澳洲代写|PHYS3034| Quantum, Statistical and Comp Physics量子、统计和复合物理 悉尼大学

statistics-labTM为您悉尼大学(英语:The University of Sydney) Quantum, Statistical and Comp Physics量子、统计和复合物理澳洲代写代考辅导服务!

课程介绍:

The dynamics of complex systems are often described in terms of how they process information and self-organise; for example regarding how genes store and utilise information, how information is transferred between neurons in undertaking cognitive tasks, and how swarms process information in order to collectively change direction in response to predators. The language of information also underpins many of the central concepts of complex adaptive systems, including order and randomness, self-organisation and emergence. Shannon information theory, which was originally founded to solve problems of data compression and communication, has found contemporary application in how to formalise such notions of information in the world around us and how these notions can be used to understand and guide the dynamics of complex systems. This unit of study introduces information theory in this context of analysis of complex systems, foregrounding empirical analysis using modern software toolkits, and applications in time-series analysis, nonlinear dynamical systems and data science. Students will be introduced to the fundamental measures of entropy and mutual information, as well as dynamical measures for time series analysis and information flow such as transfer entropy, building to higher-level applications such as feature selection in machine learning and network inference. They will gain experience in empirical analysis of complex systems using comprehensive software toolkits, and learn to construct their own analyses to dissect and design the dynamics of self-organisation in applications such as neural imaging analysis, natural and robotic swarm behaviour, characterisation of risk factors for and diagnosis of diseases, and financial market dynamics.

澳洲代写|PHYS3034| Quantum, Statistical and Comp Physics量子、统计和复合物理 悉尼大学
AttributeDetail
Course CodePHYS3034
Course TitleQuantum, Statistical and Comp Physics
Academic UnitPhysics Academic Operations
SessionSemester 1, 2023
Number of Units6
Pre-Requisites2000-level physics (from the context provided)
Course CoordinatorNot explicitly mentioned in the provided text
LecturerNot explicitly mentioned in the provided text

Statistical Physics统计物理的案例

问题 1.

For a particular model of a gene in a cell, the probability density that said gene produces a concentration $x$ of proteins during the cell cycle is given by
$$
p(x)=A\left(\frac{x}{b}\right)^N e^{-x / b},
$$
where $b$ is a biological constant with units of concentration, $N$ is a physical constant, and $A$ is a normalization parameter.
(a) (5 points) The concentration of proteins that can be produced ranges from zero to infinite. What must $A$ be in order for Eq.(1) to be normalized?
(b) (5 points) What is the mean of the normalized probability density?
(c) (Removed in Final Version) For this probability distribution, compute the average
$$
\left\langle e^{x / a}\right\rangle
$$
and write the result in terms of an infinite sum over a binomial coefficient. (Note that $e^x=$ $\sum_{j=0}^{\infty} x^j / j$ !.)

(a) Given the range of possible protein production, $x$ can go from 0 to $\infty$. Therefore, for $p(x)$ to be normalized, we must obtain 1 when we integrate the function over this entire domain:
$$
\int_0^{\infty} d x p(x)=1 .
$$
From the definition of the probability density we have
$$
\begin{aligned}
1 & =\int_0^{\infty} d x A\left(\frac{x}{b}\right)^N e^{-x / b} \
& =A \int_0^{\infty} d x\left(\frac{x}{b}\right)^N e^{-x / b} \
& =A \int_0^{\infty} d u b u^N e^{-u} \
& =A b \int_0^{\infty} d u u^N e^{-u},
\end{aligned}
$$
where we changed variables with $u=x / b$ in the third line, and factored the $u$-independent constant out of the integral in the final line. By the integral definition of factorial, we have
$$
N !=\int_0^{\infty} d u u^N e^{-u} .
$$
Therefore, the final line of Eq.(4) becomes
$$
1=A b N !
$$
and we can conclude
$$
A=\frac{1}{b N !}
$$

The normalized probability density is therefore
$$
p(x)=\frac{1}{b N !}\left(\frac{x}{b}\right)^N e^{-x / b} .
$$
(b) The mean of a random variable defined by the probability density $p(x)$ (which has a nonzero domain for $x \in[0, \infty))$ is
$$
\langle x\rangle=\int_0^{\infty} d x x p(x) .
$$
Using Eq.(8) to compute this value, we obtain
$$
\begin{aligned}
\langle x\rangle & =\int_0^{\infty} d x x \frac{1}{b N !}\left(\frac{x}{b}\right)^N e^{-x / b} \
& =\frac{1}{N !} \int_0^{\infty} d x\left(\frac{x}{b}\right)^{N+1} e^{-x / b} \
& =\frac{1}{N !} \int_0^{\infty} d u b u^{N+1} e^{-u} \
& =b \frac{(N+1) !}{N !},
\end{aligned}
$$
where in the third line we performed a change of variables with $u=x / b$ and in the final line we used Eq.(5). By the definition of factorial, we ultimately find
$$
\langle x\rangle=b(N+1)
$$
(c) (Not part of final version of exam) We now seek to compute the average of $e^{x / a}$. Noting the Taylor series definition of the exponential
$$
e^{x / a}=\sum_{j=0}^{\infty} \frac{(x / a)^j}{j !},
$$
we have
$$
\begin{aligned}
\left\langle e^{x / a}\right\rangle & =\left\langle\sum_{j=0}^{\infty} \frac{(x / a)^j}{j !}\right\rangle \
& =\sum_{j=0}^{\infty} \frac{1}{j !} \frac{1}{a^j}\left\langle x^j\right\rangle .
\end{aligned}
$$
Computing $\left\langle x^j\right\rangle$ yields

\begin{aligned}
\left\langle x^j\right\rangle & =\int_0^{\infty} d x x^j \frac{1}{b N !}\left(\frac{x}{b}\right)^N e^{-x / b} \
& =\frac{b^j}{b N !} \int_0^{\infty} d x\left(\frac{x}{b}\right)^{N+j} e^{-x / b} \
& =\frac{b^j}{b N !} \int_0^{\infty} d u b u^{N+j} e^{-u}
\end{aligned}

$$
=b^j \frac{(N+j) !}{N !}
$$
where in the second line we multiplied the numerator and the denominator by $b^j$, in the third line we performed a change of variables $u=x / b$, and in the final line we used Eq.(5). Inserting this result into Eq.(13), we find
$$
\left\langle e^{x / a}\right\rangle=\sum \sum_{j=0}^{\infty} \frac{1}{j !} \frac{1}{a^j} b^j \frac{(N+j) !}{N !}=\sum_{j=0}^{\infty} \frac{(N+j) !}{j ! N !}\left(\frac{b}{a}\right)^j,
$$
or
$$
\left\langle e^{x / a}\right\rangle=\sum_{j=0}^{\infty}\left(\begin{array}{c}
N+j \
j
\end{array}\right)\left(\frac{b}{a}\right)^j .
$$
We note that we could evaluate $\left\langle e^{x / a}\right\rangle$ directly using a change of variables in the argument of the exponential of the distribution. The result would be
$$
\begin{aligned}
\left\langle e^{x / a}\right\rangle & =\frac{1}{b N !} \int_0^{\infty} d x e^{x / a}\left(\frac{x}{b}\right)^N e^{-x / b} \
& =\frac{1}{b N !} \int_0^{\infty} d x\left(\frac{x}{b}\right)^N e^{-(1 / b-1 / a) x} \
& =\frac{1}{b N !} \int_0^{\infty} d u \frac{a b}{a-b}\left(\frac{a u}{a-b}\right)^N e^{-u} \
& =\frac{1}{N !}\left(\frac{a}{a-b}\right)^{N+1} \int_0^{\infty} d u u^N e^{-u} \
& =\frac{1}{(1-b / a)^{N+1}},
\end{aligned}
$$
where in the second line we made the change of variables $u=x(a-b) / a b$. Considering Eq.(16), the result Eq.(17) implies
$$
\sum_{j=0}^{\infty}\left(\begin{array}{c}
N+j \
j
\end{array}\right) q^j=\frac{1}{(1-q)^{N+1}}
$$

Quantum Physics量子物理问题

问题 2.

  1. True or false questions [ 20 points] No explanations required. Just indicate $\mathrm{T}$ or $\mathrm{F}$ for true or false, respectively.
    (1) The operators $\sigma_1 \otimes \sigma_1$ and $\sigma_3 \otimes \sigma_1$ commute.
    (2) The operators $\sigma_1 \otimes \sigma_1$ and $\sigma_3 \otimes \sigma_3$ commute.
    (3) Let $T \otimes S$ be a linear operator on $V \otimes W$. Then $(T \otimes S)^{\dagger}=S^{\dagger} \otimes T^{\dagger}$.
    (4) A linear operator on a finite-dimensional vector space is invertible if it is injective.
    (5) Angular momentum conservation prevents a particle with spin $1 / 2$ from decaying into two spin- $1 / 2$ particles.
    (6) $\left[\mathbf{L}^2, \hat{x}_i\right]=0$. Here $\hat{x}_i$ is the position operator in any of the three directions.
    (7) $\mathbf{r} \cdot \mathbf{p}=\mathbf{p} \cdot \mathbf{r}-3 i \hbar$.
    (8) $\mathbf{A} \cdot \mathbf{L}=\mathbf{L} \cdot \mathbf{A}$, when $\mathbf{A}$ is a vector under rotations.
    (9) In the hydrogen atom the Runge-Lenz (RL) vector $\mathbf{R}$ satisfies the algebra of angular momentum.
    (10) Both classically and quantum mechanically the $R L$ vector $\mathbf{R}$ satisfies $\mathbf{R} \cdot \mathbf{L}=0$.

问题 3.

  1. Expectation value on a generalized squeezed state [10 points] Consider the general squeezed state $|\alpha, \gamma\rangle=D(\alpha) S(\gamma)|0\rangle$ of the harmonic oscillator at time equal zero (here $\alpha \in \mathbb{C}, \gamma \in \mathbb{R}$ ). Find the expectation value of the number operator $\hat{N}$ in this state. As we let time change, does this expectation value exhibit time dependence?

问题 4.

  1. $3 \mathrm{D}$ bound state $[10$ points]
    A particle of mass $m$ is in a potential $V(r)$ that represents a finite depth spherical well of radius $a$ :
    $$
    V(r)=\left{\begin{aligned}
    -V_0 & \text { for } ra,
    \end{aligned}\right.
    $$
    Here $V_0>0$. For the potential to have bound states it should be deep enough. Derive the inequality that $V_0$ must satisfy in order that the potential have a bound state.

澳洲代写|PHYS3034| Quantum, Statistical and Comp Physics量子、统计和复合物理 悉尼大学

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写