### 计算机代写|并行计算作业代写Parallel Computing代考|Nested parfor and for-Loops and Other parfor Requirements

statistics-lab™ 为您的留学生涯保驾护航 在代写并行计算Parallel Computing方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写并行计算Parallel Computing代写方面经验极为丰富，各种代写并行计算Parallel Computing相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|并行计算作业代写Parallel Computing代考|Nested parfor-Loops

You cannot use a parfor-loop inside another par for-loop. As an example, the following nesting of parfor-loops is not allowed:
parfor $i=1: 10$
parfor $j=1: 5$
end
end
Tip You cannot nest parfor directly within another parfor-loop. A parfor-loop can call a function
that contains a parfor-loop, but you do not get any additional parallelism.
Code Analyzer in the MATLAB Editor flags the use of parfor inside another parfor-loop:
PARFOR or SPMD cannot be used inside another PARFOR loop.
You cannot nest parfor-loops because parallelization can be performed at only one level. Therefore, choose which loop to run in parallel, and convert the other loop to a for-loop.
Consider the following performance issues when dealing with nested loops:

• Parallel processing incurs overhead. Generally, you should run the outer loop in parallel, because overhead only occurs once. If you run the inner loop in parallel, then each of the multiple parfor executions incurs an overhead. See “Convert Nested for-Loops to parfor-Loops” on page $2-14$ for an example how to measure parallel overhead.
• Make sure that the number of iterations exceeds the number of workers. Otherwise, you do not use all available workers.
• Try to balance the parfor-loop iteration times. parfor tries to compensate for some load imbalance.

## 计算机代写|并行计算作业代写Parallel Computing代考|Convert Nested for-Loops to parfor-Loops

A typical use of nested loops is to step through an array using a one-loop variable to index one dimension, and a nested-loop variable to index another dimension. The basic form is:
$X=z e \cos (n, m) ;$
for $a=1: n$
for $b=1: m$
$X(a, b)=f u n(a, b)$
end
end
The following code shows a simple example. Use tic and toc to measure the computing time needed.
$\mathrm{A}=100 ;$
tic
for $i=1: 100$
for $j=1: 100$
$a(i, j)=\max (a b s($ eig $($ rand $(A))))$;
end
end
toc
Elapsed time is 49.376732 seconds.
You can parallelize either of the nested loops, but you cannot run both in parallel. The reason is that the workers in a parallel pool cannot start or access further parallel pools.
If the loop counted by $i$ is converted to a parfor-loop, then each worker in the pool executes the nested loops using the j loop counter. The j loops themselves cannot run as a parfor on each worker.
Because parallel processing incurs overhead, you must choose carefully whether you want to convert either the inner or the outer for-loop to a parfor-loop. The following example shows how to measure the parallel overhead.
First convert only the outer for-loop to a parfor-loop. Use tic and toc to measure the computing time needed. Use ticBytes and tocBytes to measure how much data is transferred to and from the workers in the parallel pool.

Run the new code, and run it again. The first run is slower than subsequent runs, because the parallel pool takes some time to start and make the code available to the workers.
$\mathrm{A}=100 ;$
tic

## 计算机代写|并行计算作业代写Parallel Computing代考|Nested for-Loops: Requirements and Limitations

If you want to convert a nested for-loop to a parfor-loop, you must ensure that your loop variables are properly classified, see “Troubleshoot Variables in parfor-Loops” on page 2-29. If your code does not adhere to the guidelines and restrictions labeled as Required, you get an error. MATLAB catches some of these errors at the time it reads the code. These errors are labeled as Required (static).
Required (static): You must define the range of a for-loop nested in a parfor-loop by constant numbers or broadcast variables.
In the following example, the code on the left does not work because you define the upper limit of the for-loop by a function call. The code on the right provides a workaround by first defining a broadcast or constant variable outside the parfor-loop:
$\begin{array}{ll}\text { Invalid } & \text { Valid } \ \begin{array}{ll}A=\text { zeros }(100,200) ; & A=\operatorname{zeros}(100,200) ; \ \text { parfor } i=1: \operatorname{size}(A, 1) & n=\operatorname{size}(A, 2) ; \ \text { for } j=1: \operatorname{size}(A, 2) & \text { parfor } i=1: \operatorname{size}(A, 1) \ \text { fand }(i, j)=i+j ; & \text { for } j=1: n \ \text { end } & \text { end }(i, j)=i+j ; \ \text { end } & \text { end }\end{array}\end{array}$
Required (static): The index variable for the nested for-loop must never be explicitly assigned other than by its for statement.

Following this restriction is required. If the nested for-loop variable is changed anywhere in a parfor-loop other than by its for statement, the region indexed by the for-loop variable is not guaranteed to be available at each worker.
The code on the left is not valid because it tries to modify the value of the nested for-loop variable $j$ in the body of the loop. The code on the right provides a workaround by assigning the nested forloop variable to a temporary variable $t$, and then updating $t$.

## 计算机代写|并行计算作业代写Parallel Computing代考|Nested parfor-Loops

parfor一世=1:10

end
end

MATLAB 编辑器中的代码分析器标记 parfor 在另一个 parfor 循环内的使用：
PARFOR 或 SPMD 不能在另一个 PARFOR 循环内使用。

• 并行处理会产生开销。通常，您应该并行运行外循环，因为开销只发生一次。如果您并行运行内部循环，则每次执行 parfor 都会产生开销。请参阅第 1 页的“将嵌套的 for 循环转换为 parfor 循环”2−14例如如何测量并行开销。
• 确保迭代次数超过工作人员的数量。否则，您不会使用所有可用的工作人员。
• 尝试平衡 parfor 循环的迭代时间。parfor 试图补偿一些负载不平衡。

## 计算机代写|并行计算作业代写Parallel Computing代考|Convert Nested for-Loops to parfor-Loops

X=和和因⁡(n,米);

X(一种,b)=F在n(一种,b)
end
end

_一世=1:100

end
end
toc

## 计算机代写|并行计算作业代写Parallel Computing代考|Nested for-Loops: Requirements and Limitations

无效的  有效的  一种= 零 (100,200);一种=零⁡(100,200);  帕尔福 一世=1:尺寸⁡(一种,1)n=尺寸⁡(一种,2);  为了 j=1:尺寸⁡(一种,2) 帕尔福 一世=1:尺寸⁡(一种,1)  成立 (一世,j)=一世+j; 为了 j=1:n  结尾  结尾 (一世,j)=一世+j;  结尾  结尾

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。