left(\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) \quad+\frac{1}{p}\left|\mathbf{z}_i\right|^2+\frac{1}{p}\left|\mathbf{z}_j\right|^2-\frac{2}{p} \mathbf{z}_i^{\top} \mathbf{z}_j
$$
为了 $\left|\mathbf{x}_i\right|$ 秩序 $O(\sqrt{p})$ ,如果 $\left|\mu_a\right|=O(\sqrt{p})$ 对所有人 $a \in 1, \ldots, k$ (这很自然),然后 $\left|\mu_a-\mu_b\right|^2 / p$ 是先验的顺序 $O(1)$ 而根据中心极限定理, $\left|\mathbf{z}_i\right|^2 / p=1+O\left(p^{-1 / 2}\right)$. 同样,再次根据中心极限定理, $\mathbf{z}_i^{\top} \mathbf{z}_j / p=O\left(p^{-1 / 2}\right)$ 和 $\left(\mu_a-\mu_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) / p=O\left(p^{-1 / 2}\right)$
结果,对于 $p$ 大,距离 $\left|\mathbf{x} i-\mathbf{x}_j\right|^2 / p$ 被支配 $\left|\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right|^2 / p+2$ 并且很容易从成对观察中区分类别 $\mathbf{x}_i, \mathbf{x}_j$ ,使分类渐近平凡(无需求助于任何内核方法) 。因此,有趣的是考虑类距离不太重要的情况,以了解 内核的选择如何在这种更实际的场景中发挥作用。为此,我们现在要求
$$
\left|\mu_a-\mu_b\right|=O(1)
$$
这也是可以从单纯的贝叶斯推理分析中区分出来的最小距离率,如第 1.1.3 节中详尽讨论的那样。由于核 函数 $f(\cdot)$ 仅在距离上运行 $\left|\mathbf{x}_i-\mathbf{x}_j\right|$ ,我们甚至可以请求 (直到通过常量向量将所有数据居中 $\left.\frac{1}{n} \sum a=1^k n_a \mu_a\right)$ 为简单起见 $\left|\mu_a\right|=O(1)$ 每个 $a$.

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP30027

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP30027

计算机代写|机器学习代写machine learning代考|The Nontrivial Growth Rates

In classical large- $n$ only asymptotic statistics, laws of large numbers demand a scaling by $1 / n$ of the summed observations. When centered, central limit theorems then occur after multiplication of the average by $\sqrt{n}$. A similar requirement is needed when we now consider that the dimension $p$ of the data is also large. In particular, we will demand that the norm of each observation remains bounded. Assuming $\mathbf{x} \in \mathbb{R}^p$ is a vector of bounded entries, that is, each of order $O(1)$ with respect to $p$, the natural normalization is typically $\mathbf{x} / \sqrt{p}$.

In the context of kernel methods, for data $\mathbf{x}_1, \ldots, \mathbf{x}_n$, one wishes that the argument of $f(\cdot)$ in the inner-product kernel $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ or the distance kernel $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ be of order $O(1)$, when $f$ is assumed independent of $p$.

The “correct” scaling however appears not to be so immediate. Letting $\mathbf{x}i$ have entries of order $O(1)$, one naturally has that $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2=\left|\mathbf{x}_i\right|^2+\left|\mathbf{x}_j\right|^2-2 \mathbf{x}_i^{\top} \mathbf{x}_j=$ $O(p)$ and it thus appears natural to scale $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ by $1 / p$. Similarly, if the norm of the mean $\left|\mathbb{E}\left[\mathbf{x}_i\right]\right|$ of $\mathbf{x}_i$ has the same order of magnitude as $\left|\mathbf{x}_i\right|$ itself (as it should in general), then for $\mathbf{x}_i, \mathbf{x}_j$ independent, $\mathbb{E}\left[\mathbf{x}_i^{\top} \mathbf{x}_j\right]=O(p)$. So again, one should scale the inner-product also by $1 / p$, to obtain kernel matrices of the type $$ \mathbf{K}=\left{f\left(\frac{1}{p}\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)\right}{i, j=1}^n, \text { and }\left{f\left(\frac{1}{p} \mathbf{x}i^{\top} \mathbf{x}_j\right)\right}{i, j=1}^n
$$
Section $4.2$ (and most applications thereafter) will be placed under these kernel forms. The most commonly used Gaussian kernel matrix, defined as $\mathbf{K}=\left{\exp \left(-| \mathbf{x}i-\right.\right.$ $\left.\left.\mathbf{x}_j |^2 / 2 \sigma^2\right)\right}{i, j=1}^n$, falls into this family as one usually demands that $\sigma^2 \sim \mathbb{E}\left[\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right]$ (to avoid evaluating the exponential close to zero or infinity).

However, as already demonstrated in Section 1.1.3, if $n$ scales like $p$, then, for the classification problem to be asymptotically nontrivial, the difference $\left|\mathbb{E}\left[\mathbf{x}_i\right]-\mathbb{E}\left[\mathbf{x}_j\right]\right|^2$ needs to scale like $O(1)$ rather than $O(p)$ (otherwise data classes would be too easy to cluster for all large $n, p$ ), resulting in $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ possibly converging to a constant value irrespective of the data classes (of $\mathbf{x}_i$ and $\mathbf{x}_j$ ), with a typical “spread” of order $O(1 / \sqrt{p})$. Similarly, up to re-centering, ${ }^2 \mathbf{x}i^{\top} \mathbf{x}_j / p$ scales like $O(1 / \sqrt{p})$ rather than $O(1)$. As such, it seems more appropriate to normalize the kernel matrix entries as $$ [\mathbf{K}]{i j}=f\left(\frac{\left|\mathbf{x}i-\mathbf{x}_j\right|^2}{\sqrt{p}}-\frac{1}{n(n-1)} \sum{i^{\prime}, j^{\prime}} \frac{\left|\mathbf{x}{i^{\prime}}-\mathbf{x}{j^{\prime}}\right|^2}{\sqrt{p}}\right), \text { or }[\mathbf{K}]_{i j}=f\left(\frac{1}{\sqrt{p}} \mathbf{x}_i^{\top} \mathbf{x}_j\right)
$$
in order here to avoid evaluating $f$ essentially at a single value (equal to zero for the inner-product kernel or equal to the average “common” limiting intra-data distance for the distance kernel).

This “properly scaling” setting is in fact much richer than the $1 / p$ normalization when $n, p$ are of the same order of magnitude. Sections $4.2 .4$ and $4.3$ elaborate on this scenario.

计算机代写|机器学习代写machine learning代考|Statistical Data Model

In the remainder of the section, we assume the observation of $n$ independent data vectors from a total of $k$ classes gathered as $\mathbf{X}=\left[\mathbf{x}1, \ldots, \mathbf{x}_n\right] \in \mathbb{R}^{p \times n}$, where $$ \begin{array}{cc} \mathbf{x}_1, \ldots, \mathbf{x}{n_1} & \sim \mathcal{N}\left(\mu_1, \mathbf{C}1\right) \ \vdots & \vdots \ \mathbf{x}{n-n_k+1}, \ldots, \mathbf{x}n \sim \mathcal{N}\left(\mu_k, \mathbf{C}_k\right), \end{array} $$ which is a $k$-class Gaussian mixture model (GMM) with a fixed cardinality $n_1, \ldots, n_k$ in each class. ${ }^3$ The fact that the data are indexed according to classes simplifies the notation but has no practical consequence in the analysis. We will denote $\mathcal{C}_a$ the class number ” $a$,” so in particular $$ \mathbf{x}_i \sim \mathcal{N}\left(\mu_a, \mathbf{C}_a\right) \Leftrightarrow \mathbf{x}_i \in \mathcal{C}_a $$ for $a \in{1, \ldots, k}$, and will use for convenience the matrix $$ \mathbf{J}=\left[\mathbf{j}_1, \ldots, \mathbf{j}_k\right] \in \mathbb{R}^{n \times k}, \quad \mathbf{j}_a=[\underbrace{0, \ldots, 0}{n_1+\ldots+n_{a-1}}, \underbrace{1, \ldots, 1}{n_a}, \underbrace{0, \ldots, 0}{n_{a+1}+\ldots+n_k}]^{\top},
$$
which is the indicator matrix of the class labels $(\mathbf{J}$ is a priori known under a supervised learning setting and is to be fully or partially recovered under a semi-supervised or unsupervised learning setting).

We shall systematically make the following simplifying growth rate assumption for $p, n$ and $n_1, \ldots, n_k$.

Assumption 1 (Growth rate of data size and number). As $n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$ and $n_a / n \rightarrow c_a \in(0,1)$.

This assumption, in particular, implies that each class is “large” in the sense that their cardinalities increase with $n^4$

Accordingly with the discussions in Chapter 2, from a random matrix “universality” perspective, the Gaussian mixture assumption will often (yet not always) turn out equivalent to demanding that
$$
\mathbf{x}_i \in \mathcal{C}_a: \mathbf{x}_i=\mu_a+\mathbf{C}_a^{\frac{1}{2}} \mathbf{z}_i
$$
with $\mathbf{z}_i \in \mathbb{R}^p$ a random vector with i.i.d. entries of zero mean, unit variance, and bounded higher-order (e.g., fourth) moments.

This hypothesis is indeed quite restrictive as it imposes that the data, up to centering and linear scaling, are composed of i.i.d. entries. Equivalently, this suggests that only data which result from affine transformations of vectors with i.i.d. entries can be studied, which is quite restrictive in practice as “real data” are deemed much more complex.

Exploring the notion of concentrated random vectors introduced in Section 2.7, Chapter 8 will open up this discussion by showing that a much larger class of (statistical) data models embrace the same asymptotic statistics, and that most results discussed in the present section apply identically to broader models of data irreducible to vectors of independent entries.

计算机代写|机器学习代写machine learning代考|COMP30027

机器学习代考

计算机代写|机器学习代写machine learning代考|The Nontrivial Growth Rates

在经典大 $n$ 只有渐近统计,大数定律要求按比例缩放 $1 / n$ 总结的意见。当居中时,中心极限定理然后出现 在平均值乘以 $\sqrt{n}$. 当我们现在考虑维度时,需要类似的要求 $p$ 数据量也很大。特别是,我们将要求每个 观察的范数保持有界。假设 $\mathbf{x} \in \mathbb{R}^p$ 是有界条目的向量,即每个顺序 $O(1)$ 关于 $p$ ,自然归一化通常是 $\mathbf{x} / \sqrt{p}$
在内核方法的上下文中,对于数据 $\mathbf{x}1, \ldots, \mathbf{x}_n$ , 人们㹷望 $f(\cdot)$ 在内积内核中 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ 或距离内核 $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ 有秩序 $O(1)$ , 什么时候 $f$ 假设独立于 $p$. 然而, “正确”的缩放比例似乎并不是那么直接。出租 $\mathbf{x} i$ 有订单条目 $O(1)$ ,自然有 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2=\left|\mathbf{x}_i\right|^2+\left|\mathbf{x}_j\right|^2-2 \mathbf{x}_i^{\top} \mathbf{x}_j=O(p)$ 因此它看起来很自然 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ 经过 $1 / p$. 同样,如 果均值范数 $\left|\mathbb{E}\left[\mathbf{x}_i\right]\right|$ 的 $\mathbf{x}_i$ 具有相同的数量级 $\left|\mathbf{x}_i\right|$ 本身(通常应该如此),然后对于 $\mathbf{x}_i, \mathbf{x}_j$ 独立的, $\mathbb{E}\left[\mathbf{x}_i^{\top} \mathbf{x}_j\right]=O(p)$. 因此,同样,也应该通过以下方式缩放内积 $1 / p$ , 以获得类型的内核矩阵 部分 $4.2$ (以及此后的大多数应用程序) 将置于这些内核形式下。最常用的高斯核矩阵,定义为 ,属于这个家庭,因为人们通常要求 $\sigma^2 \sim \mathbb{E}\left[\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right]$ (以避免评估接近零或无穷大的指数)。 然而,正如第 $1.1 .3$ 节中所展示的,如果 $n$ 天平像 $p$ ,那么,对于渐进非平凡的分类问题,差分 $\left|\mathbb{E}\left[\mathbf{x}_i\right]-\mathbb{E}\left[\mathbf{x}_j\right]\right|^2$ 需要像这样扩展 $O(1)$ 而不是 $O(p)$ (否则数据类对于所有大型 $n, p$ ),导致 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ 可能收玫到一个常数值,而不管数据类 (的 $\mathbf{x}_i$ 和 $\mathbf{x}_j$ ),具有典型的订单“价差” $O(1 / \sqrt{p})$. 同 样,直到重新居中, ${ }^2 \mathbf{x} i^{\top} \mathbf{x}_j / p$ 天平像 $O(1 / \sqrt{p})$ 而不是 $O(1)$. 因此,将内核矩阵条目归一化似乎更合 适 $$ [\mathbf{K}] i j=f\left(\frac{\left|\mathbf{x} i-\mathbf{x}_j\right|^2}{\sqrt{p}}-\frac{1}{n(n-1)} \sum i^{\prime}, j^{\prime} \frac{\left|\mathbf{x} i^{\prime}-\mathbf{x} j^{\prime}\right|^2}{\sqrt{p}}\right), \text { or }[\mathbf{K}]{i j}=f\left(\frac{1}{\sqrt{p}} \mathbf{x}_i^{\top} \mathbf{x}_j\right)
$$
为了避免在这里评估 $f$ 基本上是一个单一的值(对于内积内核等于零或对于距离内核等于平均”公共”限制 数据内距离)。
这种”适当缩放”的设置实际上比 $1 / p |$ 归一化时 $n, p$ 是同一个数量级。部分 $4.2 .4$ 和 $4.3$ 详细说明这个场景。

计算机代写|机器学习代写machine learning代考|Statistical Data Model

在本节的其余部分,我们假设观察到 $n$ 来自总共的独立数据向量 $k$ 班级聚集为 $\mathbf{X}=\left[\mathbf{x} 1, \ldots, \mathbf{x}n\right] \in \mathbb{R}^{p \times n}$ , 在哪里 $$ \mathbf{x}_1, \ldots, \mathbf{x} n_1 \sim \mathcal{N}\left(\mu_1, \mathbf{C} 1\right) \vdots \vdots \mathbf{x} n-n_k+1, \ldots, \mathbf{x} n \sim \mathcal{N}\left(\mu_k, \mathbf{C}_k\right), $$ 这是一个 $k$ 具有固定基数的类高斯混合模型 (GMM) $n_1, \ldots, n_k$ 在每个班级。 ${ }^3$ 数据按类索引的事实简 化了符号,但在分析中没有实际影响。我们将表示 $\mathcal{C}_a$ 班级号” $a$ “,所以特别是 $$ \mathbf{x}_i \sim \mathcal{N}\left(\mu_a, \mathbf{C}_a\right) \Leftrightarrow \mathbf{x}_i \in \mathcal{C}_a $$ 为了 $a \in 1, \ldots, k$, 并且为了方便起见将使用矩阵 $$ \mathbf{J}=\left[\mathbf{j}_1, \ldots, \mathbf{j}_k\right] \in \mathbb{R}^{n \times k}, \quad \mathbf{j}_a=[\underbrace{0, \ldots, 0} n_1+\ldots+n{a-1}, \underbrace{1, \ldots, 1} n_a, \underbrace{0, \ldots, 0} n_{a+1}+\ldots+n_k]
$$
这是类标签的指标矩阵 $(\mathbf{J}$ 在监督学习环境下是先验已知的,并且在半监督或无监督学习环境下将完全或 部分恢复)。
我们将系统地做出以下简化的增长率假设 $p, n$ 和 $n_1, \ldots, n_k$.
假设 1 (数据大小和数量的增长率) 。作为 $n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$ 和 $n_a / n \rightarrow c_a \in(0,1)$.
这个假设特别意味着每个类都是“大的”,因为它们的基数随着 $n^4$
根据第 2 章的讨论,从随机矩阵“普遍性”的角度来看,高斯混合假设通常 (但不总是) 等同于要求
$$
\mathbf{x}_i \in \mathcal{C}_a: \mathbf{x}_i=\mu_a+\mathbf{C}_a^{\frac{1}{2}} \mathbf{z}_i
$$
和 $\mathbf{z}_i \in \mathbb{R}^p$ 具有零均值、单位方差和有界高阶(例如四阶)矩的独立同分布条目的随机向量。
这个假设确实非常严格,因为它强加了数据,直到居中和线性缩放,由 iid 条目组成。等价地,这表明只 能研究由具有 iid 条目的向量的仿射变换产生的数据,这在实践中是相当受限的,因为“真实数据”被认为 要复杂得多。
探索第 $2.7$ 节中介绍的集中随机向量的概念,第 8 章将通过展示更大类的(统计)数据模型包含相同的 渐近统计来展开这一讨论,并且本节中讨论的大多数结果同样适用于更广泛的数据模型不能简化为独立 条目的向量。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP5318

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP5318

计算机代写|机器学习代写machine learning代考|Kernel Methods

In a broad sense, kernel methods are at the core of many, if not most, machine learning algorithms [Schölkopf and Smola, 2018]. Given a set of data $\mathbf{x}1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$, most learning mechanisms rely on extracting the structural data information from direct or indirect pairwise comparisons $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)$ for some affinity metric $\kappa(\cdot, \cdot)$. Gathered in an $n \times n$ matrix $$ \mathbf{K}=\left{\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)\right}{i, j=1}^n
$$
the “cumulative” effect of these comparisons for numerous $(n \gg 1)$ data is at the source of various supervised, semi-supervised, or unsupervised methods such as support vector machines, graph Laplacian-based learning, kernel spectral clustering, and has deep connections to neural networks.

These applications will be thoroughly discussed in Section 4.4. For the moment though, our main interest lies in the spectral characterization of the kernel matrix $\mathbf{K}$ itself for various (classical) choices of affinity functions $\kappa$ and for various statistical models of the data $\mathbf{x}_i$

Clearly, from a purely machine learning perspective, the choice of the affinity function $\kappa(\cdot, \cdot)$ is central to a good performance of the learning method under study. Since real data in general have highly complex structures, a typical viewpoint is to assume that the data points $\mathbf{x}_i$ and $\mathbf{x}_j$ are not directly comparable in their ambient space but that there exists a convenient feature extraction function $\phi: \mathbb{R}^p \rightarrow \mathbb{R}^q(q \in \mathbb{N} \cup{+\infty})$ such that $\phi\left(\mathbf{x}_i\right)$ and $\phi\left(\mathbf{x}_j\right)$ are more amenable to comparison. Otherwise stated, in the image of $\phi(\cdot)$, the data are more “linear” (or more “linearly separable” if one seeks to group the data in affinity classes). The simplest affinity function between $\mathbf{x}_i$ and $\mathbf{x}_j$ would in this case be $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$

Since $q$ may be larger (if not much larger) than $p$, the mere cost of evaluating $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$ can be deleterious to practical implementation. The so-called kernel trick is anchored in the remark that, for a certain class of such functions $\phi, \phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=$ $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ or $-f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ and it thus suffices to evaluate $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ or $\mathbf{x}_i^{\top} \mathbf{x}_j$ in the ambient space and then apply $f$ in an entrywise manner to evaluate all data affinities, leading to more practically convenient methods.

Although the class of such functions $f$ is inherently restricted by the need for a mapping $\phi$ to exist such that, say, $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ for all possible $\mathbf{x}_i, \mathbf{x}_j$ pairs (these are sometimes called Mercer kernel functions), ${ }^1$ with time, practitioners have started to use arbitrary functions $f$ and worked with generic kernel matrices of the form
$$
\mathbf{K}=\left{f\left(\left|\mathbf{x}i-\mathbf{x}_j\right|^2\right)\right}{i, j=1}^n, \quad \text { or } \quad \mathbf{K}=\left{f\left(\mathbf{x}i^{\top} \mathbf{x}_j\right)\right}{i, j=1}^n,
$$
irrespective of the actual form or even the existence of an underlying feature extraction function $\phi$. There are, in particular, empirical evidences showing that well-chosen “indefinite” (i.e., nonMercer type) kernels, being not associated with a mapping $\phi$, can sometimes outperform conventional nonnegative definite kernels that satisfy the Mercer’s condition [Haasdonk, 2005, Luss and D’Aspremont, 2008].

计算机代写|机器学习代写machine learning代考|Basic Setting

As pointed out in Remark $4.1$ and shall become evident from the coming analysis, the small-dimensional intuition according to which $f$ should be a nonincreasing “valid” Mercer function becomes rather meaningless when dealing with large-dimensional data, essentially due to the “curse of dimensionality” and the concentration phenomenon in high dimensions.

To fully capture this aspect, a first important consideration is, as already mentioned in Section 1.1.3, to deal with “nontrivial” relative growth rates of the statistical data parameters with respect to the dimensions $p, n$. By nontrivial, we mean that the underlying classification or regression problem for which the kernel method is designed should neither be impossible nor trivially easy to solve as $p, n \rightarrow \infty$. The reason behind this request is fundamental, and also disrupts from many research works in machine learning which, instead, seek to prove that the method under study performs perfectly in the limit of large $n$ (with $p$ fixed in general): Here, we rather wish to account for the fact that, at finite but large $p, n$, the machine learning methods of practical interest are those which have nontrivial performances; thus, in what follows, ” $n, p \rightarrow \infty$ in nontrivial growth rates” should really be understood as ” $n, p$ are both large and the problem at hand is non-trivially easy or hard to solve.”

In this section, we will mostly focus on the use of kernel methods for classification, and thus the nontrivial settings are given in terms of the growth rate of the “distance” between (the statistics of) data classes. It will particularly appear that the very definition of the appropriate growth rates to ensure the nontrivial character of a machine learning problem to be solved through kernel methods depends on the kernel design itself, and that flagship kernels such as the Gaussian kernel $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\exp \left(-\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)$ are in general quite suboptimal.

计算机代写|机器学习代写machine learning代考|COMP5318

机器学习代考

计算机代写|机器学习代写machine learning代考|Kernel Methods

从广义上讲,内核方法是许多 (如果不是大多数) 机器学习算法的核心 [Schölkopf 和 Smola, 2018 年]。给定一组数据 $\mathbf{x} 1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ ,大多数学习机制依赖于从直接或间接的成对比较中提取结构数 据信息 $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)$ 对于一些亲和力指标 $\kappa(\cdot, \cdot)$. 聚集在一个 $n \times n$ 矩阵
这些比较的㽧积”效应对许多 $(n \gg 1)$ 数据是各种监督、半监督或无监督方法的来源,例如支持向量 机、基于图拉普拉斯算子的学习、核谱聚类,并且与神经网络有看深厚的联系。
这些应用程序将在第 $4.4$ 节中详细讨论。不过目前,我们的主要兴趣在于核矩阵的光谱特征KK本身用于 亲和函数的各种(经典)选择 $\kappa$ 以及数据的各种统计模型 $\mathbf{x}_i$
显然,从纯机器学习的角度来看,亲和函数的选择 $\kappa(\cdot, \cdot)$ 是所研究学习方法良好表现的核心。由于真实 数据通常具有高度复杂的结构,一个典型的观点是假设数据点 $\mathbf{x}_i$ 和 $\mathbf{x}_j$ 在它们的环境空间中不能直接比 较,但是存在一个方便的特征提取函数 $\phi: \mathbb{R}^p \rightarrow \mathbb{R}^q(q \in \mathbb{N} \cup+\infty)$ 这样 $\phi\left(\mathbf{x}_i\right)$ 和 $\phi\left(\mathbf{x}_j\right)$ 更适合比 较。另有说明,在图片中 $\phi(\cdot)$ ,数据更 线性”(或者如果试图将数据分组到亲和类中,则数据更“线性可 分”) 。之间最简单的亲和函数 $\mathbf{x}_i$ 和 $\mathbf{x}_j$ 在这种情况下会是 $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$
自从 $q$ 可能比 $p$, 单纯的评估成本 $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$ 可能不利于实际实施。所谓的内核技巧是基于这样的评 论,对于某一类这样的函数 $\phi, \phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ 要么 $-f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ 对于某些功能 $f: \mathbb{R} \rightarrow \mathbb{R}$ 因此足以评估 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ 要么 $\mathbf{x}_i^{\top} \mathbf{x}_j$ 在环境空间中,然后应用 $f$ 以入方式评估所有数据亲 和力,从而导致更实用的方法。
虽然此类函数 $f$ 本质上受到映射需求的限制 $\phi$ 存在这样的,说, $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ 对于 所有可能的 $\mathbf{x}_i, \mathbf{x}_j$ 对(这些有时称为 Mercer 核函数), 1 随着时间的推移,从业者开始使用任意函数 $f$ 并使用形式的通用内核矩阵
无论实际形式如何,甚至不考虑底层特征提取函数的存在 $\phi$. 特别是,有经验证据表明,精心挑选的“不确 定” (即非 Mercer 类型) 内核与映射无关 $\phi$ ,有时可以胜过满足 Mercer 条件的传统非负定核 [Haasdonk, 2005, Luss and D’Aspremont, 2008]。

计算机代写|机器学习代写machine learning代考|Basic Setting

正如备注中指出的 $4.1$ 并且将从接下来的分析中变得明显,小维度的直觉根据它 $f$ 应该是一个非递增的“有 效”Mercer函数在处理大维数据时变得毫无意义,本质上是由于”维数灾难”和高维集中现象。
为了充分把握这一方面,第一个重要的考虑因素是,如第 $1.1 .3$ 节所述,处理统计数据参数相对于维度的 “非平凡”相对增长率 $p, n$. 非平凡的意思是,设计核方法所针对的基础分类或回归问题既不应该是不可能 的,也不应该很容易解决,因为 $p, n \rightarrow \infty$. 这一要求背后的原因是根本性的,并且与机器学习中的许多 研究工作不同,这些研究工作相反,试图证明所研究的方法在大的限制下完美执行 $n$ (和 $p$ 一般固定): 在这里,我们宁愿考虑这样一个事实,即在有限但大的情况下 $p, n$ ,具有实际意义的机器学习方法是那 些具有非凡性能的方法;因此,在接下来的内容中, “ $n, p \rightarrow \infty$ 以非平凡的增长率”应该真正理解为” $n, p$ 两者都很大,手头的问题非常容易或难以解决。”
在本节中,我们将主要关注使用核方法进行分类,因此根据数据类别(统计数据)之间“距离“的增长率给 出了重要的设置。特别是,为了确保通过内核方法解决的机器学习问题的非平凡特性,适当增长率的定 义取决于内核设计本身,而高斯内核等旗舰内核 $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\exp \left(-\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)$ 通常是次优的。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|STAT3007

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|STAT3007

计算机代写|深度学习代写deep learning代考|Some Background on Darwin and Evolution

Charles Darwin formed his initial concepts and theory of natural selection based on his voyages around the continent of South America. From Darwin’s work, our thirst for understanding evolution drove our exploration into how life on earth shares and passes on selective traits using genetics.

Taking 2 decades to write in 1859 , Darwin published his most famous work “On the Origin of Species” a seminal work that uprooted the natural sciences. His work challenged the idea of an intelligent creator and formed the basis for much of our natural and biological sciences to this day. The following excerpt is from that book and describes the theory of natural selection in Darwin’s words:

“One general law, leading to the advancement of all organic beings, namely, multiply, vary, let the strongest live and the weakest die.”
Charles Darwin – On the Origin of Species
From this law Darwin constructed his theory of evolution and the need for life to survive by passing on more successful traits to offspring. While he didn’t understand the process of cellular mitosis and genetics, he did observe the selective passing of traits in multiple species. It wasn’t until 1865 that a German monk named Gregor Mendel would outline his theories of gene inheritance by observing 7 traits in pea plants.

Mendel used the term factors or traits to describe what we now understand as genes. It took almost another 3 decades before his work was recognized and the field of genetics was born. Since then, our understanding of genetics has grown from gene therapy and hacking to solving complex problems and evolving code.

计算机代写|深度学习代写deep learning代考|Applying Crossover – Reproduction

After the parents are selected, we can move on to applying crossover or essentially the reproduction process of creating offspring. Not unlike the cellular division process in biology, we simulate the combining of chromosomes through a crossover operation. Where each parent shares a slice of its gene sequence and combines it with the other parents.

Figure $2.9$ shows the crossover operation being applied using 2 parents. In crossover, a point is selected either randomly or using some strategy along the gene sequence. It is at this point the gene sequences of the parents are split and then recombined. In this simple example, we don’t care about what percentage of the gene sequence is shared with each offspring.

For more complex problems requiring thousands or millions of generations we may prefer more balanced crossover strategies rather than this random selection method. We will further cover the strategies we can use to define this operation later in the chapter.

In code the crossover operation first makes a copy of themselves to create the raw children. Then we randomly determine if there is a crossover operation using the variable crossover_rate. If there is a crossover operation then a random point along the gene sequence is generated as the crossover point. This point is used to split the gene sequence and then the children are generated by combining the gene sequences of both parents.

There are several variations and ways in which crossover may be applied to the gene sequence. For this example, selecting a random crossover point and then simply combining the sequences at the split point works. However, in some cases, particular gene sequences may or may not make sense in which case we may need other methods to preserve gene sequences.

计算机代写|深度学习代写deep learning代考|STAT3007

深度学习代写

计算机代写|深度学习代写deep learning代考|Some Background on Darwin and Evolution

查尔斯达尔文根据他在南美洲大陆的航行形成了他最初的自然选择概念和理论。从达尔文的工作中,我们对理解进化的渴望驱使我们探索地球上的生命如何使用遗传学共享和传递选择性特征。

1859 年,达尔文花了 2 年的时间写作,发表了他最著名的著作《物种起源》,这是一部颠覆自然科学的开创性著作。他的工作挑战了智能创造者的想法,并构成了我们今天大部分自然科学和生物科学的基础。以下摘自那本书,用达尔文的话描述了自然选择理论:

“一个普遍的规律,导致所有有机生物的进步,即繁殖,变异,让最强者生存,让最弱者死亡。”
查尔斯·达尔文——论物种起源
达尔文根据这条定律构建了他的进化论以及生命通过将更成功的特征传给后代来生存的必要性。虽然他不了解细胞有丝分裂和遗传学的过程,但他确实观察到了多个物种性状的选择性传递。直到 1865 年,一位名叫格雷戈尔·孟德尔 (Gregor Mendel) 的德国僧侣才通过观察豌豆植物的 7 个性状,概述了他的基因遗传理论。

孟德尔使用术语因子或特征来描述我们现在所理解的基因。又过了将近 3 年,他的工作才得到认可,遗传学领域诞生了。从那时起,我们对遗传学的理解已经从基因治疗和黑客攻击发展到解决复杂问题和进化代码。

计算机代写|深度学习代写deep learning代考|Applying Crossover – Reproduction

选择父母后,我们可以继续应用交叉或本质上创造后代的繁殖过程。与生物学中的细胞分裂过程一样,我们通过交叉操作模拟染色体的组合。每个父母共享其基因序列的一部分并将其与其他父母结合。

数字2.9显示了使用 2 个父代应用的交叉操作。在交叉中,随机选择一个点或使用基因序列中的某种策略。正是在这一点上,父母的基因序列被分裂,然后重新组合。在这个简单的例子中,我们不关心每个后代共享基因序列的百分比。

对于需要数千或数百万代的更复杂的问题,我们可能更喜欢更平衡的交叉策略,而不是这种随机选择方法。我们将在本章后面进一步介绍可用于定义此操作的策略。

在代码中,交叉操作首先复制自己以创建原始子代。然后我们使用变量 crossover_rate 随机确定是否存在交叉操作。如果存在交叉操作,则沿着基因序列生成一个随机点作为交叉点。这个点用来分割基因序列,然后通过结合父母双方的基因序列生成孩子。

有多种变体和方式可以将交叉应用于基因序列。对于这个例子,选择一个随机的交叉点,然后简单地在分割点组合序列就可以了。然而,在某些情况下,特定的基因序列可能有意义也可能没有意义,在这种情况下我们可能需要其他方法来保存基因序列。

计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|COMP5329

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP5329

计算机代写|深度学习代写deep learning代考|Conway’s Game of Life on Google Collaboratory

In this next section we are going to explore the Game of Life by John Horton Conway. This simple cellular automation developed in 1970 is attributed to the birth of the computer simulation. While the rules of the simulation are simple the patterns and manifestations it can produce are an incredible testament to its eloquence.

This next exercise will also help us introduce Google Collaboratory or Colab as it is widely known and the term, we will refer to it by. Colab is an excellent platform for performing all forms of machine learning from evolutionary computation to deep learning. It is based on Jupyter notebooks so should be familiar to most Python developers with a notebook background. Furthermore, it is free and provides both CPU and GPU resources we will heavily use later.

  1. Begin the exercise by loading up the exercise
    EDL_2_1_Conways_Game_of_Life.ipynb in your browser. Please refer to appendix A to get details on how to load the code from the GitHub repository to Colab.
  2. After you open the notebook in Colab you will see several text and code cells. We won’t worry about any of the code in this exercise, just the steps on how to use Colab to execute the notebook and explore the results.
  3. Next, select the first code cell in the notebook and click the Run Cell button in the top left or type Ctrl+Enter or Cmd+Enter to run the cell. This will run the code and setup the show_video function to be use later. We employ this function to demonstrate a real-time visual output of the simulation.

计算机代写|深度学习代写deep learning代考|Life Simulation as Optimization

In this next scenario, we are going to use our previous simple example and elevate it to perform optimization of an attribute defined on the cells. There are many reasons we may develop simulations for all forms of discovery of behavior, optimization, or enlightenment. For most applications of evolutionary algorithms, our end goal will be to optimize a process, parameters, or structure.

For this next notebook, we extend the attributes in each cell from health to include a new parameter called strength. Our goal will be to optimize the cell strength of our entire population. Strength will be representative of any trait in an organism that makes it successful in its environment. That means in our simple example our goal will be to maximize strength across the entire population.

  1. Open the notebook example EDL_2_3_Simulating_Life_part2.ipynb in your browser. Check appendix $\mathrm{A}$ if you require assistance.
  2. We are using a useful real-time plotting library called LivelossPlot for several examples in this book. This library is intended for plotting training losses for machine and deep learning problems. So, the default graphs present terminology we would use in a DL problem but nonetheless, it will work perfectly fine for needs. The code below demonstrates installing the package and importing the PlotLosses class.
  3. The bulk of the code in this example is shared from the previous and as such we will just look at the differences. Starting with the first cell we can see a few changes in the functions that define the life simulation shown below. The big change here is that we now use the new strength parameter to derive the cell’s health.
  4. Likewise, the reproduction and death functions have been modified to not pick random cells to reproduce or die. Instead, the new functions determine if a cell reproduces or dies based on the health attribute. Notice the addition of 2 new parameters, reproduction bounds and death bounds. These new parameters control at what health level a cell can reproduce or when it should die.
计算机代写|深度学习代写deep learning代考|COMP5329

深度学习代写

计算机代写|深度学习代写deep learning代考|Conway’s Game of Life on Google Collaboratory

在下一节中,我们将探索 John Horton Conway 的生命游戏。1970 年开发的这种简单的细胞自动化归功于计算机模拟的诞生。虽然模拟的规则很简单,但它可以产生的模式和表现形式令人难以置信地证明了它的口才。

下一个练习还将帮助我们介绍 Google Collaboratory 或 Colab,因为它广为人知,我们将通过这个术语来引用它。Colab 是执行从进化计算到深度学习的各种形式的机器学习的绝佳平台。它基于 Jupyter 笔记本,因此大多数具有笔记本背景的 Python 开发人员应该很熟悉。此外,它是免费的,并提供我们稍后将大量使用的 CPU 和 GPU 资源。


  1. 通过在浏览器中加载练习 EDL_2_1_Conways_Game_of_Life.ipynb 来开始练习。请参阅附录 A 以获取有关如何将代码从 GitHub 存储库加载到 Colab 的详细信息。
  2. 在 Colab 中打开笔记本后,您将看到几个文本和代码单元格。我们不会担心本练习中的任何代码,只需关注有关如何使用 Colab 执行笔记本并探索结果的步骤。
  3. 接下来,选择笔记本中的第一个代码单元格,然后单击左上角的“运行单元格”按钮或键入 Ctrl+Enter 或 Cmd+Enter 来运行该单元格。这将运行代码并设置 show_video 函数以供稍后使用。我们使用此功能来演示模拟的实时视觉输出。

计算机代写|深度学习代写deep learning代考|Life Simulation as Optimization

在下一个场景中,我们将使用我们之前的简单示例并将其提升以执行对单元格上定义的属性的优化。我们可能会为各种形式的行为发现、优化或启发开发模拟,原因有很多。对于进化算法的大多数应用,我们的最终目标将是优化过程、参数或结构。

对于下一个笔记本,我们将每个单元格中的属性从 health 扩展为包括一个名为 strength 的新参数。我们的目标是优化我们整个人群的细胞强度。力量将代表有机体中使其在其环境中成功的任何特征。这意味着在我们的简单示例中,我们的目标将是最大化整个人口的力量。

  1. 在浏览器中打开笔记本示例 EDL_2_3_Simulating_Life_part2.ipynb。检查附录一种如果您需要帮助。
  2. 对于本书中的几个示例,我们使用了一个名为 LivelossPlot 的有用实时绘图库。该库旨在绘制机器和深度学习问题的训练损失。因此,默认图表提供了我们将在 DL 问题中使用的术语,但尽管如此,它仍然可以很好地满足需要。下面的代码演示了安装包和导入 PlotLosses 类。
  3. 此示例中的大部分代码与之前的代码相同,因此我们将只查看不同之处。从第一个单元格开始,我们可以看到定义如下所示的生命模拟的函数发生了一些变化。这里最大的变化是我们现在使用新的强度参数来推导细胞的健康状况。
  4. 同样,繁殖和死亡功能已被修改为不选择随机细胞进行繁殖或死亡。相反,新函数根据健康属性确定细胞是繁殖还是死亡。注意添加了 2 个新参数,即繁殖界限和死亡界限。这些新参数控制细胞可以在什么健康水平下繁殖或何时死亡。
计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|COMP30027

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|COMP30027

计算机代写|深度学习代写deep learning代考|Optimizing the Network Architecture

As a network becomes more sophisticated with the addition of layers or various node types it puts direct consequences on how the loss/error is backpropagated through it. Figure $1.2$ demonstrates the more common problems we typically encounter when growing more complex and larger DL systems.

Larger networks mean the amount of loss needs to be divided into smaller and smaller components that eventually approach or get close to zero. When these loss components or gradients approach zero we call this a vanishing gradient problem often associated with deep networks. Conversely, components may also get exceptionally large by successively passing through layers that magnify those input signals. Resulting in gradient components getting large or what’s called exploding gradients.

Both gradient problems can be resolved using various techniques like normalizing input data and again through the layers. Special types of layer functions called normalization and dropout are shown in Figure 1.3. These techniques also add to the computational complexity and requirements for the network. They may also overtly smooth over important and characteristic features in data. Thus, requiring larger and more diverse training datasets to develop good network performance.

Normalization may solve the vanishing/exploding gradient problems of deep networks but as models grow these manifest other concerns. As networks grow, they increase the ability to digest larger sets of input, bigger images for example. Yet, this also may cause a side effect known as network memorization which can occur again if the input training set is too small. This occurs because the network is so large that it may start to memorize sets of input chunks or potentially whole images or sets of text.

The cutting-edge DL models that you may have heard about like the GPT-3, a natural language processor from OpenAI, suffer in part from memorization. This is even after feeding billions of documents representing multiple forms of text into such models. Even with such diverse and massive training sets models like GPT-3 have been shown to replay whole paragraphs of remembered text. Which may be an effective feature for a database that doesn’t fit well into a DL model.

There have been workarounds developed for the memorization problem called dropout, a process by which a certain percentage of the nodes within network layers may be deactivated through each training pass. The result of turning off/on nodes within each pass creates a more general network. Yet at a cost of still requiring the network to now be 100 $200 \%$ larger.

计算机代写|深度学习代写deep learning代考|What is Automated Machine Learning, AutoML?

AutoML or automated machine learning is a tool or set of tools used to automate and enhance the building of $\mathrm{AI} / \mathrm{ML}$. It is not a specific technology but a collection of methods and strategies in which evolutionary algorithms or evolutionary optimization methods would be considered a subset. It is a tool that can be used throughout the $\mathrm{AI} / \mathrm{ML}$ workflow as depicted in Figure 1.3.

Figure $1.1$ depicts the typical AI/ML workflow for building a good model used later for confident inference of new data. This workflow is often undertaken manually by various oractitioners of AI/ML but there have been various attempts to automate all steps. Below is a summary of each of these steps in more detail and how they may be automated with AML:

expensive. In general, preparing data Automating this task can dramatically increase the performance of data workflows critical to fine-tuning complex models. AutoML online services often assume that the user has already prepared and cleaned data as required by most ML models. With evolutionary methods, there are several ways to automate the preparation of data and while this task is not specific to EDL, we will cover it in later chapters.

  • Feature Engineering – is the process of extracting relevant features in data using prior domain knowledge. With experts picking and choosing relevant features based on their intuition and experience. Since domain experts are expensive and opinionated, automating this task reduces costs and improves standardization. Depending on the AutoML tool feature engineering may be included in the process.
  • Model Selection – as AI/ML has advanced there are now hundreds of various model types that could be used to solve similar problems. Often data scientists will spend days or weeks just selecting a group of models to further evaluate. Automating this process speeds up model development and helps the data scientist affirm they are using the right model for the job. A good AutoML tool may choose from dozens or hundreds of models including DL variations or model ensembles.
  • Model Architecture – depending on the area of $\mathrm{AI} / \mathrm{ML}$ and deep learning, defining the right model architecture is often critical. Getting this right in an automated way alleviates countless hours of tuning architecture and rerunning models. Depending on the implementation some AutoML systems may vary model architecture, but this is typically limited to well-known variations.
  • Hyperparameter Optimization – the process of fine-tuning a model’s hyperparameters can be time-consuming and error-prone. To overcome this, many practitioners rely on intuition and previous experience. While this has been successful in the past, increasing model complexity now makes this task untenable. By automating HP tuning we not only alleviate work from the builders but also uncover potential flaws in the model selection or architecture.
  • Validation Selection – there are many options for evaluating the performance of a model. From deciding on how much data to use for training and testing to visualizing the output performance of a model. Automating the validation of a model provides a robust means to recharacterize model performance when data changes and makes a model more explainable long term. For online AutoML services, this is a key strength that provides a compelling reason to employ such tools.
计算机代写|深度学习代写deep learning代考|COMP30027

深度学习代写

计算机代写|深度学习代写deep learning代考|Optimizing the Network Architecture

随着网络通过添加层或各种节点类型变得更加复杂,它直接影响了损失/错误如何通过它反向传播。数字1.2展示了我们在开发更复杂和更大的 DL 系统时通常会遇到的更常见的问题。

更大的网络意味着损失量需要被分成越来越小的部分,最终接近或接近于零。当这些损失分量或梯度接近零时,我们称其为通常与深度网络相关的梯度消失问题。相反,组件也可能通过连续穿过放大这些输入信号的层而变得异常大。导致梯度分量变大或所谓的梯度爆炸。

这两个梯度问题都可以使用各种技术来解决,例如标准化输入数据并再次通过层。图 1.3 显示了称为归一化和丢弃的特殊类型的层函数。这些技术还增加了网络的计算复杂性和要求。他们也可能公然掩盖数据中的重要特征和特征。因此,需要更大、更多样化的训练数据集来开发良好的网络性能。

归一化可以解决深层网络的消失/爆炸梯度问题,但随着模型的增长,这些问题会显现出其他问题。随着网络的发展,它们增加了消化更大输入集的能力,例如更大的图像。然而,这也可能导致称为网络记忆的副作用,如果输入训练集太小,这种副作用可能会再次发生。发生这种情况是因为网络太大以至于它可能开始记住输入块集或可能的整个图像或文本集。

您可能听说过的尖端 DL 模型,例如来自 OpenAI 的自然语言处理器 GPT-3,在一定程度上会受到记忆的影响。这甚至是在将代表多种文本形式的数十亿文档输入此类模型之后。即使有如此多样化和庞大的训练集,像 GPT-3 这样的模型也被证明可以重播记忆文本的整个段落。对于不太适合 DL 模型的数据库来说,这可能是一个有效的特性。

已经针对称为 dropout 的记忆问题开发了变通方法,通过该过程,网络层中的一定比例的节点可能会在每次训练过程中停用。在每次传递中关闭/打开节点的结果创建了一个更通用的网络。然而,代价是仍然要求网络现在是 100200%更大。

计算机代写|深度学习代写deep learning代考|What is Automated Machine Learning, AutoML?

AutoML 或自动化机器学习是一种工具或一组工具,用于自动化和增强构建一种我/米大号. 它不是一种特定的技术,而是一种方法和策略的集合,其中进化算法或进化优化方法将被视为一个子集。它是一个可以在整个过程中使用的工具一种我/米大号工作流程如图 1.3 所示。

数字1.1描述了典型的 AI/ML 工作流程,用于构建一个良好的模型,稍后用于对新数据进行自信的推理。此工作流通常由 AI/ML 的各种执行者手动执行,但已经有各种尝试使所有步骤自动化。下面更详细地总结了每个步骤,以及如何使用 AML 将它们自动化:

昂贵的。一般来说,准备数据自动化此任务可以显着提高对微调复杂模型至关重要的数据工作流的性能。AutoML 在线服务通常假设用户已经按照大多数 ML 模型的要求准备和清理了数据。使用进化方法,有几种方法可以自动准备数据,虽然这个任务不是 EDL 特有的,但我们将在后面的章节中介绍它。

  • 特征工程——是使用先验领域知识从数据中提取相关特征的过程。专家根据他们的直觉和经验挑选和选择相关特征。由于领域专家的费用昂贵且固执己见,因此自动化此任务可降低成本并提高标准化程度。根据 AutoML 工具的不同,特征工程可能包含在该过程中。
  • 模型选择——随着 AI/ML 的进步,现在有数百种不同的模型类型可用于解决类似的问题。数据科学家通常会花费数天或数周的时间来选择一组模型进行进一步评估。自动化此过程可加快模型开发并帮助数据科学家确认他们正在使用正确的模型来完成工作。一个好的 AutoML 工具可能会从数十个或数百个模型中进行选择,包括 DL 变体或模型集成。
  • 模型架构——取决于区域一种我/米大号和深度学习,定义正确的模型架构通常是至关重要的。以自动化方式正确完成此操作可以减少无数小时的架构调整和重新运行模型。根据实现的不同,一些 AutoML 系统可能会改变模型架构,但这通常仅限于众所周知的变体。
  • 超参数优化——微调模型超参数的过程可能既耗时又容易出错。为了克服这个问题,许多从业者依靠直觉和以往的经验。虽然这在过去是成功的,但现在增加的模型复杂性使这项任务变得难以维持。通过自动化 HP 调整,我们不仅可以减轻构建者的工作量,还可以发现模型选择或架构中的潜在缺陷。
  • 验证选择——有许多选项可用于评估模型的性能。从决定用于训练和测试的数据量到可视化模型的输出性能。自动验证模型提供了一种强大的方法,可以在数据发生变化时重新表征模型性能,并使模型在长期内更易于解释。对于在线 AutoML 服务,这是一个关键优势,它提供了使用此类工具的令人信服的理由。
计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP4702

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP4702

计算机代写|机器学习代写machine learning代考|Explaining Kernel Methods with Random Matrix Theory

The fundamental reason behind this surprising behavior lies in the accumulated effect of the $n / 2$ small “hidden” informative terms $|\boldsymbol{\mu}|^2, \operatorname{tr} \mathbf{E}$ and $\operatorname{tr}\left(\mathbf{E}^2\right)$ in each class, which collectively “steer” the several top eigenvectors of $\mathbf{K}$. More explicitly, we shall see in the course of this book that the Gaussian kernel matrix $\mathbf{K}$ can be asymptotically expanded as
$$
\mathbf{K}=\exp (-1)\left(\mathbf{1}n \mathbf{1}_n^{\boldsymbol{\top}}+\frac{1}{p} \mathbf{Z}^{\boldsymbol{\top}} \mathbf{Z}\right)+f(\boldsymbol{\mu}, \mathbf{E}) \cdot \frac{1}{p} \mathbf{j} \mathbf{j}^{\boldsymbol{\top}}++o{|\cdot|}(1),
$$
where $\mathbf{Z}=\left[\mathbf{z}1, \ldots, \mathbf{z}_n\right] \in \mathbb{R}^{p \times n}$ is a Gaussian noise matrix, $f(\boldsymbol{\mu}, \mathbf{E})=O(1)$, and $\mathbf{j}=\left[\mathbf{1}{n / 2} ;-\mathbf{1}{n / 2}\right]$ is the class-information “label” vector (as in the setting of Figure 1.2). Here “” symbolizes extra terms of marginal importance to the present discussion, and $o{|\cdot|}(1)$ represents terms of asymptotically vanishing operator norm as $n, p \rightarrow \infty$. The important remark to be made here is that
(i) Under this description, $[\mathbf{K}]_{i j}=\exp (-1)\left(1+\mathbf{z}_i^{\top} \mathbf{z}_j / p\right) \pm f(\boldsymbol{\mu}, \mathbf{E}) / p+*$, with $f(\mu, \mathbf{E}) / p \ll \mathbf{z}_i^{\top} \mathbf{z}_j / p=O\left(p^{-1 / 2}\right)$; this is consistent with our previous discussion: The statistical information is entry-wise dominated by noise.
(ii) From a spectral viewpoint, $\left|\mathbf{Z}^{\top} \mathbf{Z} / p\right|=O$ (1), as per the Marčenko-Pastur theorem [Marčenko and Pastur, 1967] discussed in Section 1.1.2 and visually confirmed in Figure 1.1, while $|f(\boldsymbol{\mu}, \mathbf{E}) \cdot \mathbf{j} \mathbf{j} \mathrm{T} / p|=O(1)$ : Thus, spectrum-wise, the information stands on even ground with noise.

The mathematical magic at play here lies in $f(\boldsymbol{\mu}, \mathbf{E}) \cdot \mathbf{j} \mathbf{j} / / p$ having entries of order $O\left(p^{-1}\right)$ while being a low-rank (here unit-rank) matrix: All its “energy” concentrates in a single nonzero eigenvalue. As for $\mathbf{Z}^{\top} \mathbf{Z} / p$, with larger $O\left(p^{-1 / 2}\right)$ amplitude entries, it is composed of “essentially independent” zero-mean random variables and tends to be of full rank and spreads its energy over its $n$ eigenvalues. Spectrum-wise, both $f(\boldsymbol{\mu}, \mathbf{E}) \cdot \mathbf{j} \mathbf{j}{ }^{\top} / p$ and $\mathbf{Z}^{\top} \mathbf{Z} / p$ meet on even ground under the nontrivial classification setting of (1.7).

We shall see in Section 4 that things are actually not as clear-cut and, in particular, that not all choices of kernel functions can achieve the same nontrivial classification rates. In particular, the popular Gaussian (radial basis function [RBF]) kernel will be shown to be largely suboptimal in this respect.

计算机代写|机器学习代写machine learning代考|Random Matrix Theory as an Answer

Random matrix theory originates from the work of John Wishart [Wishart, 1928] on the study of the eigenvalues of the matrix $\mathbf{X} \mathbf{X}^{\top}$ (now referred to as a Wishart matrix) for $\mathbf{X} \in \mathbb{R}^{p \times n}$ with standard Gaussian entries $[\mathbf{X}]_{i j} \sim \mathcal{N}(0,1)$. Wishart managed to determine a closed-form expression for the joint eigenvalue distribution of $\mathbf{X X ^ { \top }}$ for every pair of $p, n$. Few progress however followed, as matrices with non-Gaussian entries are hardly amenable to similar analysis and, even if they were, the actual study of more elaborate functionals of $\mathbf{X X}^{\top}$ is at best cumbersome and often simply intractable.

The works of the physicist Eugene Wigner [Wigner, 1955] gave a new impulse to the theory. Interested in the eigenvalues of symmetric matrices $\mathbf{X} \in \mathbb{R}^{n \times n}$ with independent Bernoulli entries (particle spins in his application context), Wigner opted for an asymptotic analysis of the eigenvalue distribution, thereby initiating the important and much richer branch of large-dimensional random matrix theory. Despite this important inspiration, Wigner exploited standard asymptotic statistics tools (the method of moments) to prove that the discrete distribution of the eigenvalues of $\mathbf{X}$ has a continuous semicircle looking density in the $n \rightarrow \infty$ limit (the now popular semicircular law). This approach was particularly convenient as the limiting law is simple and could be visually anticipated (which is not the case of the next-to-come Marčenko-Pastur limiting distribution of Wishart matrices).

Only until 1967 with the tour-de-force of Marčenko and Pastur [1967] did random matrix theory take a new dimension. Marčenko and Pastur determined the limiting spectral distribution of the sample covariance matrix model $\mathbf{X} \mathbf{X}^{\top}$ of Wishart but under relaxed conditions: $[\mathbf{X}]{i j}$ are independent entries with zero mean and unit variance, and additional moment assumptions (all discarded in subsequent works). The independence (or weak dependence) property is key to their proof, which exploits the powerful Stieltjes transform $\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_p\right)^{-1}=\int(\lambda-z)^{-1} \mu_p(d t)$ of the empirical spectral distribution $\mu_p \equiv \frac{1}{p} \sum{i=1}^p \delta_{\lambda_i\left(\frac{1}{n} \mathbf{X X}^{\top}\right)}$ of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$, a tool borrowed from operator theory in Hilbert spaces [Akhiezer and Glazman, 2013], rather than the moments $\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} \mathbf{X X}^{\top}\right)^k$ (which may not converge since $\mathbb{E}\left[\mathbf{X}_{i j}^{\ell}\right]$ needs not be finite for $\ell>2$ ).

The technical approach devised by Marčenko and Pastur was then largely embraced at the turn of the twenty-first century by Bai and Silverstein who, in a series of significant breakthroughs (the most noticeable of which are [Silverstein and Bai, 1995, Bai and Silverstein, 1998]), extended the results in [Marčenko and Pastur, 1967] to an exhaustive study of sample covariance matrices.

计算机代写|机器学习代写machine learning代考|COMP4702

机器学习代考

计算机代写|机器学习代写machine learning代考|Explaining Kernel Methods with Random Matrix Theory

这种令人惊讶的行为背后的根本原因在于 $n / 2$ 小的”隐藏”信息术语 $|\boldsymbol{\mu}|^2, \operatorname{tr} \mathbf{E}$ 和 $\operatorname{tr}\left(\mathbf{E}^2\right)$ 在每个类中,它 们共同“引导”了几个顶级特征向量 $\mathbf{K}$. 更明确地说,我们将在本书的课程中看到高斯核矩阵 $\mathbf{K}$ 可以渐近展 开为
$$
\mathbf{K}=\exp (-1)\left(\mathbf{1} n \mathbf{1}n^{\top}+\frac{1}{p} \mathbf{Z}^{\top} \mathbf{Z}\right)+f(\boldsymbol{\mu}, \mathbf{E}) \cdot \frac{1}{p} \mathbf{j j}^{\top}++o|\cdot|(1) $$ 在哪里 $\mathbf{Z}=\left[\mathbf{z} 1, \ldots, \mathbf{z}_n\right] \in \mathbb{R}^{p \times n}$ 是高斯㗍声矩阵, $f(\boldsymbol{\mu}, \mathbf{E})=O(1)$ ,和 $\mathbf{j}=[\mathbf{1} n / 2 ;-\mathbf{1 n} / 2]$ 是类 信息”标签”向量(如图 $1.2$ 的设置) 。这里 ${ }^{\prime \prime \prime}$ 表示对当前讨论不重要的额外术语,并且 $o|\cdot|(1)$ 将渐近消 失的算子范数的项表示为 $n, p \rightarrow \infty$. 这里要说明的重要一点是 (i) 根据这个描述, $[\mathbf{K}]{i j}=\exp (-1)\left(1+\mathbf{z}_i^{\top} \mathbf{z}_j / p\right) \pm f(\boldsymbol{\mu}, \mathbf{E}) / p+*$ , 和
$f(\mu, \mathbf{E}) / p \ll \mathbf{z}_i^{\top} \mathbf{z}_j / p=O\left(p^{-1 / 2}\right)$; 这与我们之前的讨论是一致的:统计信息在条目方面由噪声主 导。
(ii) 从光谱的角度来看, $\left|\mathbf{Z}^{\top} \mathbf{Z} / p\right|=O(1)$ ,根据 Marčenko-Pastur 定理 [Marčenko 和 Pastur,1967] 在第 1.1.2 节中讨论并在图 $1.1$ 中直观地确认,而 $|f(\boldsymbol{\mu}, \mathbf{E}) \cdot \mathbf{j j T} / p|=O(1)$ : 因此,在频谱方面,信 息与橾声持平。
这里发挥的数学魔力在于 $f(\boldsymbol{\mu}, \mathbf{E}) \cdot \mathbf{j} \mathbf{j} / / p$ 有订单条目 $O\left(p^{-1}\right)$ 作为一个低秩 (此处为单位秩) 矩阵: 它 的所有“能量”都集中在一个非零特征值中。至于 $\mathbf{Z}^{\top} \mathbf{Z} / p$ ,具有较大 $O\left(p^{-1 / 2}\right)$ 振幅条目,它由“本质上独 立的”零均值随机变量组成,并且倾向于满秩并将其能量分布在其上 $n$ 特征值。频谱方面,两者 $f(\boldsymbol{\mu}, \mathbf{E}) \cdot \mathbf{j} \mathbf{j}^{\top} / p$ 和 $\mathbf{Z}^{\top} \mathbf{Z} / p$ 在 (1.7) 的非平凡分类设置下,在平坦的地面上相遇。
我们将在第 4 节中看到,事情实际上并没有那么明确,特别是,并非所有核函数的选择都能达到相同的 非平凡分类率。特别是,流行的高斯(径向基函数 [RBF])内核在这方面将被证明在很大程度上是次优的。

计算机代写|机器学习代写machine learning代考|Random Matrix Theory as an Answer

随机矩阵理论起源于 John Wishart [Wishart, 1928] 对矩阵特征值研究的工作 $\mathbf{X X}^{\top}$ (现在称为 Wishart 矩阵) 对于 $\mathbf{X} \in \mathbb{R}^{p \times n}$ 具有标准高斯条目 $[\mathbf{X}]{i j} \sim \mathcal{N}(0,1)$. Wishart 设法确定了联合特征值分布的封闭 式表达式 $\mathbf{X X}^{\top}$ 对于每一对 $p, n$. 然而,几乎没有进展,因为具有非高斯条目的矩阵很难进行类似的分 析,即使是,对更精细泛函的实际研究 $\mathbf{X X}^{\top}$ 充其量是繁琐的,而且通常只是赖手的。 物理学家 Eugene Wigner [Wigner,1955] 的著作为该理论注入了新的活力。对对称矩阵的特征值感兴趣 $\mathbf{X} \in \mathbb{R}^{n \times n}$ 有了独立的伯努利项(在他的应用上下文中是粒子自旋),维格纳选择了特征值分布的渐近 分析,从而开创了大维随机矩阵理论的重要且更丰富的分支。尽管有这个重要的启发,维格纳还是利用标 准的渐近统计工具 (矩量法) 来证明特征值的离散分布 $\mathbf{X}$ 具有连续的半圆形外观密度 $n \rightarrow \infty$ 极限 (现在 流行的半圆定律)。这种方法特别方便,因为极限定律很简单并且可以在视觉上预期(这不是即将到来的 Wishart 矩阵的 Marčenko-Pastur 极限分布的情况)。 直到 1967 年,随着 Marčenko 和 Pastur [1967] 的杰作,随机矩阵理论才进入了一个新的维度。 Marčenko 和 Pastur 确定了样本协方差矩阵模型的极限光谱分布 $\mathbf{X X}^{\top}$ Wishart 但在宽松的条件下: $[\mathbf{X}] i j$ 是具有零均值和单位方差的独立条目,以及额外的矩假设(所有在后续工作中都被丟弃)。独立性 (或弱依赖性) 属性是他们证明的关键,它利用了强大的 Stieltjes 变换 $\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_p\right)^{-1}=\int(\lambda-z)^{-1} \mu_p(d t)$ 经验光谱分布 $\mu_p \equiv \frac{1}{p} \sum i=1^p \delta{\lambda_i}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right)^{\text {的 }}$ $\frac{1}{n} \mathbf{X X}^{\top}$ ,一种从布尔伯特空间中的算子理论借用的工具 [Akhiezer 和 Glazman,2013],而不是矩 $\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} \mathbf{X X}^{\top}\right)^k$ (这可能不会收敛,因为 $\mathbb{E}\left[\mathbf{X}_{i j}^{\ell}\right]$ 不必是有限的 $\ell>2$ ).
Marčenko 和 Pastur 设计的技术方法在 21 世纪之交被 Bai 和 Silverstein 广泛接受,他们取得了一系列 重大突破 (其中最引人注目的是 [Silverstein 和 Bai, 1995,Bai 和 Silverstein,1998]), 将 [Marčenko 和 Pastur, 1967] 中的结果扩展到对样本协方差矩阵的详尽研究。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写