### 数学代写|编码理论作业代写Coding Theory代考|Bounds for Linear Block Codes

statistics-lab™ 为您的留学生涯保驾护航 在代写编码理论Coding Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写编码理论Coding Theory代写方面经验极为丰富，各种代写编码理论Coding Theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|编码理论作业代写Coding Theory代考|Bounds for Linear Block Codes

The code rate $R=k / n$ and the minimum Hamming distance $d$ are important parameters of a linear block code $\mathrm{B}(n, k, d)$. It is therefore useful to know whether a linear block code theoretically exists for a given combination of $R$ and $d$. In particular, for a given minimum Hamming distance $d$ we will consider a linear block code to be better than another linear block code with the same minimum Hamming distance $d$ if it has a higher code rate $R$. There exist several theoretical bounds which we will briefly discuss in the following (Berlekamp, 1984; Bossert, 1999; Ling and Xing, 2004; van Lint, 1999) (see also Figure 2.22). Block codes that fulfil a theoretical bound with equality are called optimal codes.
Singleton Bound
The simplest bound is the so-called Singleton bound. For a linear block code $\mathrm{B}(n, k, d)$ it is given by
$$k \leq n-d+1 .$$
A linear block code that fulfils the Singleton bound with equality according to $k=n-d+$ 1 is called MDS (maximum distance separable). Important representatives of MDS codes are Reed-Solomon codes which are used, for example, in the channel coding scheme within the audio compact disc (see also Section 2.3.7).
Sphere Packing Bound
The so-called sphere packing bound or Hamming bound can be derived for a linear $e_{\text {cor }}=$ $\lfloor(d-1) / 2\rfloor$-error correcting $q$-nary block code $\mathrm{B}(n, k, d)$ by considering the correction balls within the code space $\mathbb{F}{q}^{n}$. Each correction ball encompasses a total of $$\sum{i=0}^{e_{\mathrm{cor}}}\left(\begin{array}{l} n \ i \end{array}\right)(q-1)^{i}$$

vectors in the code space $F_{q}^{n}$. Since there is exactly one correction ball for each code word, we have $M=q^{k}$ correction balls. The total number of vectors within any correction ball of radius $e_{\text {cor }}$ is then given by
$$q^{k} \sum_{i=0}^{e_{\text {cor }}}\left(\begin{array}{l} n \ i \end{array}\right)(q-1)^{i}$$
Because this number must be smaller than or equal to the maximum number $\left|\mathbb{F}{q}^{n}\right|=q^{n}$ of vectors in the finite vector space $\mathbb{F}{q}^{n}$, the sphere packing bound
$$q^{k} \sum_{i=0}^{e_{\operatorname{cor}}}\left(\begin{array}{l} n \ i \end{array}\right)(q-1)^{i} \leq q^{n}$$

## 数学代写|编码理论作业代写Coding Theory代考|Plotkin’s (u|v) Code Construction

In contrast to the aforementioned code constructions, the (u|v) code construction originally proposed by Plotkin takes two linear block codes $\mathrm{B}\left(n_{1}, k_{1}, d_{1}\right)$ and $\mathrm{B}\left(n_{2}, k_{2}, d_{2}\right)$ with code word lengths $n_{1}$ and $n_{2}$, information word lengths $k_{1}$ and $k_{2}$ and minimum Hamming distances $d_{1}$ and $d_{2}$. For simplification, we fill the code words of the block code with smaller code word length by an appropriate number of zeros. This step is called zero padding. Let $\mathbf{u}$ and $\mathbf{v}$ be two arbitrary code words thus obtained from the linear block codes $\mathrm{B}\left(n_{1}, k_{1}, d_{1}\right)$ and $\mathrm{B}\left(n_{2}, k_{2}, d_{2}\right)$ respectively. ${ }^{12}$ Then we have
$$\mathbf{u}= \begin{cases}\left(\mathbf{b}{1} \mid 0, \ldots, 0\right), & n{1}<n_{2} \ \mathbf{b}{1}, & n{1} \geq n_{2}\end{cases}$$
and
$$\mathbf{v}= \begin{cases}\mathbf{b}{2}, & n{1}<n_{2} \ \left(\mathbf{b}{2} \mid 0, \ldots, 0\right), & n{1} \geq n_{2}\end{cases}$$
with the arbitrarily chosen code words $\mathbf{b}{1} \in \mathbb{B}\left(n{1}, k_{1}, d_{1}\right)$ and $\mathbf{b}{2} \in \mathbb{B}\left(n{2}, k_{2}, d_{2}\right)$. We now identify the code words $\mathbf{u}$ and $\mathbf{v}$ with the original codes $\mathrm{B}\left(n_{1}, k_{1}, d_{1}\right)$ and $\mathrm{B}\left(n_{2}, k_{2}, d_{2}\right)$, i.e. we write $\mathbf{u} \in \mathbb{B}\left(n_{1}, k_{1}, d_{1}\right)$ and $\mathbf{v} \in \mathbb{B}\left(n_{2}, k_{2}, d_{2}\right)$. The code resulting from Plotkin’s (u|v) code construction is then given by
$$\mathbb{B}^{\prime}\left(n^{\prime}, k^{\prime}, d^{\prime}\right)=\left{(\mathbf{u} \mid \mathbf{u}+\mathbf{v}): \mathbf{u} \in \mathbb{B}\left(n_{1}, k_{1}, d_{1}\right) \wedge \mathbf{v} \in \mathbb{B}\left(n_{2}, k_{2}, d_{2}\right)\right}$$
This code construction creates all vectors of the form $(\mathbf{u} \mid \mathbf{u}+\mathbf{v})$ by concatenating all possible vectors $\mathbf{u}$ and $\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in \mathbb{B}\left(n_{1}, k_{1}, d_{1}\right)$ and $\mathbf{v} \in \mathbb{B}\left(n_{2}, k_{2}, d_{2}\right)$. The resulting code is characterised by the following code parameters
\begin{aligned} &n^{\prime}=2 \max \left{n_{1}, n_{2}\right} \ &k^{\prime}=k_{1}+k_{2}, \ &d^{\prime}=\min \left{2 d_{1}, d_{2}\right} \end{aligned}

## 数学代写|编码理论作业代写Coding Theory代考|Examples of Linear Block Codes

In this section we will present some important linear block codes. In particular, we will consider the already introduced repetition codes, parity-check codes and Hamming codes. Furthermore, simplex codes and Reed-Muller codes and their relationships are discussed (Berlekamp, 1984; Bossert, 1999; Lin and Costello, 2004; Ling and Xing, 2004).

We have already introduced the binary triple repetition code in Section $1.3$ as a simple introductory example of linear block codes. In this particular code the binary information symbol 0 or 1 is transmitted with the binary code word 000 or 111 respectively. In general, a repetition code over the alphabet $\mathrm{F}{q}$ assigns to the $q$-nary information symbol $u{0}$ the $n$-dimensional code word $\mathbf{b}=\left(u_{0}, u_{0}, \ldots, u_{0}\right)$. Trivially, this block code is linear. The minimum Hamming distance is
$$d=n .$$
Therefore, the repetition code in Figure $2.27$ is a linear block code $\mathrm{B}(n, 1, n)$ that is able to detect $e_{\text {det }}=d-1=n-1$ errors or to correct $e_{\text {cor }}=\lfloor(d-1) / 2\rfloor=\lfloor(n-1) / 2\rfloor$ errors. The code rate is
$$R=\frac{1}{n} .$$
For the purpose of error correction, the minimum distance decoding can be implemented by a majority decoding scheme. The decoder emits the information symbol $\hat{u}_{0}$ which appears most often in the received word.
The weight distribution of a repetition code is simply given by
$$W(x)=1+(q-1) x^{n}$$
Although this repetition code is characterised by a low code rate $R$, it is used in some communication standards owing to its simplicity. For example, in the short-range wireless communication system Bluetooth ${ }^{\mathrm{TM}}$ a triple repetition code is used as part of the coding scheme of the packet header of a transmitted baseband packet (Bluetooth, 2004).

## 数学代写|编码理论作业代写Coding Theory代考|Bounds for Linear Block Codes

ķ≤n−d+1.

Sphere Packing Bound

∑一世=0和C这r(n 一世)(q−1)一世

qķ∑一世=0和心电图 (n 一世)(q−1)一世

qķ∑一世=0和心电图(n 一世)(q−1)一世≤qn

## 数学代写|编码理论作业代写Coding Theory代考|Plotkin’s (u|v) Code Construction

\mathbb{B}^{\prime}\left(n^{\prime}, k^{\prime}, d^{\prime}\right)=\left{(\mathbf{u} \mid \mathbf {u}+\mathbf{v}): \mathbf{u} \in \mathbb{B}\left(n_{1}, k_{1}, d_{1}\right) \wedge \mathbf{v} \in \mathbb{B}\left(n_{2}, k_{2}, d_{2}\right)\right}\mathbb{B}^{\prime}\left(n^{\prime}, k^{\prime}, d^{\prime}\right)=\left{(\mathbf{u} \mid \mathbf {u}+\mathbf{v}): \mathbf{u} \in \mathbb{B}\left(n_{1}, k_{1}, d_{1}\right) \wedge \mathbf{v} \in \mathbb{B}\left(n_{2}, k_{2}, d_{2}\right)\right}

\begin{对齐} &n^{\prime}=2 \max \left{n_{1}, n_{2}\right} \ &k^{\prime}=k_{1}+k_{2}, \ &d ^{\prime}=\min \left{2 d_{1}, d_{2}\right} \end{aligned}\begin{对齐} &n^{\prime}=2 \max \left{n_{1}, n_{2}\right} \ &k^{\prime}=k_{1}+k_{2}, \ &d ^{\prime}=\min \left{2 d_{1}, d_{2}\right} \end{aligned}

d=n.

R=1n.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。