数学代写|凸优化作业代写Convex Optimization代考|EECS 559

statistics-lab™ 为您的留学生涯保驾护航 在代写凸优化Convex Optimization方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写凸优化Convex Optimization代写方面经验极为丰富，各种代写凸优化Convex Optimization相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

数学代写|凸优化作业代写Convex Optimization代考|Matrix norm

In mathematics, a matrix norm is a natural extension of the notion of a vector norm to matrices. Some useful matrix norms needed throughout the book are introduced next.
The Frobenius norm of an $m \times n$ matrix $\mathbf{A}$ is defined as
$$|\mathbf{A}|_{\mathrm{F}}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|[\mathbf{A}]{i j}\right|^{2}\right)^{1 / 2}=\sqrt{\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}\right)}$$ where $$\operatorname{Tr}(\mathbf{X})=\sum{i=1}^{n}[\mathbf{X}]_{i i}$$
denotes the trace of a square matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$. As $n=1$, A reduces to a column vector of dimension $m$ and its Frobenius norm also reduces to the 2 -norm of the vector.

The other class of norm is known as the induced norm or operator norm. Suppose that $|\cdot|_{a}$ and $|\cdot|_{b}$ are norms on $\mathbb{R}^{m}$ and $\mathbb{R}^{n}$, respectively. Then the operator/induced norm of $\mathbf{A} \in \mathbb{R}^{m \times n}$, induced by the norms $|\cdot|_{a}$ and $\left|_{\cdot}\right|_{b}$, is defined as
$$|\mathbf{A}|_{a, b}=\sup \left{|\mathbf{A} \mathbf{u}|_{a} \mid|\mathbf{u}|_{b} \leq 1\right}$$
where $\sup (C)$ denotes the least upper bound of the set $C$. As $a=b$, we simply denote $|\mathbf{A}|_{a, b}$ by $|\mathbf{A}|_{a}$.
Commonly used induced norms of an $m \times n$ matrix
$$\mathbf{A}=\left{a_{i j}\right}_{m \times n}=\left[\mathbf{a}{1}, \ldots, \mathbf{a}{n}\right]$$
are as follows:
\begin{aligned} |\mathbf{A}|_{1} &=\max {|\mathbf{u}|{1} \leq 1} \sum_{j=1}^{n} u_{j} \mathbf{a}{j} |{1}, \quad(a=b=1) \ & \leq \max {|\mathbf{u}|{1} \leq 1} \sum_{j=1}^{n}\left|u_{j}\right| \cdot\left|\mathbf{a}{j}\right|{1} \text { (by triangle inequality) } \ &=\max {1 \leq j \leq n}\left|\mathbf{a}{j}\right|_{1}=\max {1 \leq j \leq n} \sum{i=1}^{m}\left|a_{i j}\right| \end{aligned}

数学代写|凸优化作业代写Convex Optimization代考|Inner product

The inner product of two real vectors $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{n}$ is a real scalar and is defined as
$$\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{T} \mathbf{x}=\sum_{i=1}^{n} x_{i} y_{i}$$
If $\mathbf{x}$ and $\mathbf{y}$ are complex vectors, then the transpose in the above equation will be replaced by Hermitian. Note that the square root of the inner product of a vector $\mathbf{x}$ with itself gives the Euclidean norm of that vector.

Cauchy-Schwartz inequality: For any two vectors $\mathbf{x}$ and $\mathbf{y}$ in $\mathbb{R}^{n}$, the CauchySchwartz inequality
$$|\langle\mathbf{x}, \mathbf{y}\rangle| \leq|\mathbf{x}|_{2} \cdot|\mathbf{y}|_{2}$$
holds. Furthermore, the equality holds if and only if $\mathbf{x}=\alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Pythagorean theorem: If two vectors $\mathbf{x}$ and $\mathbf{y}$ in $\mathbb{R}^{n}$ are orthogonal, i.e., $\langle\mathbf{x}, \mathbf{y}\rangle=0$, then
$$|\mathbf{x}+\mathbf{y}|_{2}^{2}=(\mathbf{x}+\mathbf{y})^{T}(\mathbf{x}+\mathbf{y})=|\mathbf{x}|_{2}^{2}+2(\mathbf{x}, \mathbf{y}\rangle+|\mathbf{y}|_{2}^{2}=|\mathbf{x}|_{2}^{2}+|\mathbf{y}|_{2}^{2}$$

数学代写|凸优化作业代写Convex Optimization代考|Matrix norm

$$|\mathbf{A}|{\mathrm{F}}=\left(\sum{i=1}^{m} \sum_{j=1}^{n}|[\mathbf{A}] i j|^{2}\right)^{1 / 2}=\sqrt{\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}\right)}$$

$$\operatorname{Tr}(\mathbf{X})=\sum i=1^{n}[\mathbf{X}]{i i}$$ 表示方阵的迹 $\mathbf{X} \in \mathbb{R}^{n \times n}$. 作为 $n=1, \mathrm{~A}$ 减少为一个维度的列向量 $m$ 并且它的 Frobenius 范数也简化为向量的 2 范数。 另一类范数称为诱导范数或算子范数。假设 $|\cdot|{a}$ 和 $|\cdot|{b}$ 是关于 $\mathbb{R}^{m}$ 和 $\mathbb{R}^{n}$ ，分别。那么算子/诱导范数 $\mathbf{A} \in \mathbb{R}^{m \times n}$ ，由规范诱导 $|\cdot|{a}$ 和 ||$_{b}$ ，定义为
$\mid \backslash$ mathbf $\left.{A}\right|{-}{a, b}=\backslash$ sup $\backslash$ left $\left{\mid \backslash\right.$ mathbf ${A} \backslash$ mathbf $\left.{u}\right|{-}{a} \backslash$ mid $\mid \backslash$ mathbf $\left.{u}\right|{-}{b} \backslash l e q$ 1 右 $}$ 在哪里 $\sup (C)$ 表示集合的最小上界 $C$. 作为 $a=b$ ，我们简单地表示 $|\mathbf{A}|{a, b}$ 经过 $|\mathbf{A}|{a}$. 常用的诱导范数 $m \times n$ 矩阵 如下面所述： $$|\mathbf{A}|{1}=\max |\mathbf{u}| 1 \leq 1 \sum_{j=1}^{n} u_{j} \mathbf{a} j|1, \quad(a=b=1) \quad \leq \max | \mathbf{u}\left|1 \leq 1 \sum_{j=1}^{n}\right| u_{j}|\cdot| \mathbf{a} j \mid 1 \text { (by triangle in }$$

数学代写|凸优化作业代写Convex Optimization代考|Inner product

$$\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{T} \mathbf{x}=\sum_{i=1}^{n} x_{i} y_{i}$$

Cauchy-Schwartz 不等式：对于任意两个向量 $\mathbf{x}$ 和 $\mathbf{y}$ 在 $\mathbb{R}^{n}$, CauchySchwartz 不等式
$$|\langle\mathbf{x}, \mathbf{y}\rangle| \leq|\mathbf{x}|{2} \cdot|\mathbf{y}|{2}$$

$$|\mathbf{x}+\mathbf{y}|{2}^{2}=(\mathbf{x}+\mathbf{y})^{T}(\mathbf{x}+\mathbf{y})=|\mathbf{x}|{2}^{2}+2(\mathbf{x}, \mathbf{y}\rangle+|\mathbf{y}|{2}^{2}=|\mathbf{x}|{2}^{2}+|\mathbf{y}|_{2}^{2}$$

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。