统计代写|数据可视化代写data visualization代考|Rain on your radar: Engaging

如果你也在 怎样代写数据可视化data visualization这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据可视化是信息和数据的图形化表示。通过使用像图表、图形和地图这样的视觉元素,数据可视化工具提供了一种方便的方式来查看和理解数据的趋势、异常值和模式。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据可视化data visualization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据可视化data visualization代写方面经验极为丰富,各种代写数据可视化data visualization相关的作业也就用不着说。

我们提供的数据可视化data visualization及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据可视化代写data visualization代考|Rain on your radar: Engaging

统计代写|数据可视化代写data visualization代考|Methodological considerations

In light of our wish to gain preliminary insight into how people understand weather data visualizations in relation to the specifics of their everyday lives, we chose to conduct a series of interviews as a basis for our observations. This way, we were best able consider the mutually productive relation between the two, taking into account that daily routines do not merely ‘accommodate’ for interactions with data, but also shape those interactions, and vice versa (e.g. Pink et al., 2017). This method also has the advantage that it allows us insight not only into people’s understandings of weather data visualizations and their experiences of living with them, but also into how they personally assess them. Such reflection by users is of interest here,

because it is informative of how they personally gauge the importance of visualizations and because it sheds light on their own perceptions of the issues such representations raise and the pleasures they provide.

Our findings are based on semi-structured interviews with sixteen users of the Buienradar website and app. In selecting respondents, mostly from our personal network, we sought to consider the diversity of actual experiences among a range of people. This resulted in variations in age (with participants between 25 and 71 , more or less evenly spread across the decades) and gender (eight men and eight women), family structure (people living alone or with a partner, versus members of families with children) and occupation (salaried versus self-employed, and within different sectors). Arguably, our sample is somewhat biased in terms of educational level, in that most of the people we interviewed have completed some form of further education (vocational or academic). Also, for practicality’s sake, all interview subjects have been recruited from the Randstad area of the Netherlands (the megalopolis comprising the country’s largest cities), where we live and work. Most of the interviews lasted between ten and twenty minutes, and they followed roughly the same pattern.

统计代写|数据可视化代写data visualization代考|Usage patterns and preferences

Most of our interviewees regularly access information about the weather; two thirds do so at least once a day. About half of them rely for this purpose on the general news media: broadcasts on radio or television or (online) news publications. Oftentimes, they do not actively seek out such information, but encounter it as part of their daily routines in media consumption. Those who go looking for forecasts tend to prefer specialist websites or apps (sometimes as pre-installed on their devices). Overall, source selection is quite arbitrary: respondents often alternate between services, and ‘googling for the weather’ is common, especially in looking for longer-range predictions (e.g. prior to holiday travel).

If we compare forecasts in the mainstream media and on general weather sites with those provided by Buienradar and similar services, more distinct user patterns emerge. ‘Traditional’ forecasts, as we know them from newspapers and TV, tend to focus on averages for the day and week, and mostly feature still or animated maps and tables with icons and numerical information (see Figure 5.3). Generally speaking, people opt for Buienradar when they are looking specifically for predictions of rainfall (as opposed to other weather conditions) that are also more precise-both in terms of

when and where the rain will fall. As a rule, moreover, they are interested in short-term predictions (that is, information concerning the next one to three hours).

Respondents tend to use Buienradar as they are about to undertake an activity that involves leaving the house, often for a journey somewhere. Overwhelmingly, interviewees establish a relation here with bicycling-a highly common means of transportation in the Randstad area. Other activities that prompt them to consult the service range from such day-to-day pursuits as walking the dog or hanging the laundry to dry, to sports practice at different levels of expertise. While some users check Buienradar as a matter of habit, others do so only if it is either (heavily) raining already, or if they have reason to believe that it might. In other words, people are motivated to access the platform by a desire to know if they may ‘get wet’-often in hopes that they can adapt their plans so as to avoid it. In this respect, the intensive use of weather apps seems to have engendered a shift in terms of how weather forecasts are commonly used (cf. for instance Lazo, Morss, \& Demuth, 2009, p. 792).

统计代写|数据可视化代写data visualization代考|Buienradar readings: Interpretive strategies

Aside from navigational habits, the users we interviewed also displayed personalized readerly routines. During the interviews, we asked them to vocalize their thought process as they contemplated the different visualizations. In doing so, we realized that their interpretations came about in intuitive ways and were often based on information once verified but then modified as part of individualized reading strategies. In many cases, for instance, interpretations of the map visualization accounted for the colour of animated clouds. However, while the map’s legend is quite unequivocal about how those colours are encoded, the interviewees’ readings of them were highly diverse. Many understood them in terms of rain intensity (how heavily it will rain’), an interpretation that ties in quite closely with their actual coding in terms of precipitation volumes. Others, however, did not take the colours to carry any meaning at all. And some respondents, including some true Buienradar aficionados, associated them with rather more complex or encompassing atmospheric conditions (for instance, ‘red’ as taken to denote ‘thunder’ or ‘stormy weather’). These last examples suggest that our users, even if they built in their interpretations on what they had previously heard or read about the codes deployed, would oftentimes add to or tweak the information obtained.

However, such reading habits do not necessarily derive from limited engagement with the site or app, or the visualizations specifically. In this respect also, our data show considerable differences between interview subjects, who may be roughly divided into two groups based on the expectations they have from the service. Those in the first group tend to avoid information and representations that present some sort of an interpretational hurdle, for instance because they require non-standard knowledge. One map user for instance complained that the rain graph mistakenly presumes that the user understands what it means to confront a specific amount of precipitation (in mm). Respondents in this group therefore also applied simplifying reading strategies (e.g. interpreting the line in said graph as indicative of ‘rain’ or ‘no rain’, rather than a certain measure of precipitation). Another interviewee had difficulties interpreting tables with probability figures (presumably, a common issue in the reception of weather forecasts.

统计代写|数据可视化代写data visualization代考|Rain on your radar: Engaging

数据可视化代写

统计代写|数据可视化代写data visualization代考|Methodological considerations

鉴于我们希望初步了解人们如何理解与日常生活细节相关的天气数据可视化,我们选择进行一系列访谈作为我们观察的基础。这样,我们最能考虑两者之间的相互生产关系,考虑到日常生活不仅“适应”与数据的交互,而且还塑造了这些交互,反之亦然(例如 Pink et al., 2017 )。这种方法的另一个优点是,它不仅可以让我们深入了解人们对天气数据可视化的理解以及他们与他们一起生活的经历,还可以了解他们个人如何评估它们。用户的这种反映在这里很有趣,

因为它提供了他们个人如何衡量可视化重要性的信息,并且因为它揭示了他们自己对这种表示提出的问题以及它们提供的乐趣的看法。

我们的调查结果基于对 Buienradar 网站和应用程序的 16 位用户的半结构化访谈。在选择主要来自我们个人网络的受访者时,我们试图考虑不同人群实际经历的多样性。这导致了年龄(参与者在 25 至 71 岁之间,或多或少均匀分布在几十年间)和性别(八男八女)、家庭结构(独居或与伴侣一起生活的人,与有孩子的家庭成员)的差异) 和职业(受薪与个体经营,以及在不同部门内)。可以说,我们的样本在教育水平方面有些偏差,因为我们采访的大多数人都完成了某种形式的继续教育(职业或学术)。另外,为了实用,所有采访对象均来自我们生活和工作的荷兰任仕达地区(由该国最大城市组成的特大城市)。大多数采访持续了十到二十分钟,并且遵循大致相同的模式。

统计代写|数据可视化代写data visualization代考|Usage patterns and preferences

我们的大多数受访者都会定期访问有关天气的信息;三分之二的人每天至少这样做一次。其中大约一半依赖于一般新闻媒体:广播或电视广播或(在线)新闻出版物。通常,他们不会主动寻找此类信息,而是将其作为日常媒体消费的一部分。那些寻找预测的人往往更喜欢专业网站或应用程序(有时预装在他们的设备上)。总体而言,来源选择是相当随意的:受访者经常在服务之间交替,并且“搜索天气”很常见,尤其是在寻找更长期的预测时(例如在假期旅行之前)。

如果我们将主流媒体和一般天气网站上的预报与 Buienradar 和类似服务提供的预报进行比较,就会出现更多不同的用户模式。正如我们从报纸和电视上了解到的那样,“传统”预测往往侧重于一天和一周的平均值,并且大多以静止或动画地图和带有图标和数字信息的表格为特色(见图 5.3)。一般来说,人们在专门寻找更精确的降雨预测(与其他天气条件相反)时会选择 Buienradar

何时何地下雨。此外,他们通常对短期预测(即关于接下来一到三个小时的信息)感兴趣。

受访者倾向于使用 Buienradar,因为他们即将进行一项涉及离开家的活动,通常是去某个地方旅行。绝大多数情况下,受访者在这里与自行车建立了联系——这是任仕达地区非常常见的交通工具。其他促使他们咨询服务的活动包括遛狗或晾干衣服等日常活动,以及不同专业水平的运动练习。虽然一些用户检查 Buienradar 是一种习惯,但其他用户只有在已经(大)下雨,或者他们有理由相信可能会下雨时才会这样做。换句话说,人们访问平台的动机是想知道他们是否会“被淋湿”——通常是希望他们能够调整自己的计划以避免它。在这方面,

统计代写|数据可视化代写data visualization代考|Buienradar readings: Interpretive strategies

除了导航习惯,我们采访的用户还展示了个性化的阅读习惯。在采访期间,我们要求他们在考虑不同的可视化时说出他们的思维过程。在这样做的过程中,我们意识到他们的解释是以直观的方式出现的,并且通常基于经过验证的信息,然后作为个性化阅读策略的一部分进行修改。例如,在许多情况下,地图可视化的解释解释了动画云的颜色。然而,虽然地图的传说对这些颜色的编码方式非常明确,但受访者对它们的解读却非常多样化。许多人根据降雨强度(下雨的强度)来理解它们,这种解释与他们在降水量方面的实际编码密切相关。然而,其他人根本不认为颜色具有任何意义。一些受访者,包括一些真正的 Buienradar 爱好者,将它们与更复杂或更复杂的大气条件联系起来(例如,“红色”表示“雷声”或“暴风雨天气”)。这些最后的例子表明,我们的用户,即使他们在他们之前听到或读过的关于部署的代码的内容上建立了解释,通常也会添加或调整获得的信息。“红色”表示“雷声”或“暴风雨天气”)。这些最后的例子表明,我们的用户,即使他们在他们之前听到或读过的关于部署的代码的内容上建立了解释,通常也会添加或调整获得的信息。“红色”表示“雷声”或“暴风雨天气”)。这些最后的例子表明,我们的用户,即使他们在他们之前听到或读过的关于部署的代码的内容上建立了解释,通常也会添加或调整获得的信息。

然而,这种阅读习惯并不一定源于对网站或应用程序的有限参与,或者具体而言是可视化。在这方面,我们的数据也显示了采访对象之间的巨大差异,根据他们对服务的期望,他们可能大致分为两组。第一类人倾向于避免存在某种解释障碍的信息和表示,例如因为它们需要非标准知识。例如,一位地图用户抱怨降雨图错误地假定用户理解面对特定降水量(以毫米为单位)意味着什么。因此,该组的受访者也采用了简化阅读策略(例如,将所述图表中的线条解释为表示“下雨”或“没有下雨”,而不是一定的降水量)。另一位受访者在解释带有概率数据的表格时遇到了困难(大概是接收天气预报时的一个常见问题。

统计代写|数据可视化代写data visualization代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注