统计代写|抽样调查作业代写sampling theory of survey代考|STAT 7124

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富，各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

统计代写|抽样调查作业代写sampling theory of survey代考|Probability Proportional to Size Without Replacement Sampling

In probability proportional to size WOR (PPSWOR) sampling scheme, probability of selection of $i_{1}$ at the first draw is $p_{i_{1}}(1)=p_{i_{1}}$. Probability of selecting $i_{2}$ at the second draw is $p_{i_{2}}(2)=\frac{p_{i_{2}}}{1-p_{i_{1}}}$ if the unit $i_{1}\left(i_{2} \neq i_{1}\right)$ is selected at the first draw and $p_{i_{2}}(2)=0$ when the unit $i_{2}$ is selected at the first draw, i.e., $i_{2}=i_{1}$. In general, the probability of selection of $i_{k}$ at the $k$ th draw is $p_{i_{k}}(k)=p_{1-p_{i_{1}}-p_{i_{2}}-\cdots-p_{i_{k-1}}}$, if the units $i_{1}, i_{2}, \ldots, i_{k-1}$ are selected in any of the first $k-1$ draws and $p_{i_{k}}(k)=0$ if the unit $i_{k}$ is selected in any of the first $k-1$ draws for $k=2, \ldots, n ; i=1, \ldots, N$. So, for a PPSWOR sampling scheme, the probability of selecting $i_{1}$ at the first draw, $i_{2}$ at the second draw, and $i_{n}$ at the $n$th draw is
\begin{aligned} p\left(i_{1}, \ldots, i_{n}\right)=& p_{i_{1}} \frac{p_{i_{2}}}{1-p_{i_{1}}} \cdots \frac{p_{i_{k}}}{1-p_{i_{1}}-\cdots-p_{i_{k-1}}} \cdots \frac{p_{i_{n}}}{1-p_{i_{1}}-\cdots-p_{i_{n-1}}} \text { for } \ 1 \leq i_{1} \neq i_{2} \neq \cdots \neq i_{n} \leq N \end{aligned}
It should be noted that PPSWOR reduces to SRSWOR sampling scheme if $p_{i}=1 / N$ for $i=1, \ldots, N$.

统计代写|抽样调查作业代写sampling theory of survey代考|HANURAV’S ALGORITHM

Hanurav (1966) established a correspondence between a sampling design and a sampling scheme. He proved that any sampling scheme results in a sampling design. Similarly, for a given sampling design, one can construct at least one sampling scheme, which can implement the sampling design. In fact, Hanurav proposed the most general sampling scheme, known as Hanurav’s algorithm, using which one can derive various types of sampling schemes or sampling designs. Henceforth, we will not differentiate between the terms “sampling design” and “sampling scheme”.

Let $n_{0}$ denote the maximum sample size that might be required from a sampling scheme. Then, Hanurav’s (1966) algorithm is defined as follows:
$$\mathscr{A}=\mathscr{A}\left{q_{1}(i) ; q_{2}(s) ; q_{3}(s, i)\right}$$
where
(i) $0 \leq q_{1}(i) \leq 1, \quad \sum_{i=1}^{N} q_{1}(i)=1$ for $i=1, \ldots, N$
(ii) $0 \leq q_{2}(s) \leq 1$ for any sample $s \in \mathscr{S}$, where $\mathscr{\mathcal { S }}$ be the set of all possible samples.
(iii) $q_{3}(s, i)$ is defined when $q_{2}(s)>0$ and subject to $0 \leq q_{3}(s, i) \leq 1$,
$$\sum_{i=1}^{N} q_{3}(s, i)=1 \text { for } i=1, \ldots, N$$
Samples are selected using the following steps:
Step 1: At the first draw a unit $i_{1}$ is selected with probability $q_{1}\left(i_{1}\right)$; $i_{1}=1, \ldots, N$

Step 2: In this step, we decide whether the sampling procedure will be terminated or continued. Let $s_{(1)}=i_{1}$ be the unit selected in the first draw. A Bernoulli trial is performed with success probability $q_{2}\left(s_{(1)}\right)$. If the trial results in a failure, the sampling procedure is terminated and the selected sample is $s_{(1)}=i_{1}$. On the other hand, if the trial results in a success, we go to step 3 .

统计代写|抽样调查作业代写sampling theory of survey代考|Probability Proportional to Size Without Replacement Sampling

$$p\left(i_{1}, \ldots, i_{n}\right)=p_{i_{1}} \frac{p_{i_{2}}}{1-p_{i_{1}}} \cdots \frac{p_{i_{k}}}{1-p_{i_{1}}-\cdots-p_{i_{k-1}}} \cdots \frac{p_{i_{n}}}{1-p_{i_{1}}-\cdots-p_{i_{n-1}}} \text { for } 1 \leq i_{1} \neq i_{2} \neq \cdots$$

统计代写|抽样调查作业代写sampling theory of survey代考|HANURAV’S ALGORITHM

Hanurav (1966) 建立了抽样设计和抽样方案之间的对应关系。他证明了任何抽样方案都会导致抽样设计。类似 地，对于给定的抽样设计，可以构建至少一种抽样方案，该方案可以实现抽样设计。事实上，Hanurav 提出了最 通用的抽样方案，称为 Hanurav 算法，利用该算法可以推导出各种类型的抽样方案或抽样设计。此后，我们将 不再区分”抽样设计”和”抽样方案”这两个术语。

$\backslash$ mathscr ${\mathrm{A}}=\backslash$ mathscr ${\mathrm{A}} \backslash \operatorname{left}\left{\mathrm{q}{-}{1}(\mathrm{i}) ; \mathrm{q}{-}{2}(\mathrm{s}) ; \mathrm{q}{-}{3}(\mathrm{s}, \mathrm{i}) \backslash\right.$ right $}$ 其中 (i) $0 \leq q{1}(i) \leq 1, \quad \sum_{i=1}^{N} q_{1}(i)=1$ 为了 $i=1, \ldots, N$
(二) $0 \leq q_{2}(s) \leq 1$ 对于任何样品 $s \in \mathscr{S}$ ，在哪里 $\mathcal{S}$ 是所有可能样本的集合。
$\Leftrightarrow q_{3}(s, i)$ 定义为 $q_{2}(s)>0$ 并受 $0 \leq q_{3}(s, i) \leq 1$ ，
$$\sum_{i=1}^{N} q_{3}(s, i)=1 \text { for } i=1, \ldots, N$$

广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。