标签: 机器学习代考

澳洲代写|CITS5508|Machine Learning机器学习 西澳大学

statistics-labTM为您提供西澳大学(University of Western Australia,简称:UWA)Machine Learning机器学习澳洲代写代考辅导服务!

课程介绍:


There is an explosion in data generation and data collection due to improvements in sensing technologies and business processes. Extracting meaningful knowledge from large amounts of data has become a priority for businesses as well as scientific domains. Machine learning provides core underlying theory and techniques to data analytics, where algorithms iteratively learn from data to uncover hidden insights. In this unit, students will develop in-depth understanding of machine learning techniques that are applicable to both scientific and business data. The topics covered by the unit include supervised classification, unsupervised classification, regression, support vector machines, decision trees, random forests, dimensionality reduction, artificial neural networks, deep neural networks, autoencoders, and reinforcement learning.

澳洲代写|CITS5508|Machine Learning机器学习 西澳大学

Computational linear algebra计算线性代数问题集

问题 1.

We will explore here the use of the Bayesian Information Criterion (BIC) for model selection, specifically to select features for a Naive Bayes model. The input consists of $d$-dimensional binary feature vectors $\mathbf{x}=\left[x_1, \ldots, x_d\right]^T$ where $x_i \in{-1,1}$ and binary class labels $y \in{-1,1}$.
A Naive Bayes model may be used, for example, to classify emails as spam $(y=1)$ or not-spam $(y=-1)$. The body of each email can be represented as a bag of words (i.e., we ignore frequency, placement, and grammar etc.). We could restrict ourselves to a dictionary of $d$ words $\left{w_1, \ldots, w_d\right}$. and coordinate $x_i$ could serve as an indicator of word $w_i: x_i=1$ if $w_i$ is present in the email and $x_i=-1$ if it is absent.
Recall that the Naive Bayes model assumes that the features are conditionally independent given the label so that
$$
P(\mathbf{x}, y)=\left[\prod_{i=1}^d P\left(x_i \mid y\right)\right] P(y)
$$
We parameterize our model by introducing separate parameters for each component:
$$
\begin{aligned}
P(\mathbf{x} \mid y, \theta) & =\left[\prod_{i=1}^d P\left(x_i \mid y, \theta_i\right)\right] \text { where } \
P\left(x_i \mid y, \theta_i\right) & =\theta_{i \mid y}^{\frac{x_i+1}{2}}\left(1-\theta_{i \mid y}^{\frac{1-x_i}{2}}\right)
\end{aligned}
$$
Here $\theta=\left[\theta_1, \ldots, \theta_d\right]^T$ and $\theta_i=\left[\theta_{i \mid 1}, \theta_{i \mid-1}\right]^T$ so that
$$
\begin{aligned}
\theta_{i \mid 1} & =P\left(x_i=1 \mid y=1\right) \
\theta_{i \mid-1} & =P\left(x_i=1 \mid y=-1\right)
\end{aligned}
$$
In class, we have already discussed how to compute the Maximum Likelihood estimates of these parameters. We will take a Bayesian approach, however, and introduce a prior probability over the parameters $\theta$ as:
$$
\begin{aligned}
P(\theta) & =\prod_{i=1}^d \prod_{y \in{1,-1}} P\left(\theta_{i \mid y}\right) \
P\left(\theta_{i \mid y}\right) & =\frac{\Gamma\left(r^{+}+r^{-}+2\right)}{\Gamma\left(r^{+}+1\right) \Gamma\left(r^{-}+1\right)} \cdot \theta_{i \mid y}^{r^{+}}\left(1-\theta_{i \mid y}\right)^{r^{-}}
\end{aligned}
$$

where $r^{+}$and $r^{-}$are hyper-parameters, common across all the $\theta_{i \mid y}$ ‘s, and, for integer $k, \Gamma(k+1)=k$ !. The hyper-parameters characterize our beliefs about the parameters prior to seeing any data. You may assume here that $r^{+}$and $r^{-}$are non-negative integers.
(a) Eqn 5 specifies the prior $P\left(\theta_{i \mid y}\right)$ as a Beta distribution. This choice of the prior is particularly convenient, as we will see now. Show that the posterior distribution $P(\theta \mid \mathcal{D})$, given $n$ training examples $\left{\left(\mathbf{x}j, y_j\right) \mid j=1, \ldots, n\right}$, has the following form: $$ P(\theta \mid \mathcal{D}) \propto L(\mathcal{D} ; \theta) P(\theta)=\prod{i=1}^d \prod_{y \in{-1,1}} \theta_{i \mid y}^{m_{i \mid y}^{+}}\left(1-\theta_{i \mid y}\right)^{m_{i \mid y}^{-}}
$$
where $L(\mathcal{D} ; \theta)$ is the likelihood function. What are $m_{i \mid y}^{+}$and $m_{i \mid y}^{-}$? Your answer should use the $\hat{n}y$ and $\hat{n}{i y}\left(x_i, y\right)$ notation used in the lectures; e.g., $\hat{n}_{k y}(1,-1)$ is the number of examples where $y=-1$ and $x_k=1$.

You have just shown that the Beta distribution is a conjugate prior to the Binomial distribution. In other words, if the prior probability $P(\theta)$ has the form of a Beta distribution, and the likelihood $P(\mathcal{D} \mid \theta)$ has the form of a Binomial distribution, then the posterior probability $P(\theta \mid \mathcal{D})$ will be a Beta distribution. When the class labels and features are not binary but take on $k$ values, the same relationship holds between the Dirichlet and Multinomial distributions.

问题 2.

(b) Recall that, in the Bayesian scheme for model selection, our aim is to find the model that maximizes the marginal likelihood, $P\left(\mathcal{D} \mid \mathcal{F}_d\right)$, which is the normalization constant for the posterior:
$$
P\left(\mathcal{D} \mid \mathcal{F}_d\right)=\int L(\mathcal{D} ; \theta) P(\theta) d \theta
$$
where $\mathcal{F}_d$ denotes the model. Compute a closed-form expression for $P\left(\mathcal{D} \mid \mathcal{F}_d\right)$. (Hint: use the form of the normalization constant for the beta distribution).

问题 3.

(c) Let us now use our results to choose between two models $\mathcal{F}1$ and $\mathcal{F}_2$. The only difference between them is in how they use feature $i: \mathcal{F}_2$ involves $P\left(x_i \mid y\right)$ term that connects the feature to the label $y$ whereas $\mathcal{F}_1$ only has $P\left(x_i\right)$, assuming that feature $x_i$ is independent of the label. In $\mathcal{F}_2$ the distribution of $x_i$ ‘s is parameterized by two parameters $\left[\theta{i \mid 1}, \theta_{i \mid-1}\right]^T$ as described before. In contrast, $\mathcal{F}_1$ only requires a single parameter $\theta_i^{\prime}$,
$$
P\left(x_i \mid \theta_i^{\prime}\right)=\theta_i^{\prime \frac{x_i+1}{2}}\left(1-\theta_i^{\prime}\right)^{\frac{1-x_i}{2}}
$$
The prior probability over $\theta_i^{\prime}$ is the same as Eqn 6 :
$$
P\left(\theta_i^{\prime}\right) \propto \theta_i^{r^{+}}\left(1-\theta_i^{\prime}\right)^{r^{-}}
$$
The expressions of the marginal likelihood from the two models will differ only in terms of feature $i$. To compare the two models we can ignore all the other terms. From your results in part (b), extract from $P\left(\mathcal{D} \mid \mathcal{F}_2\right)$ the factors involving feature $i$. Use a similar analysis to evaluate the terms involving feature $i$ in $P\left(\mathcal{D} \mid \mathcal{F}_1\right)$. Using these, evaluate the “decision rule”, $\log \left[P\left(\mathcal{D} \mid \mathcal{F}_2\right) / P\left(\mathcal{D} \mid \mathcal{F}_1\right)\right]>0$ to include feature $x_i$.

澳洲代写|CITS5508|Machine Learning机器学习 西澳大学
AttributeDetail
Course CodeECC2610
Course TitleGame theory and strategic thinking
Coordinating UnitIntroductory microeconomics
SemesterSecond semester
ModeOn-campus
Delivery LocationClayton
Number of UnitsNot provided in the text
Pre-RequisitesECB1101, ECC1000, ECF1100, ECS1101, ECW1101
LecturersAssociate Professor Paola Labrecciosa

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

澳洲代写|COMP30027|Machine Learning机器学习 墨尔本大学

statistics-labTM为您提供墨尔本大学The University of Melbourne,简称UniMelb,中文简称“墨大”)Complex Analysis复杂分析澳洲代写代考辅导服务!

课程介绍:

Machine Learning, a core discipline in data science, is prevalent across Science, Technology, the Social Sciences, and Medicine; it drives many of the products we use daily such as banner ad selection, email spam filtering, and social media newsfeeds. Machine Learning is concerned with making accurate, computationally efficient, interpretable and robust inferences from data. Originally borne out of Artificial Intelligence, Machine Learning has historically been the first to explore more complex prediction models and to emphasise computation, while in the past two decades Machine Learning has grown closer to Statistics gaining firm theoretical footing.

澳洲代写|COMP30027|Machine Learning机器学习 墨尔本大学

Machine Learning机器学习 问题集

问题 1.

The data and scripts for this problem are available in hw2/prob1. You can load the data using the MATLAB script load_al_data. This script should load the matrices y_noisy, y_true, X_in. The $y$ vectors are $n \times 1$ while $\mathrm{X}{-}$in is a $n \times 3$ matrix with each row corresponding to a point in $\mathcal{R}^3$. The $y{\text {true }}$ vectors correspond to the ideal $y$ values, generated directly from the “true” model (whatever it may be) without any noise. In contrast, the $y_{\text {noisy }}$ vectors are the actual, noisy observations, generated by adding Gaussian noise to the $y_{\text {true }}$ vectors. You should use $y_{n o i s y}$ for any estimation. $y_{\text {true }}$ is provided only to make it easier to evaluate the error in your predictions (simulate an infinite test data). You would not have $y_{\text {true }}$ in any real task.
(a) Write MATLAB functions theta = linear_regress $(\mathrm{y}, \mathrm{X})$ and $\mathrm{y}$ hat $=$ linear_pred(theta, X_test). Note that we are not explicitly including the offset parameter but instead rely on the feature vectors to provide a constant component. See part (b).
(b) The feature mapping can substantially affect the regression results. We will consider two possible feature mappings:
$$
\begin{aligned}
& \phi_1\left(x_1, x_2, x_3\right)=\left[1, x_1, x_2, x_3\right]^T \
& \phi_2\left(x_1, x_2, x_3\right)=\left[1, \log x_1^2, \log x_2^2, \log x_3^2\right]^T
\end{aligned}
$$
Use the provided MATLAB function feature mapping to transform the input data matrix into a matrix
$$
X=\left[\begin{array}{c}
\phi\left(\mathbf{x}1\right)^T \ \phi\left(\mathbf{x}_2\right)^T \ \cdots \ \phi\left(\mathbf{x}{\mathbf{n}}\right)^T
\end{array}\right]
$$
For example, $\mathrm{X}$ = feature_mapping ( $\mathrm{X}_{-}$in, 1 ) would get you the first feature representation. Using your completed linear regression functions, compute the mean squared prediction error for each feature mapping (2 numbers).

问题 2.

(c) The selection of points to query in an active learning framework might depend on the feature representation. We will use the same selection criterion as in the lectures, the expected squared error in the parameters, proportional to $\operatorname{Tr}\left[\left(X^T X\right)^{-1}\right]$. Write a MATLAB function $\mathrm{idx}=\operatorname{active_ learn}(\mathrm{X}, \mathrm{k} 1, \mathrm{k} 2)$. Your function should assume that the top $k_1$ rows in $X$ have been queried and your goal is to sequentially find the indices of the next $k_2$ points to query. The final set of $k_1+k_2$ indices should be returned in idx. The latter may contain repeated entries. For each feature mapping, and $k_1=5$ and $k_2=10$, compute the set of points that should be queried (i.e., $\mathrm{X}(:, \mathrm{idx})$ ). For each set of points, use the feature mapping $\phi_2$ to perform regression and compute the resulting mean squared prediction errors (MSE) over the entire data set (again, using $\phi_2$ ).

问题 3.

(d) Let us repeat the steps of part (c) with randomly selected additional points to query. We have provided a MATLAB function $i d x=\operatorname{randomly}(\operatorname{select}(\mathrm{X}, \mathrm{k} 1, \mathrm{k} 2)$ which is essentially the same as active_learn except that it selects the $k_2$ points uniformly at random from $X$. Repeat the regression steps as in previous part, and compute the resulting mean squared prediction error again. To get a reasonable comparison you should repeat this process 50 times, and use the median MSE. Compare the resulting errors with the active learning strategies. What conclusions can you draw?

问题 4.

(e) Let us now compare the two sets of points chosen by active learning due to the different feature representations. We have provided a function plot_points(X,idx_r,idx_b) which will plot each row of $X$ as a point in $\mathbf{R}^3$. The points indexed by $i d x _r$ will be circled in red and those marked by idx_b will be circled (larger) in blue (some of the points indexed by idx_r and idx_b might be common). Plot the original data points using the indexes of the actively selected points based on the two feature representations. Also plot the same indexes using $\mathrm{X}$ from the second feature representation with its first constant column removed. In class, we saw an example where the active learning strategy chose points at the extrema of the available space. Can you see evidence of this in the two plots?

澳洲代写|COMP30027|Machine Learning机器学习 墨尔本大学

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

澳洲代写|FIT5201 |Machine learning机器学习 蒙纳士大学

statistics-labTM为您提供蒙纳士大学(Monash University)Machine learning机器学习澳洲代写代考辅导服务!

课程介绍:

This unit introduces machine learning and the major kinds of statistical learning models and algorithms used in data analysis. Learning and the different kinds of learning will be covered and their usage will be discussed. The unit presents foundational concepts in machine learning and statistical learning theory, e.g. bias-variance, model selection, and how model complexity interplays with model’s performance on unobserved data. A series of different models and algorithms will be presented and interpreted based on the foundational concepts: linear models for regression and classification (e.g. linear basis function models, logistic regression, Bayesian classifiers, generalised linear models), discriminative and generative models, k-means and latent variable models (e.g. Gaussian mixture model), expectation-maximisation, neural networks and deep learning, and principles in scaling typical supervised and unsupervised learning algorithms to big data using distributed computing.

澳洲代写|FIT5201 |Machine learning机器学习 蒙纳士大学

Machine learning机器学习案例

问题 1.

In sequential active learning we are free to choose the next training input $x_{n+1}$, here within $[1,4]$, for which we will then receive the corresponding noisy target $y_{n+1}$, sampled from the underlying model. Suppose we already have $\left{\left(x_1, y_1\right),\left(x_2, y_2\right), \ldots,\left(x_n, y_n\right)\right}$ and are trying to figure out which $x_{n+1}$ to select. The goal is to choose $x_{n+1}$ so as to help minimize the variance of the predictions $f\left(x ; \hat{w}_n\right)=\hat{w}_n x$, where $\hat{w}_n$ is the maximum likelihood estimate of the parameter $w$ based on the first $n$ training examples.
(a) What is the variance of $f\left(x ; \hat{w}_n\right)$ due to the noise in the training outputs as a function of $x, n$, and $\sigma^2$ given fixed (already chosen) inputs $x_1, \ldots, x_n$ ?

$f\left(x ; \hat{w}_n\right)$ is $x w$, and we know that the variance of $w$ is $\sigma^2 / n$ (from the previous part). Thus the variance of $f\left(x ; \hat{w}_n\right)$ is $x^2 \sigma^2 / n$.

问题 2.

(b) Which $x_{n+1}$ would we choose (within $[1,4]$ ) if we were to next select $x$ with the maximum variance of $f\left(x ; \hat{w}_n\right)$ ?

The variance is maximized when $x^2$ is maximum, that is $x=4$.

问题 3.

(T/F -2 points) Since the variance of $f\left(x ; \hat{w}_n\right)$ only depends on $x$, $n$, and $\sigma^2$, we could equally well select the next point at random from $[1,4]$ and obtain the same reduction in the maximum variance.

The variance at $x=4$ is $16 \sigma^2 / n$. This does not depend on the actual choice of the queried points, but only on the number of points queried.

澳洲代写|FIT5201 |Machine learning机器学习 蒙纳士大学

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写